JPH07310287A - Production of fiber-reinforced thermoplastic resin - Google Patents

Production of fiber-reinforced thermoplastic resin

Info

Publication number
JPH07310287A
JPH07310287A JP6098667A JP9866794A JPH07310287A JP H07310287 A JPH07310287 A JP H07310287A JP 6098667 A JP6098667 A JP 6098667A JP 9866794 A JP9866794 A JP 9866794A JP H07310287 A JPH07310287 A JP H07310287A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber bundle
fiber
reinforcing fiber
resin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6098667A
Other languages
Japanese (ja)
Inventor
Hideji Igarashi
秀次 五十嵐
Tsutomu Kiriyama
勉 桐山
Sadamitsu Murayama
定光 村山
Tadahiko Takada
忠彦 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP6098667A priority Critical patent/JPH07310287A/en
Publication of JPH07310287A publication Critical patent/JPH07310287A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-quality fiber-reinforced thermoplastic resin material, containing uniformly mixed reinforcing fibers and having good heat resistance, dimensional stability and creep characteristics by previously heat-treating a reinforcing fiber bundle at a high temperature and then coating the resultant fiber bundle with a thermoplastic resin under a specific high tension. CONSTITUTION:This method for producing a fiber-reinforced thermoplastic resin material is to previously heat-treat a reinforcing fiber bundle comprising acrylonitrile-based fibers, aramid fibers, rayon-based fibers and glass fibers, etc., at >=100 deg.C and the melting point of the thermoplastic resin or above, then coat the resultant heat-treated fiber bundle under a tension as high as 5-70% of the tensile strength at break with a molten thermoplastic resin under >=25kg/cm<2> pressure, mold the fiber bundle and subsequently cool the molded fiber bundle. The obtained fiber-reinforced thermoplastic resin material has a high grade and contains the reinforcing fibers uniformly dispersed in the whole molded material. The resin material is excellent in heat resistance, dimensional stability and creep and mechanical characteristics. A polyamide, polyethylene, polybutylene terephthalate, etc., can be exemplified as the thermoplastic resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は射出成形機等を用いて、
繊維強化熱可塑性樹脂材料を成形するに際し、その品質
を大きく左右するガスの発生が抑制され、補強用繊維が
樹脂により十分にその特性を発揮すべく高度に含浸さ
れ、かつ成形材全体に補強用繊維が均一に分散混入され
てなる、高品質な成形材を得るための繊維強化熱可塑性
樹脂材料の製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention uses an injection molding machine or the like to
When molding a fiber-reinforced thermoplastic resin material, the generation of gas, which greatly affects the quality of the material, is suppressed, and the reinforcing fibers are highly impregnated with resin to fully exhibit their characteristics, and the entire molding material is reinforced. The present invention relates to a method for producing a fiber-reinforced thermoplastic resin material for obtaining a high-quality molding material in which fibers are uniformly dispersed and mixed.

【0002】[0002]

【従来の技術】従来、繊維強化熱可塑性樹脂材料の製造
方法としては、一般に5mm位に繊維束を切断したチョ
ップドストランドと樹脂とを押出機により混練押し出し
する方法が知られている。しかしながら、この方法によ
れば、例えば有機繊維であるアラミド繊維では、短く切
断した場合、繊維は綿状になって、著しく嵩高になるた
め、押出機やニーダーに噛み込みにくく、また無機繊維
である炭素繊維とかガラス繊維は押出機の混練工程で、
高い煎断力により粉砕され0.5mm以下となり、得ら
れる繊維強化熱可塑性樹脂材料の機械的特性が低下する
という問題があった。更に、近年ポリフェニレンサルフ
ァイド(PPS)、ポリエーテルエーテルケトン(PE
EK)、ポリエーテルサルフォン(PES)の如く耐熱
性のある熱可塑性樹脂による補強が必要になるにつれ
て、押出機によるペレット作成時及び射出形成時に補強
用繊維の集束剤が熱劣化することにより繊維の分散性が
悪化するという問題もあった。更に、成形品の高温使用
時に、補強繊維に付随する水及び熱劣化した集束剤がガ
ス化するために、得られた繊維強化熱可塑性樹脂材料の
耐熱性、機械的特性が悪化するという問題があった。こ
れらの欠点を解決するために特開昭62―24035号
公報、特開昭57―90020号公報等が提案されてい
る。しかしながら噛み込み性とか補強繊維の粉砕に対し
ては効果があるものの、強化用繊維に付随する水及び熱
劣化した集束剤がガス化するという問題を解決するには
至っていない。さらに、連続繊維で強化した繊維強化熱
可塑性樹脂材料用に供する原料については、長さ方向の
フィラメント(単繊維)混率が均一なことも重要な特性
であるが、該公報の方法では均一な材料を作ることは至
難である。また、特開平01―019591号公報等も
あるが、繊維間の樹脂含浸性にバラツキのあることも判
明した。
2. Description of the Related Art Conventionally, as a method for producing a fiber-reinforced thermoplastic resin material, there is generally known a method in which a chopped strand obtained by cutting a fiber bundle into about 5 mm and a resin are kneaded and extruded by an extruder. However, according to this method, for example, in the case of aramid fiber which is an organic fiber, when it is cut into a short length, the fiber becomes cotton-like and becomes extremely bulky, which makes it difficult to bite into an extruder or a kneader, and is an inorganic fiber. Carbon fiber or glass fiber is the kneading process of the extruder,
There was a problem that the fiber-reinforced thermoplastic resin material obtained was crushed to a size of 0.5 mm or less by a high breaking force and the mechanical properties of the obtained fiber-reinforced thermoplastic resin material were deteriorated. Furthermore, in recent years, polyphenylene sulfide (PPS), polyether ether ketone (PE
EK), polyether sulfone (PES), etc. As reinforcement with heat-resistant thermoplastic resin becomes necessary, the sizing agent of the reinforcing fiber is thermally deteriorated during pellet formation by the extruder and during injection molding. There was also a problem that the dispersibility of was deteriorated. Further, when the molded product is used at high temperature, water and heat-deteriorated sizing agent accompanying the reinforcing fiber are gasified, and thus the heat resistance and mechanical properties of the obtained fiber-reinforced thermoplastic resin material are deteriorated. there were. In order to solve these drawbacks, JP-A-62-24035 and JP-A-57-90020 have been proposed. However, although it has an effect on the biting property and the crushing of the reinforcing fiber, it has not yet solved the problem that the water and the heat-deteriorated sizing agent accompanying the reinforcing fiber are gasified. Further, regarding the raw material to be used for the fiber-reinforced thermoplastic resin material reinforced with continuous fibers, it is also an important characteristic that the filament (single fiber) mixing ratio in the length direction is uniform. Is difficult to make. In addition, although it is disclosed in Japanese Patent Laid-Open No. 01-01591, it was also found that the resin impregnating property between fibers varies.

【0003】さらに上述の先行資料等に記載されている
連続長繊維で強化されてなる繊維強化熱可塑性樹脂材料
では、例えばスチール補強材等に比べて高伸度である有
機系繊維で補強されているため寸法安定性やクリープ特
性はスチール補強材料に比べて劣るという問題もあっ
た。
Further, in the fiber reinforced thermoplastic resin material reinforced by continuous long fibers described in the above-mentioned prior documents, for example, it is reinforced with an organic fiber having a higher elongation than a steel reinforcing material. Therefore, the dimensional stability and creep properties were inferior to those of steel reinforcing materials.

【0004】[0004]

