JPH07309638A - Fluorine-containing metal oxide film and production of metal oxide film - Google Patents

Fluorine-containing metal oxide film and production of metal oxide film

Info

Publication number
JPH07309638A
JPH07309638A JP10525094A JP10525094A JPH07309638A JP H07309638 A JPH07309638 A JP H07309638A JP 10525094 A JP10525094 A JP 10525094A JP 10525094 A JP10525094 A JP 10525094A JP H07309638 A JPH07309638 A JP H07309638A
Authority
JP
Japan
Prior art keywords
fluoride
film
fluorine
metal
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10525094A
Other languages
Japanese (ja)
Other versions
JP3694901B2 (en
Inventor
Koji Tsukuma
孝次 津久間
Tomoyuki Akiyama
智幸 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP10525094A priority Critical patent/JP3694901B2/en
Publication of JPH07309638A publication Critical patent/JPH07309638A/en
Application granted granted Critical
Publication of JP3694901B2 publication Critical patent/JP3694901B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To form a dense film at an extremely low temp. by forming a metal oxide film contg. F on the surface of a base material by using specific metal fluorides under specific conditions. CONSTITUTION:The metal fluorides which have nature to be hydrolyzed and are preferably >=1 kinds selected from SnF2, SnF4, SbF3, SbF5, TiF4, InF3.3H2O, PbF4, COF3, FeF3.3H2O, MnF3, CrF3-nH2O (n is 3 to 9), WF6, NbF5, TaF5, VF3, ZrF4(are used. Such metal fluorides are dissolved into, for example, pure water to prepare a soln. and the base material (for example, glass) is brought into contact with or immersed into this soln. The product by the hydrolysis reaction of the metal fluorides is then deposited on the surface of the base material to form the metal oxide film contg. F in the liquid phase. Further, this film is baked to remove the F, by which the metal oxide film without contg. the F is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、弗素含有金属酸化物被
膜及び金属酸化物被膜の製造方法に関する。特に、金属
フッ化物の加水分解生成物が基材表面に析出しやすいと
いう性質を利用して、液相中で弗素を含む金属酸化物被
膜を形成する新規な方法を提供する。さらに得られた弗
素を含む金属酸化物被膜から、弗素を含まない金属酸化
物被膜を得る方法を提供する。
TECHNICAL FIELD The present invention relates to a fluorine-containing metal oxide film and a method for producing a metal oxide film. In particular, a novel method for forming a metal oxide coating film containing fluorine in a liquid phase is provided by utilizing the property that a hydrolysis product of a metal fluoride easily deposits on the surface of a substrate. Further, there is provided a method for obtaining a fluorine-free metal oxide coating from the obtained fluorine-containing metal oxide coating.

【0002】[0002]

【従来の技術】金属酸化物被膜を湿式で形成する方法と
して、金属酸化物のコロイド溶液あるいは金属アルコキ
シドを含む溶液を塗布し乾燥する、いわゆる塗布法が従
来から知られている。また、金属酸化物被膜を液相中で
形成する方法として、金属と弗素を含む溶液に、該金属
酸化物が過飽和状態となるように添加剤を加え、該金属
酸化物を析出させ、被膜を形成する方法がいくつか開示
されている。たとえば、特開昭59−141441号公
報、特開平4−26516号公報、特開平4−1300
17号公報、特開平4−132636号公報には、酸化
チタン被膜を、チタンフッ化水素酸あるいはチタンフッ
化アンモニウム水溶液にホウ酸などの添加剤を加えて形
成する方法が、また、特開昭63−134667号公報
には、酸化スズ被膜を、スズおよび弗素を含む溶液に、
ホウ酸、酸化亜鉛、塩化アルミニウムなどの添加剤を加
え、酸化スズを過飽和状態とし、析出形成する方法が、
さらに、特開平1−301514号公報には、Zn、I
n、V、Cr、Mn、Fe、Co、Ni、およびCuの
酸化物を、それぞれ該金属酸化物を過飽和状態とした弗
素を含む溶液から形成する方法が記載されている。
2. Description of the Related Art As a method for wet-forming a metal oxide film, a so-called coating method has been conventionally known in which a metal oxide colloidal solution or a solution containing a metal alkoxide is applied and dried. As a method for forming a metal oxide film in a liquid phase, an additive is added to a solution containing metal and fluorine so that the metal oxide is in a supersaturated state, and the metal oxide is deposited to form a film. Several methods of forming are disclosed. For example, JP-A-59-141441, JP-A-4-26516, and JP-A-4-1300.
No. 17, JP-A-4-132636 discloses a method of forming a titanium oxide coating film by adding an additive such as boric acid to an aqueous solution of titanium hydrofluoric acid or ammonium titanium fluoride. Japanese Patent No. 134667 discloses a tin oxide coating on a solution containing tin and fluorine.
A method of adding additives such as boric acid, zinc oxide, and aluminum chloride to bring tin oxide into a supersaturated state and forming a precipitate is
Further, in JP-A-1-301514, Zn, I
A method of forming oxides of n, V, Cr, Mn, Fe, Co, Ni, and Cu from a solution containing fluorine in which the metal oxide is supersaturated is described.