【発明の目的】本発明の目的は、前述の如き従来技術の
問題解決を目的とするもので、噛み込み性、分散性が良
好で成形段階での熱劣化によるガスの発生も少なく、補
強用繊維が樹脂により十分にその特性を発揮すべく高度
に含浸され、かつ成形材料全体に補強繊維が均一に分散
混合された材料を提供することにある。又連続長繊維に
よる繊維強化熱可塑性樹脂材料と比較して、成形段階で
の熱劣化によるガスの発生が少なく、補強用繊維が樹脂
により十分にその特性を発揮すべく高度に含浸され、気
泡がなく、成形材全体に補強用繊維が均一に分散混入さ
れ、良好な耐熱性、寸法安定性、クリープ特性及び機械
的特性等を備えた材料を製造する方法を提供することに
ある。本発明者らは、繊維強化熱可塑性樹脂材料の製造
方法において、補強用繊維束を予め熱処理して補強用繊
維に吸着或いは付着されている水分や油剤などを気化さ
せることにより、成形時のガス化とその発生を防ぎ、更
に、補強用繊維束に高張力下で溶融熱可塑性樹脂を被覆
するに際し、樹脂に圧力を加えることで高粘度である熱
可塑性樹脂を補強用繊維束の中に注入し、かつ、樹脂被
覆された繊維束を熱可塑性樹脂の溶融温度以上で成形ノ
ズルを用い再成形することにより長さ方向に単繊維の混
率を均一にし、これを材料として用いた場合の成形材料
または、これをカットして原料として用いた射出成形品
やプレス成形品の耐熱性、寸法安定性、クリープ特性及
び機械的特性が優れていることを見いだし本発明に至っ
たものである。
The object of the present invention is to solve the problems of the prior art as described above. It has good biting property and dispersibility, and generates little gas due to thermal deterioration at the molding stage. It is an object to provide a material in which fibers are highly impregnated with a resin so as to sufficiently exhibit its properties, and reinforcing fibers are uniformly dispersed and mixed throughout the molding material. In addition, compared to fiber reinforced thermoplastic resin material with continuous long fibers, less gas is generated due to thermal deterioration in the molding stage, and the reinforcing fiber is highly impregnated with resin to fully exhibit its characteristics, and bubbles are not generated. It is another object of the present invention to provide a method for producing a material having good heat resistance, dimensional stability, creep properties, mechanical properties, etc., in which reinforcing fibers are uniformly dispersed and mixed in the entire molding material. In the method for producing a fiber-reinforced thermoplastic resin material, the present inventors heat-treat a reinforcing fiber bundle in advance to vaporize water or an oil agent adsorbed or attached to the reinforcing fiber, thereby forming a gas at the time of molding. In order to prevent the formation and its generation, and when the reinforcing fiber bundle is coated with the molten thermoplastic resin under high tension, pressure is applied to the resin to inject the thermoplastic resin with high viscosity into the reinforcing fiber bundle. And the resin-coated fiber bundle is re-molded at a temperature not lower than the melting temperature of the thermoplastic resin by using a molding nozzle to make the mixing ratio of the single fibers uniform in the length direction, and a molding material when this is used as a material. Alternatively, the inventors of the present invention have found that an injection-molded product or a press-molded product, which is cut and used as a raw material, is excellent in heat resistance, dimensional stability, creep properties and mechanical properties, and has reached the present invention.

【0005】[0005]

【発明の構成】即ち本発明は、「(請求項1) 補強用
繊維束に熱可塑性樹脂を被覆する方法において、補強用
繊維束に、予め、100℃以上の温度で熱処理を行う工
程(予熱工程)、次いで、補強用繊維束に引張破断強力
の5〜70%の高張力を掛けた状態下で、補強用繊維束
に溶融した熱可塑性樹脂を被覆する工程(被覆工程)、
続いて冷却する工程(冷却工程)を有することを特徴と
する繊維強化熱可塑性樹脂材料の製造方法。
That is, according to the present invention, "(Claim 1) In a method of coating a reinforcing fiber bundle with a thermoplastic resin, the reinforcing fiber bundle is preliminarily heat-treated at a temperature of 100 ° C or more (preheating Step), and then a step of coating the reinforcing fiber bundle with the melted thermoplastic resin under a state in which the reinforcing fiber bundle is subjected to high tension of 5 to 70% of tensile breaking strength (coating step),
A method for producing a fiber-reinforced thermoplastic resin material, which comprises a subsequent cooling step (cooling step).

【0006】(請求項2) 予熱工程が、補強用繊維束
に、予め、熱可塑性樹脂の溶融温度以上の高温で熱処理
する工程である請求項1の繊維強化熱可塑性樹脂材料の
製造方法。
(Claim 2) The method for producing a fiber-reinforced thermoplastic resin material according to claim 1, wherein the preheating step is a step of heat-treating the reinforcing fiber bundle in advance at a temperature higher than the melting temperature of the thermoplastic resin.

【0007】(請求項3) 被覆工程が、補強用繊維束
に引張破断強力の10〜50%の高張力を掛けた状態下
で、補強用繊維束に溶融した熱可塑性樹脂を被覆する工
程である請求項1又は2の繊維強化熱可塑性樹脂材料の
製造方法。
(Claim 3) The coating step is a step of coating the reinforcing fiber bundle with a molten thermoplastic resin under a state where a high tension of 10 to 50% of the tensile breaking strength is applied to the reinforcing fiber bundle. A method for producing a fiber-reinforced thermoplastic resin material according to claim 1 or 2.

【0008】(請求項4) 被覆工程が、25kg/c
2 以上の加圧下で、補強用繊維束に溶融した熱可塑性
樹脂を被覆する工程である請求項1〜3のいずれかに記
載の繊維強化熱可塑性樹脂材料の製造方法。
(Claim 4) The coating step is 25 kg / c
The method for producing a fiber-reinforced thermoplastic resin material according to claim 1, which is a step of coating the reinforcing fiber bundle with the molten thermoplastic resin under a pressure of m 2 or more.

【0009】(請求項5) 補強用繊維束に熱可塑性樹
脂を被覆する方法において、補強用繊維束に、予め、1
00℃以上の温度で熱処理を行う工程(予熱工程)、次
いで、補強用繊維束に引張破断強力の5〜70%の高張
力を掛けた状態下で、補強用繊維束に溶融した熱可塑性
樹脂を被覆する工程(被覆工程)、熱可塑性樹脂の溶融
温度以上の温度で、成形用ノズルにより樹脂被覆補強用
繊維束の再成形を行なう工程(再成形工程)、続いて冷
却する工程(冷却工程)を有することを特徴とする繊維
強化熱可塑性樹脂材料の製造方法。
(Claim 5) In the method of coating a reinforcing fiber bundle with a thermoplastic resin, the reinforcing fiber bundle is previously coated with 1
A step of performing a heat treatment at a temperature of 00 ° C. or higher (preheating step), and then a thermoplastic resin melted in the reinforcing fiber bundle under a state where a high tension of 5 to 70% of tensile breaking strength is applied to the reinforcing fiber bundle. Coating step (coating step), a step of re-molding the resin-coated reinforcing fiber bundle with a molding nozzle at a temperature not lower than the melting temperature of the thermoplastic resin (re-molding step), followed by a cooling step (cooling step) The manufacturing method of the fiber reinforced thermoplastic resin material characterized by having these.

【0010】(請求項6) 予熱工程が、補強用繊維束
に、予め、熱可塑性樹脂の溶融温度以上の高温で熱処理
する工程である請求項5の繊維強化熱可塑性樹脂材料の
製造方法。
(Claim 6) The method for producing a fiber-reinforced thermoplastic resin material according to claim 5, wherein the preheating step is a step of heat-treating the reinforcing fiber bundle in advance at a temperature higher than the melting temperature of the thermoplastic resin.

【0011】(請求項7) 被覆工程が、補強用繊維束
に引張破断強力の10〜50%の高張力を掛けた状態下
で、補強用繊維束に溶融した熱可塑性樹脂を被覆する工
程である請求項5又は6の繊維強化熱可塑性樹脂材料の
製造方法。
(Claim 7) The coating step is a step of coating the reinforcing fiber bundle with a molten thermoplastic resin under a state where a high tension of 10 to 50% of tensile breaking strength is applied to the reinforcing fiber bundle. A method for producing a fiber-reinforced thermoplastic resin material according to claim 5 or 6.

【0012】(請求項8) 被覆工程が、25kg/c
2 以上の加圧下で、補強用繊維束に溶融した熱可塑性
樹脂を被覆する工程である請求項5〜7のいずれかに記
載の繊維強化熱可塑性樹脂材料の製造方法。」である。
(Claim 8) The coating step is 25 kg / c
The method for producing a fiber-reinforced thermoplastic resin material according to claim 5, which is a step of coating the reinforcing fiber bundle with the molten thermoplastic resin under a pressure of m 2 or more. It is.

【0013】本発明で用いられる補強用繊維としては、
ポリアクリルニトリル系、レーヨン系、ガラス繊維、ア
ラミド繊維で総称されるポリ−(P−フェニレンテレフ
タラミド)、ポリ−(m−フェニレンテレフタラミド)
或いはそれを骨格とする共重合体、無機系、有機系の様
々の繊維の一種又は二種以上の組み合わせが挙げられ
る。また、各々の繊維と樹脂との組み合わせにおいて、
繊維に適当なサイジング処理あるいはカップリング剤処
理等、適宜表面処理を施すこともできる。被覆に用いる
熱可塑性樹脂としてはポリアミド、ポリエチレン、ポリ
ブチレンテレフタレート、ポリエチレンテレフタレー
ト、ポリアリレート、ポリエーテルニトリル、ポリサル
フォン、ポリアリーレンスルファイド、ポリエーテルサ
ルフォン、ポリエーテルイミド、ポリアミドイミド、ポ
リアクリルニトリル、ポリカーボネイト、ポリオレフィ
ン、ポリアセタール、ポリスチレン等の剛性樹脂及びそ
れらの混合物又は共重合体が挙げられる。
The reinforcing fibers used in the present invention include
Polyacrylonitrile-based, rayon-based, glass fiber, poly- (P-phenylene terephthalamide), which is a generic name for aramid fiber, poly- (m-phenylene terephthalamide)
Alternatively, one or a combination of two or more kinds of various fibers having a skeleton thereof, that is, a copolymer, an inorganic fiber, and an organic fiber can be used. In addition, in the combination of each fiber and resin,
The fiber may be subjected to an appropriate surface treatment such as an appropriate sizing treatment or a coupling agent treatment. As the thermoplastic resin used for coating, polyamide, polyethylene, polybutylene terephthalate, polyethylene terephthalate, polyarylate, polyether nitrile, polysulfone, polyarylene sulfide, polyether sulfone, polyetherimide, polyamideimide, polyacrylonitrile, polycarbonate , Rigid resins such as polyolefins, polyacetals and polystyrenes, and mixtures or copolymers thereof.

【0014】更に、これらの熱可塑性樹脂は、その特性
を改善する為に様々の添加剤、例えば耐熱剤、耐光性向
上剤、紫外線劣化防止剤、帯電防止剤、滑剤、離型剤、
染料、顔料等の着色剤、結晶化促進剤、難燃剤等や、第
三成分として炭酸カルシウム等の無機系、有機系、金属
系の粉末等も容易に添加することができる。
Further, these thermoplastic resins have various additives such as heat-resistant agents, light resistance improvers, UV deterioration inhibitors, antistatic agents, lubricants, release agents, and the like in order to improve their properties.
Colorants such as dyes and pigments, crystallization accelerators, flame retardants, and the like, and inorganic, organic, and metal powders such as calcium carbonate as the third component can also be easily added.

【0015】次に、図面に従って本発明を説明する。Next, the present invention will be described with reference to the drawings.

【0016】図1は、本発明の繊維強化熱可塑性樹脂材
料の製造に用いられる製造装置の一例を示すものであ
る。複数の連続した補強用繊維束1は、ボビン2から案
内ガイド3を経由して、前側張力制御装置4で1回以上
の必要回数で巻かれ、予熱ヒーター5に導かれ、ここで
熱処理を受け成形時に有害となる成分を蒸発、気化させ
た後に、案内ガイド6を経由して繊維束の導入側ダイ7
からポリマー溜まり8に導入される。補強用繊維はスク
リュー11で溶融加圧され、スロート10を経て押し出
されてきた溶融熱可塑性樹脂で被覆され、導出側ダイ9
を経た後、引き続いて熱可塑性樹脂の溶融温度以上に加
熱された成形用ノズル13により、過剰な樹脂を絞り込
んだ後に、冷却バス15で冷却されつつ、案内ガイドロ
ーラー14を介し、後側張力制御装置16で張力を制御
されながら、引き取りロール17で引き取り、捲き取り
機18に巻かれて、長繊維強化熱可塑性樹脂材料が得ら
れる。
FIG. 1 shows an example of a manufacturing apparatus used for manufacturing the fiber-reinforced thermoplastic resin material of the present invention. A plurality of continuous reinforcing fiber bundles 1 are wound from the bobbin 2 via the guide guide 3 by the front tension control device 4 at least one required time, guided to the preheating heater 5, and subjected to heat treatment there. After vaporizing and vaporizing components that are harmful at the time of molding, the fiber bundle introduction side die 7 is passed through the guide 6
Is introduced into the polymer reservoir 8. The reinforcing fiber is melt-pressed by the screw 11, is covered with the molten thermoplastic resin extruded through the throat 10, and is guided to the outlet die 9
After passing through, after the excessive resin is squeezed by the molding nozzle 13 that is heated to the melting temperature of the thermoplastic resin or higher, the rear side tension control is performed via the guide guide roller 14 while being cooled by the cooling bath 15. While the tension is controlled by the device 16, it is taken up by the take-up roll 17 and wound on the winder 18 to obtain a long fiber reinforced thermoplastic resin material.

【0017】このストランド状で樹脂被覆された繊維強
化熱可塑性樹脂材料を捲取り機18で捲き取る代わりに
ストランドカッターあるいはペレタイザーで任意の長さ
に切断することにより、樹脂中に切断長に等しい補強用
繊維がモノフィラメント又はそれに近い状態で均一に分
散されてなるペレット状の繊維強化熱可塑性樹脂原料も
得ることができる。
The fiber-reinforced thermoplastic resin material coated with the resin in the form of strands is cut into a desired length by a strand cutter or a pelletizer instead of being wound up by the winding machine 18, so that reinforcement equal to the cut length is obtained in the resin. It is also possible to obtain a pellet-shaped fiber-reinforced thermoplastic resin raw material in which the fibers for use are monofilaments or uniformly dispersed in a state close to the monofilaments.

【0018】図1中の予熱ヒーター5は、繊維に付着ま
たは吸着されており、成形時に有害となる水分とか処理
用油剤、固着剤等を蒸発、気化させることができる温度
まで上げることができるものなら特にその形状、種類を
問わないが、繊維束のダメージを最小限に抑えるために
は非接触方式のヒーターを用いることが望ましい。又、
ヒーターは繊維束から立ち昇る蒸発物、ガス化物等によ
る汚れを防ぐため、繊維束の下方に配するのが望まし
い。更に、複数の繊維束を均一に熱処理するためには反
射板を設け、各繊維束間の温度を均一にすることが望ま
しい。予熱ヒーター5中における繊維束の熱処理温度
は、熱処理時間にもよるが、繊維に付着または吸着して
いる物質が蒸発またはガス化する温度以上、即ち、吸着
水の蒸発ならば100℃以上、油剤の分解、除去ならば
230℃以上が必要である。更に好ましくは繊維束に含
浸せしめる熱可塑性樹脂の溶融温度より高く設定して成
形時に問題となる蒸発物やガス化物を予め除去する。こ
の効果を高い引取速度下で得ようとするならば、予熱処
理温度は熱可塑性樹脂の溶融温度より20℃以上高い方
が望ましい。しかしながら、温度を高くしすぎると、加
熱するためのエネルギーロスが大きいばかりでなく、繊
維が熱によりダメージを受け、機械的強力の低下等を生
ずる場合があるため好ましくない。従って、例えば有機
繊維であるアラミド繊維の場合には熱可塑性樹脂溶融温
度より150℃高い温度以下、無機繊維の場合には無機
繊維の溶融温度より200℃高い温度以下で、アラミド
繊維の場合には、アラミド繊維が分解を開始しはじめる
485℃以下の温度で熱処理するのが望ましい。又、処
理時間は処理温度により異なるが10秒以上の処理時間
があれば成形時のガス発生を抑制することが可能であ
る。
The preheater 5 shown in FIG. 1 is attached to or adsorbed on the fiber, and can raise the temperature to a temperature at which water harmful to the molding, oil for treatment, adhesive and the like can be evaporated and vaporized. If so, the shape and type are not particularly limited, but it is desirable to use a non-contact type heater in order to minimize damage to the fiber bundle. or,
The heater is preferably arranged below the fiber bundle in order to prevent contamination by evaporative substances and gasification products rising from the fiber bundle. Further, in order to heat-treat a plurality of fiber bundles uniformly, it is desirable to provide a reflection plate and make the temperature between the fiber bundles uniform. The heat treatment temperature of the fiber bundle in the preheater 5 depends on the heat treatment time, but is higher than the temperature at which the substance adhering to or adsorbing to the fibers is vaporized or gasified, that is, 100 ° C. or higher if the adsorbed water is vaporized. If it is decomposed and removed, 230 ° C or higher is required. More preferably, it is set to a temperature higher than the melting temperature of the thermoplastic resin with which the fiber bundle is impregnated, so as to remove in advance the vaporized substances and gasified substances which are problems during molding. If this effect is to be obtained at a high take-up speed, the preheat treatment temperature is preferably higher than the melting temperature of the thermoplastic resin by 20 ° C. or more. However, if the temperature is set too high, not only the energy loss for heating is large, but also the fiber may be damaged by heat, resulting in a decrease in mechanical strength, which is not preferable. Therefore, for example, in the case of aramid fiber which is an organic fiber, the temperature is 150 ° C. or higher higher than the melting temperature of the thermoplastic resin, in the case of inorganic fiber, it is 200 ° C. or higher higher than the melting temperature of the inorganic fiber, and in the case of aramid fiber. The heat treatment is preferably performed at a temperature of 485 ° C. or lower at which the aramid fiber starts to decompose. Further, the processing time varies depending on the processing temperature, but if the processing time is 10 seconds or more, it is possible to suppress gas generation during molding.