【0003】[0003]

【発明が解決しようとする課題】上述の金属酸化物被膜
の製造方法のうち、塗布法では、溶液を基材表面に様々
な手法、たとえば、ディップ、スピンコ−ト、スプレ
−、ロ−ルコ−トなどで行わなければならないという手
間を要し、また、こうした手法では複雑形状の表面には
均一に膜付けし難かった。さらに乾燥収縮の少ない、充
分に緻密な膜が得難いという問題点もあった。
Among the above-mentioned methods for producing a metal oxide film, in the coating method, various methods such as dipping, spin coating, spraying, and roll coating are applied to the surface of the substrate. However, it is difficult to apply a uniform film onto the surface of a complex shape by such a method. Further, there is a problem that it is difficult to obtain a sufficiently dense film with little drying shrinkage.

【0004】また、すでに開示されている金属酸化物被
膜を液相中で形成する方法は、金属と弗素を含む溶液に
ホウ酸など何らかの添加剤を加えることにより、溶解し
ている該金属酸化物を過飽和状態とせしめ、析出させる
方法である。これらの方法では、添加剤を必要とするた
め、析出反応の制御が煩雑で難しく、再現性が得難い場
合があった。また、添加材の種類によっては、廃液の処
理が問題となることがあった。
Further, the method of forming a metal oxide coating film which has already been disclosed is a method of forming a dissolved metal oxide by adding an additive such as boric acid to a solution containing metal and fluorine. Is a method of causing the supersaturated state to precipitate. Since these methods require additives, the control of the precipitation reaction is complicated and difficult, and reproducibility may be difficult to obtain. Further, depending on the type of additive material, treatment of waste liquid may be a problem.

【0005】本発明は、弗素が含有された緻密な膜を液
相法において極めて低温で形成することができる、新規
な製造方法を提供することを目的とする。
An object of the present invention is to provide a novel manufacturing method capable of forming a dense film containing fluorine in a liquid phase method at an extremely low temperature.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために鋭意検討を行った結果、加水分解す
る性質をもつ金属フッ化物だけを溶解した水溶液を使用
すれば、浸漬した基材表面に該金属の加水分解生成物の
析出が起こり、弗素を含有した該金属酸化物被膜が形成
できることを見出だし、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have found that if an aqueous solution in which only a metal fluoride having a property of hydrolyzing is dissolved is used, dipping It was found that the hydrolysis product of the metal is deposited on the surface of the substrate thus formed, and the metal oxide film containing fluorine can be formed, and the present invention has been completed.

【0007】すなわち本発明は、加水分解する性質を有
する金属フッ化物を溶解した溶液に、基材を接触または
浸漬させ、金属フッ化物の加水分解反応により生成物を
基材表面に析出させることにより、弗素を含有した金属
酸化物被膜を液相中で形成することを特徴とする弗素含
有金属酸化物被膜の製造方法である。また本発明は、そ
のような方法で得られた弗素含有金属酸化物被膜を焼成
することにより、弗素を除去し、弗素を含まない金属酸
化物被膜を得ることを特徴とする製造方法である。
That is, according to the present invention, the base material is brought into contact with or immersed in a solution in which a metal fluoride having a property of being hydrolyzed is dissolved, and a product is deposited on the surface of the base material by a hydrolysis reaction of the metal fluoride. A method for producing a fluorine-containing metal oxide film, which comprises forming a metal oxide film containing fluorine in a liquid phase. Further, the present invention is a production method characterized in that the fluorine-containing metal oxide coating obtained by such a method is baked to remove the fluorine and obtain a fluorine-free metal oxide coating.