【0019】この様にして予熱処理された補強繊維を用
いると、成形時のガス発生抑制効果以外にも実に驚くべ
き事実が発見された。それはパラ系アラミド繊維におい
て特に顕著に見られる現象であるが、予熱処理により繊
維束の吸着水分や主として油剤である表面処理剤等を除
去した繊維束を用いると、繊維と熱可塑性樹脂との界面
接着性が向上するという現象である。つまり、予熱処理
をしない繊維束に溶融した熱可塑性樹脂を付着させる
と、引き取り速度が一定以上になると樹脂の付着が追い
つかず、繊維束の長さ方向に樹脂の付着斑が生じるよう
になるが、予熱処理を行った繊維束では、予熱処理の無
い場合に比べ1.5倍以上の早い引き取り速度で樹脂の
付着斑が発生せず、生産性の向上及び品質向上に有効で
あることが判った。即ち、予熱処理により、繊維表面に
付着または吸着した水分や、油剤等が除去され、かつ、
繊維の極表層部が酸化されて、樹脂とのぬれ性が向上
し、接着性(付着性)が向上するものと考えられる。
By using the reinforcing fibers preheated in this manner, surprising facts have been discovered in addition to the effect of suppressing gas generation during molding. This is a phenomenon that is particularly noticeable in para-aramid fibers, but when a fiber bundle from which the adsorbed water content of the fiber bundle and the surface treatment agent, which is mainly an oil agent, has been removed by preheating, the interface between the fiber and the thermoplastic resin is used. This is a phenomenon that the adhesiveness is improved. That is, when the molten thermoplastic resin is adhered to the fiber bundle that is not preheated, the adhesion of the resin cannot catch up when the take-up speed exceeds a certain value, and resin adhesion unevenness occurs in the length direction of the fiber bundle. It was found that the preheated fiber bundles did not cause resin adhesion unevenness at a take-up speed of 1.5 times faster than that without preheat treatment, which is effective in improving productivity and quality. It was That is, the pre-heat treatment removes moisture or oil adhering to or adsorbed on the fiber surface, and
It is considered that the extreme surface layer portion of the fiber is oxidized, the wettability with the resin is improved, and the adhesiveness (adhesiveness) is improved.

【0020】図1中の導入側ダイ7は、ボルトによりダ
イヘッド12に固定されている。図2にダイ7の詳細を
示すが、繊維束の入り側である上部は繊維束を通し易く
するためにテーパーを設けることが望ましい。また、補
強用繊維の導入孔19はポリマー溜8での加圧を容易に
し、溶融熱可塑性樹脂が導入孔19から系外へ流出する
のを防ぐために、繊維束の断面積に近づけることが望ま
しいが、あまり近づけると繊維束と導入孔19との間の
抵抗が大きくなり、繊維束の引き抜きが困難となるた
め、導入孔断面積と繊維束断面積との比率は1.02倍
以上が望ましく、また大きすぎると溶融熱可塑性樹脂が
流出し易くなって樹脂の加圧が困難になるため、該比率
は1.70倍以下が望ましい。また導入孔19の長さ
は、加圧力向上及び溶融熱可塑性樹脂の加圧による導入
孔19からの外部への流出防止のために、長い方が良好
であるけれども、工作性や取扱性の点から3〜20mm
が望ましい。
The introduction die 7 in FIG. 1 is fixed to the die head 12 by bolts. The details of the die 7 are shown in FIG. 2, but it is desirable to provide a taper on the upper part, which is the entrance side of the fiber bundle, so that the fiber bundle can be passed through easily. The reinforcing fiber introduction hole 19 is preferably close to the cross-sectional area of the fiber bundle in order to facilitate pressurization in the polymer reservoir 8 and to prevent the molten thermoplastic resin from flowing out of the introduction hole 19 to the outside of the system. However, if they are too close to each other, the resistance between the fiber bundle and the introduction hole 19 increases, and it becomes difficult to pull out the fiber bundle. Therefore, the ratio of the introduction hole cross-sectional area to the fiber bundle cross-sectional area is preferably 1.02 times or more. On the other hand, if it is too large, the molten thermoplastic resin tends to flow out, making it difficult to pressurize the resin. Therefore, the ratio is preferably 1.70 times or less. The length of the introduction hole 19 is preferably long so as to improve the pressing force and prevent the molten thermoplastic resin from flowing out of the introduction hole 19 due to pressurization. From 3 to 20 mm
Is desirable.

【0021】出側ダイ9はボルトによりダイヘッド12
に固定されている。図3にダイ9の詳細を示すが、繊維
束の入り側である上部にはテーパーを設けて補強用繊維
束に付着含浸した溶融熱可塑性樹脂を絞り込みながら引
き抜くことが樹脂含浸を向上させる点から望ましい。
又、溶融熱可塑性樹脂で被覆含浸された補強用繊維束の
導入孔20は、ポリマー溜8での加圧力及び溶融熱可塑
性樹脂の加圧による導入孔19からの外部への不必要樹
脂の流出防止の観点から、導入孔19の断面積と同じか
それ以上にすることが望ましい。又、導入孔20の長さ
はポリマー溜8での加圧性及び溶融熱可塑性樹脂の加圧
による導入孔19からの外部への流出防止ならびに樹脂
含浸繊維の移動性という点からみて、導入孔19の長さ
以下であることが望ましい。
The output die 9 is attached to the die head 12 by bolts.
It is fixed to. The details of the die 9 are shown in FIG. 3. From the viewpoint that the taper is provided on the upper side which is the entrance side of the fiber bundle and the molten thermoplastic resin adhered and impregnated to the reinforcing fiber bundle is drawn out while being squeezed to improve the resin impregnation. desirable.
In addition, the introduction hole 20 of the reinforcing fiber bundle which is coated and impregnated with the molten thermoplastic resin is used to flow unnecessary resin to the outside from the introduction hole 19 due to the pressure applied in the polymer reservoir 8 and the pressure of the molten thermoplastic resin. From the viewpoint of prevention, it is desirable that the cross-sectional area of the introduction hole 19 is equal to or larger than that. The length of the introduction hole 20 is determined from the viewpoints of pressurization in the polymer reservoir 8, prevention of outflow from the introduction hole 19 due to pressurization of the molten thermoplastic resin, and mobility of the resin-impregnated fiber. It is desirable that the length is less than or equal to

【0022】これら導入側ダイ7と導出側ダイ9とによ
り形成されたポリマー溜8中に、スクリュー11から溶
融熱可塑性樹脂を供給することにより、ポリマー溜8で
の加圧が可能となり補強用繊維束の気泡を排除しつつ、
溶融熱可塑性樹脂を補強用繊維中に含浸することが可能
となる。溶融熱可塑性樹脂の粘度が100000センチ
ポイズと高いために、加圧力が低いと、繊維束1内に熱
可塑性樹脂が入り込めず充分な含浸性を得ることができ
ない。しかしながら、25kg/cm2 以上、望ましく
は50kg/cm2 以上の圧力で樹脂を加圧すると、補
強用繊維束内に溶融した熱可塑性樹脂が均一に入り込
み、その結果、樹脂中に補強用繊維がモノフィラメント
あるいはそれに近い状態で均一に分散した形態になっ
て、繊維と樹脂間の密着性が高まり、良好な繊維強化熱
可塑性樹脂材料を得ることができる。又、圧力は高い程
短時間に繊維束内部まで溶融熱可塑性樹脂を含浸するこ
とが可能となるが、加圧のためのスクリュー11の回転
エネルギー及びダイ7、9の工作精度を考慮し、200
kg/cm2 以下の圧力とするのが望ましい。
By supplying the molten thermoplastic resin from the screw 11 into the polymer reservoir 8 formed by the inlet die 7 and the outlet die 9, pressurization in the polymer reservoir 8 becomes possible and the reinforcing fiber While eliminating bubbles in the bundle,
It is possible to impregnate the reinforcing fibers with the molten thermoplastic resin. Since the viscosity of the molten thermoplastic resin is as high as 100,000 centipoise, when the applied pressure is low, the thermoplastic resin cannot enter the fiber bundle 1 and sufficient impregnability cannot be obtained. However, when the resin is pressed at a pressure of 25 kg / cm 2 or more, preferably 50 kg / cm 2 or more, the molten thermoplastic resin uniformly enters the reinforcing fiber bundle, and as a result, the reinforcing fibers are contained in the resin. It becomes a monofilament or a form in which it is uniformly dispersed in a state close to the monofilament, the adhesion between the fiber and the resin is enhanced, and a good fiber-reinforced thermoplastic resin material can be obtained. Also, the higher the pressure, the more quickly the molten thermoplastic resin can be impregnated into the inside of the fiber bundle. However, considering the rotational energy of the screw 11 for pressurization and the working accuracy of the dies 7 and 9,
It is desirable that the pressure is not more than kg / cm 2 .

【0023】図4に成形ノズル13の詳細を示すが、熱
可塑性樹脂で被覆された補強用繊維束の入り側にテーパ
ーを設けることが望ましい。このテーパーを設けること
により、熱可塑性樹脂の絞り込みを行うと共に、このテ
ーパー部が絞り込みにより取り除かれた樹脂のポリマー
溜の役割を果たすことになって、長さ方向により均一に
熱可塑性樹脂を被覆含浸することが可能となる。成形孔
21は、目標とするフィラメント混率および断面形状、
即ち、丸、三角、四角等の任意の形状に形成することが
できる。更にこの成形ノズル13において重要なこと
は、繊維束を被覆含浸している熱可塑性樹脂の溶融温度
以上に加熱することである。熱可塑性樹脂の溶融温度以
下で熱可塑性樹脂の絞り込みを行うと、高い引き抜き張
力が必要なばかりでなく、既に補強用繊維に被覆含浸さ
れている熱可塑性樹脂と補強用繊維間に剥離が生じて、
含浸性の低下を招き、かつ、内部歪を残留させることに
なる。又、ノズル13の温度が熱可塑性樹脂の溶融温度
に比べ、大幅に高いときは、熱可塑性樹脂の粘度が低下
するために、絞り込み効果が低下するだけでなく、熱可
塑性樹脂の劣化が促進され、得られる繊維強化熱可塑性
樹脂の機械的特性が低下する。導出側ダイ9と成形ノズ
ル13との距離は自由に取り得るが、可能な限り近づけ
ることが熱可塑性樹脂で被覆された補強用繊維束の冷却
固化を防ぐ点から望ましい。
FIG. 4 shows details of the molding nozzle 13, but it is desirable to provide a taper on the entrance side of the reinforcing fiber bundle covered with the thermoplastic resin. By providing this taper, the thermoplastic resin is narrowed down, and this taper portion plays a role of a polymer reservoir for the resin removed by the narrowing down, so that the thermoplastic resin is uniformly coated and impregnated in the length direction. It becomes possible to do. The molding hole 21 has a target filament mixture ratio and cross-sectional shape,
That is, it can be formed in any shape such as a circle, a triangle, and a square. Furthermore, what is important in this molding nozzle 13 is to heat the fiber bundle to a temperature higher than the melting temperature of the thermoplastic resin impregnated with the coating. When the thermoplastic resin is squeezed at a temperature below the melting temperature of the thermoplastic resin, not only a high pulling tension is required, but also peeling occurs between the thermoplastic resin already impregnated with the reinforcing fiber and the reinforcing fiber. ,
This impairs impregnation and leaves an internal strain. Further, when the temperature of the nozzle 13 is significantly higher than the melting temperature of the thermoplastic resin, the viscosity of the thermoplastic resin decreases, so that not only the narrowing effect decreases but also the deterioration of the thermoplastic resin is accelerated. The mechanical properties of the resulting fiber-reinforced thermoplastic resin are deteriorated. The lead-out die 9 and the molding nozzle 13 can be freely separated, but it is desirable to make them as close as possible in order to prevent cooling and solidification of the reinforcing fiber bundle covered with the thermoplastic resin.

【0024】又、本発明の熱可塑性樹脂組成樹脂被覆工
程において補強用繊維束の引っ張り強力は、繊維束の引
っ張り破断強力の5〜70%の範囲、好ましくは10〜
50%範囲内の高張力に設定することが望ましい。その
理由は、熱可塑性樹脂で被覆され、強化された材料の伸
度を低下させ、寸法安定性やクリープ特性を向上させる
ためである。即ち、溶融熱可塑性樹脂被覆工程におい
て、強化用繊維束の張力が低すぎると繊維束を構成する
単繊維の引き揃え性が低下して、特定箇所に応力集中や
残留歪を生じさせ、補強繊維が本来有する優れた高強
力、低伸度、低クリープ性等の特性を繊維強化複合材と
して完全に発現でき得なくなる。従って、これらの問題
を解消するには少なくとも使用する繊維束の破断強力の
5%以上の高張力、好ましくは10〜50%範囲内の高
張力に該定することが望ましい。又、繊維束の張力が破
断強力の70%を越えると、特に導入側ダイ7や導出側
ダイ9及び成形ノズル13で単繊維の部分切断を生じさ
せるために好ましくない。
In the thermoplastic resin composition resin coating step of the present invention, the tensile strength of the reinforcing fiber bundle is in the range of 5 to 70% of the tensile breaking strength of the fiber bundle, preferably 10 to 10.
It is desirable to set the high tension within the range of 50%. The reason is to reduce the elongation of the material reinforced by the thermoplastic resin and reinforced, and improve the dimensional stability and the creep property. That is, in the molten thermoplastic resin coating step, if the tension of the reinforcing fiber bundle is too low, the alignability of the single fibers constituting the fiber bundle is reduced, causing stress concentration and residual strain at specific locations, and reinforcing fibers. It will not be possible to fully develop the properties such as the original high strength, low elongation, and low creep property of the fiber-reinforced composite material. Therefore, in order to solve these problems, it is desirable to set the tensile strength to at least 5% of the breaking strength of the fiber bundle to be used, preferably 10 to 50%. Further, if the tension of the fiber bundle exceeds 70% of the breaking strength, partial cutting of the single fiber occurs particularly in the introduction side die 7, the discharge side die 9 and the molding nozzle 13, which is not preferable.

【0025】特に破断伸度が2.0%を越える有機繊維
やその他の繊維素材を樹脂補強用繊維材料として用いた
り、用途の目的に応じ、繊維束に低度の撚りを掛けた状
態で用いる場合には、用いる繊維素材の破断伸度の少な
くとも10%以上の伸度になるような高張力を付与した
状態下で熱可塑性樹脂を繊維束中に含浸させることが望
ましく、このようにして製造された繊維強化熱可塑性樹
脂材料は、その伸度が、条件によっては繊維素材そのも
のが有する破断伸度よりも少なく、従って、寸法安定性
やクリープ特性も良好になることが見いだされた。この
現象は、スチール繊維に比べて伸度やクリープ性の点で
劣る有機系繊維をスチール繊維補強材並に近ずけること
が可能であることを示唆するものであり、スチール代替
材料として軽量、低伸度、低クリープ性で寸法安定性良
好な材料の提供が可能であることを示すものである。
Particularly, an organic fiber having a breaking elongation of more than 2.0% or other fiber material is used as a resin-reinforcing fiber material, or is used in a state in which a fiber bundle is twisted to a low degree according to the purpose of use. In this case, it is desirable to impregnate the fiber bundle with the thermoplastic resin under the condition that high tension is applied so that the elongation at break of the fiber material to be used is at least 10% or more. It has been found that the fiber-reinforced thermoplastic resin material thus obtained has an elongation which is lower than the elongation at break which the fiber material itself has depending on the conditions, and therefore the dimensional stability and the creep property are also improved. This phenomenon suggests that it is possible to bring organic fibers, which are inferior in elongation and creep properties in comparison with steel fibers, closer to steel fiber reinforcement materials, and are lightweight as a steel substitute material, This shows that it is possible to provide a material having a low elongation and a low creep property and good dimensional stability.

【0026】なお、図1、2、3、4に示した製造装
置、及び製造工程は本願発明材料を作成するための一例
に過ぎず、前述と同様の効果を発現し得る装置、工程で
有れば、何等限定されない。
The manufacturing apparatus and the manufacturing process shown in FIGS. 1, 2, 3, and 4 are merely examples for manufacturing the material of the present invention, and the apparatus and the process which can exhibit the same effects as those described above are provided. If so, there is no limitation.

【0027】[0027]

【発明の効果】本発明の製造方法により作成された繊維
強化熱可塑性樹脂材料の特徴は以下の通りである。 (1)本発明の製造方法により作成された材料は、補強
用繊維中への熱可塑性樹脂の含浸性が良好で、材料中の
ボイド量も少なく、かつ樹脂と繊維と間の界面接着性も
高く良好である。 (2)本発明の製造方法によれば使用目的に応じた様々
の断面形状を有する繊維強化材料を提供することができ
る。 (3)本発明の製造方法により作成された繊維強化熱可
塑性樹脂材料は、低伸度、低クリープ性であり、寸法安
定性に優れている。
The characteristics of the fiber reinforced thermoplastic resin material produced by the production method of the present invention are as follows. (1) The material produced by the production method of the present invention has good impregnating property of the thermoplastic resin into the reinforcing fiber, has a small amount of voids in the material, and has interfacial adhesion between the resin and the fiber. High and good. (2) According to the manufacturing method of the present invention, it is possible to provide a fiber-reinforced material having various cross-sectional shapes according to the purpose of use. (3) The fiber-reinforced thermoplastic resin material produced by the production method of the present invention has low elongation and low creep properties, and is excellent in dimensional stability.