【0008】本発明の方法は、上述した従来の液相形成
法とは異なり、いっさい添加剤を使用せず、また、弗素
を含む溶液に溶解した金属酸化物を過飽和状態にする必
要がない。つまり、溶解した金属フッ化物と水との加水
分解反応のみを利用する方法である。以下、本発明をさ
らに詳細に説明する。
Unlike the above-mentioned conventional liquid phase forming method, the method of the present invention does not use any additives and does not require the metal oxide dissolved in a solution containing fluorine to be in a supersaturated state. In other words, this is a method that utilizes only the hydrolysis reaction of the dissolved metal fluoride and water. Hereinafter, the present invention will be described in more detail.

【0009】本発明において、加水分解する性質を有す
る金属フッ化物としては、例えばフッ化スズ(Sn
2、SnF4)、フッ化アンチモン(SbF3、Sb
5)、フッ化チタン(TiF4)、フッ化インジウム水
和物(InF3・nH2O(n=3〜9))などが挙げら
れる。またフッ化鉛、フッ化クロム水和物、フッ化コバ
ルト、フッ化第二鉄水和物、フッ化マンガン、フッ化タ
ングステン、フッ化ニオブ、フッ化タンタル、フッ化バ
ナジウム、フッ化ジルコニウムなどが挙げられる。
In the present invention, examples of the metal fluoride having a property of hydrolyzing include tin fluoride (Sn).
F 2, SnF 4), antimony fluoride (SbF 3, Sb
F 5), titanium fluoride (TiF 4), indium fluoride hydrate (InF 3 · nH 2 O ( n = 3~9)) and the like. In addition, lead fluoride, chromium fluoride hydrate, cobalt fluoride, ferric fluoride hydrate, manganese fluoride, tungsten fluoride, niobium fluoride, tantalum fluoride, vanadium fluoride, zirconium fluoride, etc. Can be mentioned.

【0010】加水分解性金属フッ化物は、種々存在する
が、フッ化スズ、フッ化アンチモン、フッ化チタン、及
びフッ化インジウム水和物の4種類は、水溶液中で加水
分解しやすい性質を示すため、特に好ましいものであ
る。
There are various kinds of hydrolyzable metal fluorides, but four kinds of tin fluoride, antimony fluoride, titanium fluoride and indium fluoride hydrate show the property of being easily hydrolyzed in an aqueous solution. Therefore, it is particularly preferable.

【0011】具体的には、フッ化スズの水溶液は、Sn
2またはSnF4を水に溶解することで簡単に調製する
ことができる。通常、合成が簡単で、安価なSnF2
用いることが好ましい。フッ化アンチモンの水溶液は、
SbF3あるいはSbF5を水に溶解することで容易に得
られる。通常、入手が容易なSbF3を用いることが好
ましい。同様に、フッ化チタンの水溶液は、通常市販さ
れているTiF4を水に溶解すればよい。また、フッ化
インジウムの水溶液は、InF3・nH2O(n=3〜
9)で表されるフッ化インジウムの水和物を水に溶解す
ることで、容易に調製できる。特に、InF3・3H2
の使用が好ましい。フッ化インジウムの無水物は、水へ
の溶解度が乏しいため、フッ化インジウムの水和物を用
いることが好ましい。
Specifically, the aqueous solution of tin fluoride is Sn
It can be easily prepared by dissolving F 2 or SnF 4 in water. Usually, it is preferable to use SnF 2 which is inexpensive and easy to synthesize. An aqueous solution of antimony fluoride
It can be easily obtained by dissolving SbF 3 or SbF 5 in water. Usually, it is preferable to use SbF 3 which is easily available. Similarly, as the aqueous solution of titanium fluoride, TiF 4 which is usually commercially available may be dissolved in water. Further, the aqueous solution of indium fluoride is InF 3 · nH 2 O (n = 3 to
It can be easily prepared by dissolving the hydrate of indium fluoride represented by 9) in water. In particular, InF 3 · 3H 2 O
Is preferably used. Since indium fluoride anhydride has poor solubility in water, it is preferable to use indium fluoride hydrate.