【0028】以下、実施例により、本発明を具体的に説
明する。なお、繊維強化熱可塑性樹脂材料について行っ
た補強繊維の含有率(重量%)、線径、破断強力、破断
伸度、ガス発生の有無、クリープ特性、繊維束中への樹
脂含浸性等の評価は下記の方法に従って実施した。 <補強用繊維の含有率> 含有率(重量%)=(補強用繊維重量/繊維強化熱可塑
性樹脂材料重量)×100 <線径の測定>長さ50cmの繊維強化熱可塑性樹脂材
料サンプルに該材料の1/20の荷重を掛け、10cm
間隔毎に線径を5点計り、その平均値で表す。 <破断強力及び破断伸度>(株)インテスコ製のINT
ESCO(Model2005)を用いてJIS規格、
L1013に準じて測定。但し、チャックはスチールフ
ァイバー用を使用。 <製造行程におけるガスの発生評価>柳本製作所製ガス
クロマトグラフィカルモデルG80を用い昇温ガスクロ
法にて、表面処理されていない補強用繊維、熱可塑性樹
脂及び繊維強化熱可塑性樹脂材料の3サンプルについて
測定し、繊維強化熱可塑性樹脂材料の分解ピークが、表
面処理されていない補強用繊維の分解ピークと熱可塑性
樹脂の分解ピークとからなる場合をガス発生無し、表面
処理されていない補強用繊維の分解ピークと熱可塑性樹
脂の分解ピーク以外の分解ピークが繊維強化熱可塑性樹
脂材料の分解ピークと対比して見られる場合をガス発生
有りとした。
The present invention will be specifically described below with reference to examples. The content of reinforcing fiber (% by weight), the wire diameter, the breaking strength, the breaking elongation, the presence or absence of gas generation, the creep characteristics, and the resin impregnation property into the fiber bundle were evaluated for the fiber-reinforced thermoplastic resin material. Was carried out according to the following method. <Content of Reinforcing Fiber> Content (% by weight) = (weight of reinforcing fiber / weight of fiber reinforced thermoplastic resin material) x 100 <Measurement of wire diameter> For a fiber reinforced thermoplastic resin material sample having a length of 50 cm, Load 1/20 of material and 10 cm
The wire diameter is measured at 5 points for each interval, and the average value is shown. <Strength at break and elongation at break> INT made by INTESCO Corporation
JIS standard using ESCO (Model 2005),
Measured according to L1013. However, the chuck is for steel fiber. <Evaluation of gas generation in manufacturing process> Using temperature-increasing gas chromatography with a gas chromatographic model G80 manufactured by Yanagimoto Seisakusho Co., Ltd., measurement was performed on three samples of reinforcing fiber, thermoplastic resin, and fiber-reinforced thermoplastic resin material that had not been surface treated However, if the decomposition peak of the fiber-reinforced thermoplastic resin material consists of the decomposition peak of the reinforcing fiber that is not surface-treated and the decomposition peak of the thermoplastic resin, no gas is generated, and the decomposition fiber of the reinforcing fiber that is not surface-treated is decomposed. Gas was generated when a decomposition peak other than the peak and the decomposition peak of the thermoplastic resin was observed in comparison with the decomposition peak of the fiber-reinforced thermoplastic resin material.

【0029】このときの測定条件は、 CarrierGas:He Inject温度:融点+15℃(PPSの場合:30
0℃) Column:100℃で10分間放置後、10℃/分
の割合で300℃まで昇温後、更に10分間放置。 <クリープ特性評価>繊維強化熱可塑性樹脂材料の破断
強力の30%に相当する荷重を常温下で掛けて、10日
間放置した後のクリープ率を測定し、クリープ特性の尺
度にした。 <繊維束中への樹脂の含浸性評価>繊維強化熱可塑性樹
脂材料の断面を電子顕微鏡(又は光学顕微鏡)により観
察し、樹脂材料中における繊維の分散性を評価した。
The measurement conditions at this time are: Carrier Gas: He Inject temperature: melting point + 15 ° C. (for PPS: 30
0 ° C.) Column: left at 100 ° C. for 10 minutes, heated to 300 ° C. at a rate of 10 ° C./minute, and then left for 10 minutes. <Evaluation of Creep Properties> A load corresponding to 30% of the breaking strength of the fiber reinforced thermoplastic resin material was applied at room temperature, and the creep rate after leaving for 10 days was measured and used as a scale of the creep properties. <Evaluation of Impregnation of Resin into Fiber Bundle> The cross section of the fiber-reinforced thermoplastic resin material was observed with an electron microscope (or optical microscope) to evaluate the dispersibility of the fiber in the resin material.

【0030】×:束状に補強繊維全体が集束した状態に
なっているもの △:全体が束状ではないものの補強繊維が数カ所に分割
されて集束した状態になっているもの ○:補強繊維の約50%以上が単繊維状に分散された状
態になっているもの
X: The whole reinforcing fibers are bundled in a bundle. Δ: The whole reinforcing fiber is not bundled, but the reinforcing fibers are divided into several parts and bundled. ○: Of the reinforcing fibers About 50% or more dispersed in single fiber

【0031】[0031]

【実施例1】1500デニール/1000フィラメント
からなるパラ系アラミド繊維(テクノーラ、帝人株式会
社製)4本を片側40t/mで予め撚り合わせた繊維束
を用い、それに引張破断強力の7%の負荷を掛け、更に
350℃に加熱された予熱ヒーター中に通し、15秒間
熱処理を行った後に、内径0.9mm、長さ20mmの
導入孔よりポリマー溜に導き、ここでスクリューから押
し出された290℃の溶融熱可塑性樹脂を繊維中に含浸
せしめ(加圧30kg/cm2 )、さらに290℃に加
熱された内径1.0mm、長さ5mmの成形ノズルで成
形を行った後に冷却し、補強繊維含有率68%の繊維強
化熱可塑性樹脂材料を得た。なお、このときの引取速度
は10m/分であった。又、被覆用熱可塑性樹脂にはナ
イロン66((株)旭化成)を用いた。得られた繊維強
化熱可塑性樹脂材料について、破断強力、破断伸度、ク
リープ率を測定した結果は表1、表2に示す通りであっ
た。
[Example 1] Four para-aramid fibers (Technora, Teijin Ltd.) consisting of 1500 denier / 1000 filaments were pre-twisted at 40 t / m on one side, and a load of 7% of tensile breaking strength was applied to them. After passing through a preheater heated to 350 ° C. for 15 seconds, it is introduced into a polymer reservoir through an introduction hole having an inner diameter of 0.9 mm and a length of 20 mm and extruded from a screw at 290 ° C. The molten thermoplastic resin of 1. was impregnated into the fiber (pressurized 30 kg / cm 2 ), and further, molding was performed with a molding nozzle having an inner diameter of 1.0 mm and a length of 5 mm heated to 290 ° C., followed by cooling to contain reinforcing fiber. A fiber reinforced thermoplastic resin material having a rate of 68% was obtained. The take-up speed at this time was 10 m / min. Nylon 66 (Asahi Kasei Co., Ltd.) was used as the thermoplastic resin for coating. With respect to the fiber-reinforced thermoplastic resin material obtained, the breaking strength, breaking elongation and creep rate were measured and the results are shown in Tables 1 and 2.

【0032】[0032]

【実施例2】引張破断強力の15%に相当する張力を掛
けた以外は実施例1と同様に実施して、繊維強化熱可塑
性樹脂材料を得た。これについて実施例1と同様に特性
を評価し、その結果を表1、表2に示した。
Example 2 A fiber-reinforced thermoplastic resin material was obtained in the same manner as in Example 1 except that a tension corresponding to 15% of tensile breaking strength was applied. The properties of this were evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

【0033】[0033]

【実施例3】引張破断強力の30%に相当する張力を掛
けた以外は実施例1と同様に実施して、繊維強化熱可塑
性樹脂材料を得た。これについて実施例1と同様に特性
を評価し、その結果を表1、表2に示した。
Example 3 A fiber-reinforced thermoplastic resin material was obtained in the same manner as in Example 1 except that a tension corresponding to 30% of tensile breaking strength was applied. The properties of this were evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

【0034】[0034]

【実施例4】引張破断強力の45%に相当する張力を掛
けた以外は実施例1と同様に実施して、繊維強化熱可塑
性樹脂材料を得た。これについて実施例1と同様に特性
を評価し、その結果を表1、表2に示した。
Example 4 A fiber-reinforced thermoplastic resin material was obtained in the same manner as in Example 1 except that a tension corresponding to 45% of tensile breaking strength was applied. The properties of this were evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

【0035】[0035]

【実施例5】引張破断強力の65%に相当する張力を掛
けた以外は実施例1と同様に実施して、繊維強化熱可塑
性樹脂材料を得た。これについて実施例1と同様に特性
を評価し、結果を表1、表2に示した。
Example 5 A fiber-reinforced thermoplastic resin material was obtained in the same manner as in Example 1 except that a tension corresponding to 65% of tensile breaking strength was applied. The properties of this were evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

【0036】[0036]

【実施例6】成形用ノズルを使用しない以外は実施例5
と同様に実施して、繊維強化熱可塑性樹脂材料を得た。
これについて実施例1と同様に特性を評価し、結果を表
1、表2に示した。
[Embodiment 6] Embodiment 5 except that a molding nozzle is not used.
The same procedure as described above was performed to obtain a fiber-reinforced thermoplastic resin material.
The properties of this were evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

【0037】[0037]

【実施例7】樹脂被覆する際の付加圧力を60kg/c
2 に変更した以外は実施例6と同様に実施して、繊維
強化熱可塑性樹脂材料を得た。これについて実施例1と
同様に特性を評価し、結果を表1、表2に示した。
[Embodiment 7] The applied pressure during resin coating is 60 kg / c.
A fiber reinforced thermoplastic resin material was obtained in the same manner as in Example 6 except that m 2 was changed. The properties of this were evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

【0038】[0038]

【実施例8】引張破断強力の15%に相当する張力を掛
け、予熱処理温度を120℃、被覆樹脂をナイロン6に
変更した以外は実施例1と同一に実施して、繊維強化熱
可塑性樹脂材料を得た。これについて実施例1と同様に
特性を評価し、結果を表1、表2に示した。
[Example 8] A fiber-reinforced thermoplastic resin was prepared in the same manner as in Example 1 except that tension equivalent to 15% of tensile strength at break was applied, preheat treatment temperature was 120 ° C, and the coating resin was changed to nylon 6. Got the material. The properties of this were evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

【0039】[0039]

【実施例9】予熱処理温度を180℃に変更した以外は
実施例8と同様に実施して、繊維強化熱可塑性樹脂材料
を得た。これについて実施例1と同様に特性を評価し、
結果を表1、表2に示した。
[Example 9] A fiber-reinforced thermoplastic resin material was obtained in the same manner as in Example 8 except that the preheat treatment temperature was changed to 180 ° C. About this, the characteristics were evaluated in the same manner as in Example 1,
The results are shown in Tables 1 and 2.

【0040】[0040]

【実施例10】予熱処理温度を230℃に変更した以外
は実施例8と同様に実施して、繊維強化熱可塑性樹脂材
料を得た。これについて実施例1と同様に特性を評価
し、結果を表1、表2に示した。
Example 10 A fiber reinforced thermoplastic resin material was obtained in the same manner as in Example 8 except that the preheat treatment temperature was changed to 230 ° C. The properties of this were evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

【0041】[0041]

【実施例11】予熱処理温度を280℃に変更した以外
は実施例8と同様に実施して、繊維強化熱可塑性樹脂材
料を得た。これについて実施例1と同様に特性を評価
し、結果を表1、表2に示した。
[Example 11] A fiber reinforced thermoplastic resin material was obtained in the same manner as in Example 8 except that the preheat treatment temperature was changed to 280 ° C. The properties of this were evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

【0042】[0042]

【実施例12】予熱処理温度を350℃に変更した以外
は実施例8と同様に実施して、繊維強化熱可塑性樹脂材
料を得た。これについて実施例1と同様に特性を評価
し、結果を表1、表2に示した。
Example 12 A fiber reinforced thermoplastic resin material was obtained in the same manner as in Example 8 except that the preheat treatment temperature was changed to 350 ° C. The properties of this were evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

【0043】[0043]

【実施例13】成形用ノズルを使用しない以外は実施例
11と同様に実施して、繊維強化熱可塑性樹脂材料を得
た。これについて実施例1と同様に特性を評価し、結果
を表1、表2に示した。
Example 13 A fiber reinforced thermoplastic resin material was obtained in the same manner as in Example 11 except that the molding nozzle was not used. The properties of this were evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

【0044】[0044]

【比較例1】実施例1において、引張破断強力の3%に
相当する張力を掛けたこと、及び樹脂に対する付加圧力
を20kg/cm2 にした以外は同様に実施して目的と
するサンプルを得た。このサンプルについて実施例1と
同様に物性を評価し、その結果を表3、表4に示した。
[Comparative Example 1] A target sample was obtained in the same manner as in Example 1 except that a tension corresponding to 3% of the tensile breaking strength was applied and the applied pressure to the resin was 20 kg / cm 2. It was The physical properties of this sample were evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

【0045】[0045]

【比較例2】実施例1において、引張破断強力の3%に
相当する張力を掛けたこと以外は同様に実施して目的と
するサンプルを得た。このサンプルについて実施例1と
同様に物性を評価し、その結果を表3、表4に示した。
Comparative Example 2 A target sample was obtained in the same manner as in Example 1 except that a tension corresponding to 3% of the tensile breaking strength was applied. The physical properties of this sample were evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

【0046】[0046]

【比較例3】実施例1において、引張破断強力の80%
に相当する張力を掛けたこと及び樹脂に対する付加圧力
を20kg/cm2 にした以外は同様に実施して目的と
するサンプルを得た。このサンプルについて実施例1と
同様に物性を評価し、その結果を表3、表4に示した。
[Comparative Example 3] In Example 1, the tensile breaking strength was 80%.
A target sample was obtained in the same manner except that the tension corresponding to was applied and the applied pressure to the resin was set to 20 kg / cm 2 . The physical properties of this sample were evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

【0047】[0047]

【比較例4】引張破断強力の80%に相当する張力を掛
けたこと、成形用ノズルを使用しないこと以外は実施例
1と同様に実施して目的とするサンプルを得た。このサ
ンプルについて実施例1と同様に物性を評価し、その結
果を表3、表4に示した。
Comparative Example 4 A target sample was obtained in the same manner as in Example 1 except that a tension corresponding to 80% of tensile breaking strength was applied and a molding nozzle was not used. The physical properties of this sample were evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

【0048】[0048]

【比較例5】実施例8において、熱処理しないこと以外
は同様に実施して目的とするサンプルを得た。このサン
プルについて実施例1と同様に物性を評価し、その結果
を表3、表4に示した。
Comparative Example 5 A target sample was obtained in the same manner as in Example 8 except that no heat treatment was performed. The physical properties of this sample were evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

【0049】[0049]

【比較例6】実施例8において、熱処理温度を80℃で
行うこと以外は同様に実施して目的とするサンプルを得
た。このサンプルについて実施例1と同様に物性を評価
し、その結果を表3、表4に示した。
COMPARATIVE EXAMPLE 6 A target sample was obtained in the same manner as in Example 8 except that the heat treatment temperature was 80 ° C. The physical properties of this sample were evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

【0050】[0050]

【比較例7】実施例8において、熱処理温度を500℃
で行うこと以外は同様に実施して目的とするサンプルを
得た。このサンプルについて実施例1と同様に物性を評
価し、その結果を表3、表4に示した。
Comparative Example 7 In Example 8, the heat treatment temperature was 500 ° C.
A target sample was obtained in the same manner except that the above procedure was performed. The physical properties of this sample were evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

【0051】[0051]

【比較例8】実施例8において、熱処理温度を500℃
で行うこと、成形用ノズルを使用しないこと以外は同様
に実施して目的とするサンプルを得た。このサンプルに
ついて実施例1と同様に物性を評価し、その結果を表
3、表4に示した。
[Comparative Example 8] In Example 8, the heat treatment temperature was 500 ° C.
In the same manner as described above except that the molding nozzle was not used to obtain a target sample. The physical properties of this sample were evaluated in the same manner as in Example 1, and the results are shown in Tables 3 and 4.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【表2】 [Table 2]

【0054】[0054]

【表3】 [Table 3]

【0055】[0055]

【表4】 [Table 4]

【0056】表1、表2、表3、表4から本発明の繊維
強化熱可塑性樹脂材料はいずれも比較例に比べ優れた含
浸性を持っていることが明らかである。
From Table 1, Table 2, Table 3 and Table 4, it is clear that the fiber reinforced thermoplastic resin materials of the present invention all have superior impregnability as compared with Comparative Examples.

【図面の簡単な説明】[Brief description of drawings]

【図1】繊維強化熱可塑性樹脂材料製造装置の概略図。FIG. 1 is a schematic view of a fiber-reinforced thermoplastic resin material manufacturing apparatus.

【図2】導入側ダイの側断面図。FIG. 2 is a side sectional view of an introduction die.

【図3】導出側ダイの側断面図。FIG. 3 is a side sectional view of a lead-out die.

【図4】成形ノズルの側断面図。FIG. 4 is a side sectional view of a molding nozzle.

【符号の説明】[Explanation of symbols]

1 補強用繊維 2 ボビン 3 案内ガイド 4 前側張力制御装置 5 予熱ヒーター 6 案内ガイド 7 導入側ダイ 8 樹脂溜 9 導出側ダイ 10 スロート 11 スクリュー 12 ダイヘッド 13 成形ノズル 14 案内ガイドローラー 15 冷却バス 16 後側張力制御装置 17 引き取りロール 18 巻き取り機 19 補強用繊維導入孔 20 補強用繊維導出孔 21 成形孔 1 Reinforcing Fiber 2 Bobbin 3 Guide Guide 4 Front Tension Control Device 5 Preheater Heater 6 Guide Guide 7 Introduction Side Die 8 Resin Reservoir 9 Derivation Side Die 10 Throat 11 Screw 12 Die Head 13 Forming Nozzle 14 Guide Guide Roller 15 Cooling Bath 16 Rear Side Tension control device 17 Pulling roll 18 Winding machine 19 Reinforcing fiber introduction hole 20 Reinforcing fiber outlet hole 21 Forming hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高田 忠彦 大阪府茨木市耳原3丁目4番1号 帝人株 式会社大阪研究センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadahiko Takada 3-4-1 Mihara, Ibaraki City, Osaka Prefecture Teijin Limited Osaka Research Center