【0012】またフッ化鉛はPbF4、フッ化クロム水
和物はCrF3・nH2O(n=3〜9)、フッ化コバル
トはCoF3、フッ化第二鉄水和物はFeF3・3H
2O、フッ化マンガンはMnF3、フッ化タングステンは
WF6、フッ化ニオブはNbF5、フッ化タンタルはTa
5、フッ化バナジウムはVF3、フッ化ジルコニウムは
ZrF4を用いることが好ましい。
Lead fluoride is PbF 4 , chromium fluoride hydrate is CrF 3 .nH 2 O (n = 3 to 9), cobalt fluoride is CoF 3 , and ferric fluoride hydrate is FeF 3.・ 3H
2 O, MnF 3 for manganese fluoride, WF 6 for tungsten fluoride, NbF 5 for niobium fluoride, Ta for tantalum fluoride.
It is preferable to use VF 3 for F 5 , vanadium fluoride, and ZrF 4 for zirconium fluoride.

【0013】成膜処理は、上記フッ化物の水溶液に基材
を接触または浸漬し、所定温度で保持することで簡単に
行える。通常、液の蒸発を防ぐため、密閉容器中で行
い、恒温槽などで保持される。その際、均一な被膜を得
るためには、液を循環させたり、攪拌したりすることが
好ましい。本法は、金属フッ化物の加水分解生成物が溶
液中で基材表面に析出する反応を利用して膜形成を行う
もので、被膜は液中で時間経過とともに次第に厚く形成
されていく。液中のフッ化物濃度の経時変化を防ぐた
め、膜形成途中で新たにフッ化物を添加することも良い
方法である。
The film forming process can be easily carried out by contacting or immersing the substrate in the aqueous solution of the above-mentioned fluoride and holding it at a predetermined temperature. Usually, in order to prevent evaporation of the liquid, it is carried out in a closed container and kept in a constant temperature bath or the like. At that time, in order to obtain a uniform film, it is preferable to circulate or stir the liquid. In this method, a film is formed by utilizing a reaction in which a hydrolysis product of a metal fluoride is deposited on a surface of a substrate in a solution, and the film is gradually formed thicker in the solution over time. In order to prevent the concentration of fluoride in the liquid from changing with time, it is also a good method to add new fluoride during film formation.

【0014】成膜可能な溶液濃度は、非常に幅広く、金
属フッ化物濃度0.001〜1mol/l程度まで任意
に選ぶことができるが、好ましい濃度範囲は0.01〜
0.3mol/lである。濃度が10-2mol/lのオ
−ダ−から10-1mol/lのオ−ダ−へと濃くなるに
したがって、膜形成速度は増加するが、膜の結晶性は悪
くなる傾向がある。一方、0.5mol/l以上では逆
に、形成速度が減少する。また、濃度を高くすると基材
を浸蝕する傾向が若干出てくるので、基材の種類によっ
ては成膜が困難となる場合がある。膜形成速度、膜の結
晶性、緻密さ、基材の腐食という観点からは、溶液濃度
として0.02〜0.2mol/lの範囲が特に好まし
い。
The concentration of the solution capable of forming a film is extremely wide, and the concentration of the metal fluoride can be arbitrarily selected up to about 0.001 to 1 mol / l, but the preferable concentration range is 0.01 to.
It is 0.3 mol / l. As the concentration increases from the order of 10 -2 mol / l to the order of 10 -1 mol / l, the film formation rate increases, but the crystallinity of the film tends to deteriorate. . On the other hand, at 0.5 mol / l or more, on the contrary, the formation rate decreases. Further, if the concentration is increased, there is a slight tendency to corrode the base material, so film formation may become difficult depending on the type of base material. From the viewpoint of film formation rate, film crystallinity, denseness, and substrate corrosion, the solution concentration is particularly preferably in the range of 0.02 to 0.2 mol / l.