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 補強用繊維束に熱可塑性樹脂を被覆する
方法において、補強用繊維束に、予め、100℃以上の
温度で熱処理を行う工程(予熱工程)、次いで、補強用
繊維束に引張破断強力の5〜70%の高張力を掛けた状
態下で、補強用繊維束に溶融した熱可塑性樹脂を被覆す
る工程(被覆工程)、続いて冷却する工程(冷却工程)
を有することを特徴とする繊維強化熱可塑性樹脂材料の
製造方法。
1. A method of coating a reinforcing fiber bundle with a thermoplastic resin, wherein the reinforcing fiber bundle is preliminarily heat-treated at a temperature of 100 ° C. or higher (preheating step), and then the reinforcing fiber bundle is stretched. A step (coating step) of coating the reinforcing fiber bundle with the molten thermoplastic resin under a high tension of 5 to 70% of breaking strength, followed by cooling (cooling step)
A method for producing a fiber-reinforced thermoplastic resin material, comprising:
【請求項2】 予熱工程が、補強用繊維束に、予め、熱
可塑性樹脂の溶融温度以上の高温で熱処理する工程であ
る請求項1の繊維強化熱可塑性樹脂材料の製造方法。
2. The method for producing a fiber-reinforced thermoplastic resin material according to claim 1, wherein the preheating step is a step of preliminarily heat-treating the reinforcing fiber bundle at a temperature higher than the melting temperature of the thermoplastic resin.
【請求項3】 被覆工程が、補強用繊維束に引張破断強
力の10〜50%の高張力を掛けた状態下で、補強用繊
維束に溶融した熱可塑性樹脂を被覆する工程である請求
項1又は2の繊維強化熱可塑性樹脂材料の製造方法。
3. The covering step is a step of covering the reinforcing fiber bundle with a molten thermoplastic resin under a state where a high tension of 10 to 50% of tensile breaking strength is applied to the reinforcing fiber bundle. 1. The method for producing a fiber-reinforced thermoplastic resin material according to 1 or 2.
【請求項4】 被覆工程が、25kg/cm2 以上の加
圧下で、補強用繊維束に溶融した熱可塑性樹脂を被覆す
る工程である請求項1〜3のいずれかに記載の繊維強化
熱可塑性樹脂材料の製造方法。
4. The fiber-reinforced thermoplastic according to claim 1, wherein the coating step is a step of coating the reinforcing fiber bundle with the molten thermoplastic resin under a pressure of 25 kg / cm 2 or more. Method for manufacturing resin material.
【請求項5】 補強用繊維束に熱可塑性樹脂を被覆する
方法において、補強用繊維束に、予め、100℃以上の
温度で熱処理を行う工程(予熱工程)、次いで、補強用
繊維束に引張破断強力の5〜70%の高張力を掛けた状
態下で、補強用繊維束に溶融した熱可塑性樹脂を被覆す
る工程(被覆工程)、熱可塑性樹脂の溶融温度以上の温
度で、成形用ノズルにより樹脂被覆補強用繊維束の再成
形を行なう工程(再成形工程)、続いて冷却する工程
(冷却工程)を有することを特徴とする繊維強化熱可塑
性樹脂材料の製造方法。
5. A method of coating a reinforcing fiber bundle with a thermoplastic resin, wherein the reinforcing fiber bundle is heat-treated at a temperature of 100 ° C. or higher in advance (preheating step), and then the reinforcing fiber bundle is stretched. A step of coating the reinforcing fiber bundle with the molten thermoplastic resin under a high tension of 5 to 70% of breaking strength (coating step), a molding nozzle at a temperature not lower than the melting temperature of the thermoplastic resin. The method for producing a fiber-reinforced thermoplastic resin material, comprising: a step of re-molding the resin-coated reinforcing fiber bundle (re-molding step) and a subsequent cooling step (cooling step).
【請求項6】 予熱工程が、補強用繊維束に、予め、熱
可塑性樹脂の溶融温度以上の高温で熱処理する工程であ
る請求項5の繊維強化熱可塑性樹脂材料の製造方法。
6. The method for producing a fiber-reinforced thermoplastic resin material according to claim 5, wherein the preheating step is a step of previously heat-treating the reinforcing fiber bundle at a temperature higher than the melting temperature of the thermoplastic resin.
【請求項7】 被覆工程が、補強用繊維束に引張破断強
力の10〜50%の高張力を掛けた状態下で、補強用繊
維束に溶融した熱可塑性樹脂を被覆する工程である請求
項5又は6の繊維強化熱可塑性樹脂材料の製造方法。
7. The coating step is a step of coating the reinforcing fiber bundle with a melted thermoplastic resin under a state where a high tension of 10 to 50% of tensile breaking strength is applied to the reinforcing fiber bundle. 5. The method for producing a fiber-reinforced thermoplastic resin material according to 5 or 6.
【請求項8】 被覆工程が、25kg/cm2 以上の加
圧下で、補強用繊維束に溶融した熱可塑性樹脂を被覆す
る工程である請求項5〜7のいずれかに記載の繊維強化
熱可塑性樹脂材料の製造方法。
8. The fiber-reinforced thermoplastic according to claim 5, wherein the coating step is a step of coating the reinforcing fiber bundle with the molten thermoplastic resin under a pressure of 25 kg / cm 2 or more. Method for manufacturing resin material.
JP6098667A 1994-05-12 1994-05-12 Production of fiber-reinforced thermoplastic resin Pending JPH07310287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6098667A JPH07310287A (en) 1994-05-12 1994-05-12 Production of fiber-reinforced thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6098667A JPH07310287A (en) 1994-05-12 1994-05-12 Production of fiber-reinforced thermoplastic resin

Publications (1)

Publication Number Publication Date
JPH07310287A true JPH07310287A (en) 1995-11-28

Family

ID=14225873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6098667A Pending JPH07310287A (en) 1994-05-12 1994-05-12 Production of fiber-reinforced thermoplastic resin

Country Status (1)

Country Link
JP (1) JPH07310287A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102328374A (en) * 2011-09-08 2012-01-25 广州励进新技术有限公司 Production process and device of high-fiber ultra-thin plastic-covered reinforcing band
KR101411268B1 (en) * 2012-05-17 2014-06-24 (주)창성피앤알 The plastic raw material is manufacturing equipment
JP2015214087A (en) * 2014-05-12 2015-12-03 トヨタ自動車株式会社 Production method of tank
KR101624097B1 (en) * 2016-01-26 2016-06-07 김은수 Apparatus of manufacturing heatful yarn and manufacturing method of heatful yarn
JP2018065358A (en) * 2016-10-21 2018-04-26 泰英 楠原 Surface treatment agent removal method, and injection molding method and pellet production using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102328374A (en) * 2011-09-08 2012-01-25 广州励进新技术有限公司 Production process and device of high-fiber ultra-thin plastic-covered reinforcing band
KR101411268B1 (en) * 2012-05-17 2014-06-24 (주)창성피앤알 The plastic raw material is manufacturing equipment
JP2015214087A (en) * 2014-05-12 2015-12-03 トヨタ自動車株式会社 Production method of tank
KR101624097B1 (en) * 2016-01-26 2016-06-07 김은수 Apparatus of manufacturing heatful yarn and manufacturing method of heatful yarn
JP2018065358A (en) * 2016-10-21 2018-04-26 泰英 楠原 Surface treatment agent removal method, and injection molding method and pellet production using same

Similar Documents

Publication Publication Date Title
US5068142A (en) Fiber-reinforced polymeric resin composite material and process for producing same
US6090319A (en) Coated, long fiber reinforcing composite structure and process of preparation thereof
JPH07251437A (en) Method and device for manufacture of long fiber reinforced thermoplastic composite material
JP2006118111A (en) Fiber aggregate bonded with polymer
JP2020528845A (en) Fiber reinforced molding compound and its formation and usage
EP2377675A1 (en) Impregnation assembly and method for manufacturing a composite structure reinforced with long fibers
CA2333126C (en) Continuous-strand pellets and method and device for preparing continuous-strand pellets
JP3235833B2 (en) Long fiber reinforced thermoplastic resin composition and method for producing the same
JPH07310287A (en) Production of fiber-reinforced thermoplastic resin
US11851538B1 (en) Process to manufacture carbon fiber intermediate products in-line with carbon fiber production
JP3569018B2 (en) Method for producing fiber reinforced thermoplastic resin material
JP2862613B2 (en) Resin impregnated coated fiber
JPH0768544A (en) Impregnation of fiber bundle with resin
JP3266933B2 (en) Method for producing fiber-reinforced thermoplastic resin molding material
JP3234262B2 (en) Method for producing fiber-reinforced thermoplastic resin structure
JPH05124036A (en) Production of fiber-reinforced resin body
JPH031907A (en) Production of fiber reinforced composite material
JPH0691637A (en) Manufacture of pellet composed of fiber bundle coated with thermoplastic resin and device for coating fiber bundle with thermoplastic resin
JPH04197726A (en) Manufacture of long fiber reinforced composite material
JP2906595B2 (en) Method for producing fiber-reinforced thermoplastic resin pellets
JPH0439334A (en) Production of thermoplastic polyester resin composition reinforced with long fiber
JPH0427507A (en) Manufacture of long-fiber-reinforced thermoplastic resin composition
JPH05177629A (en) Preparation of pellet
JP7351614B2 (en) Resin-impregnated metal long fiber bundle and quality control method in its manufacturing method
JPH03230943A (en) Production of long-fiber reinforced thermoplastic resin composition and producing equipment therefor