【0015】溶液の保持温度としては、室温から150
℃程度までを任意に選ぶことができる。温度はフッ化物
の加水分解を促進するために加えられるもので、温度が
高いほど、膜形成速度は速くなり、膜質としても緻密
で、かつ結晶性の良いものが得られる。ただし、80℃
以上の温度では、基材の腐食が問題となる場合がある。
たとえば、石英ガラスを基材とした場合には、100℃
でも基材の腐食はなく、成膜できるが、ソ−ダライムガ
ラスの場合には、80℃以上で腐食され、成膜が困難で
ある。このような観点から、好ましい保持温度は60〜
80℃である。
The holding temperature of the solution is from room temperature to 150.
It can be arbitrarily selected up to about ° C. The temperature is added to accelerate the hydrolysis of the fluoride, and the higher the temperature, the faster the film formation rate, and the denser the film quality and the better the crystallinity. However, 80 ℃
At the above temperatures, the corrosion of the base material may become a problem.
For example, if quartz glass is used as the base material, 100 ° C
However, the base material is not corroded and a film can be formed, but in the case of soda lime glass, the film is corroded at 80 ° C. or higher and the film formation is difficult. From such a viewpoint, the preferable holding temperature is 60 to
It is 80 ° C.

【0016】以上記載した好ましい金属フッ化物濃度、
保持温度は、金属フッ化物の種類には、ほとんど依存せ
ず、すべての金属フッ化物の場合に当てはまる。
The preferred metal fluoride concentrations described above,
The holding temperature is almost independent of the type of metal fluoride and is true for all metal fluorides.

【0017】被膜の形成速度は、金属フッ化物の種類、
溶液のフッ化物濃度および保持温度に強く依存するが、
スズ酸化物被膜の場合、例えば、SnF2濃度2×10
-2〜5×10-2mol/lの溶液を40℃に保持した場
合の形成速度は約2nm/hr、60℃保持では約10
nm/hr、80℃保持では約15〜20nm/hrで
あり、SnF2濃度1×10-1mol/lの溶液を80
℃に保持した場合の形成速度は30nm/hrである。
また、アンチモン酸化物被膜の場合、例えば、SbF3
濃度2×10-2〜10×10-2mol/lの溶液を60
℃に保持した場合の形成速度は10〜20nm/hrで
ある。
The rate of film formation depends on the type of metal fluoride,
Strongly depends on the fluoride concentration of the solution and the holding temperature,
In the case of tin oxide coating, for example, SnF 2 concentration 2 × 10
-2 to 5 × 10 -2 mol / l solution has a formation rate of about 2 nm / hr when kept at 40 ° C and about 10 nm when kept at 60 ° C.
nm / hr, about 15 to 20 nm / hr when kept at 80 ° C., and a SnF 2 concentration of 1 × 10 −1 mol / l of a solution was 80
The formation rate when kept at 0 ° C. is 30 nm / hr.
In the case of an antimony oxide coating, for example, SbF 3
A solution having a concentration of 2 × 10 -2 to 10 × 10 -2 mol / l was added to 60
The formation rate when kept at 10 ° C is 10 to 20 nm / hr.

【0018】また、チタン酸化物被膜の場合、TiF4
濃度2×10-2〜5×10-2mol/lの溶液を60℃
に保持した場合の形成速度は30nm/hrである。ま
た、インジウム酸化物被膜の場合、例えば、InF3
度2×10-2〜5×10-2mol/lの溶液を60℃に
保持した場合の形成速度は、5〜10nm/hrであ
る。また鉛酸化物、クロム酸化物、コバルト酸化物、鉄
酸化物、マンガン酸化物、タングステン酸化物、ニオブ
酸化物、タンタル酸化物、バナジウム酸化物、及びジル
コニウム酸化物の場合、被膜の形成速度は約1〜50n
m/hrである。
In the case of a titanium oxide film, TiF 4
A solution having a concentration of 2 × 10 -2 to 5 × 10 -2 mol / l was added at 60 ° C.
The formation rate when kept at 30 nm / hr is 30 nm / hr. In the case of an indium oxide film, for example, the formation rate is 5 to 10 nm / hr when a solution having an InF 3 concentration of 2 × 10 −2 to 5 × 10 −2 mol / l is held at 60 ° C. In the case of lead oxide, chromium oxide, cobalt oxide, iron oxide, manganese oxide, tungsten oxide, niobium oxide, vanadium oxide, and zirconium oxide, the film formation rate is about 1-50n
m / hr.

【0019】なお調製した金属フッ化物の水溶液に、直
ちに基材を投入し、成膜処理を行うと、フッ化物の加水
分解により生成したスズ酸、インジウム酸、アンチモン
酸などの金属酸の凝集粒子が、基材表面に形成された膜
に付着する場合がある。これを防ぐ方法として、調製し
たフッ化物溶液を所定温度に一定時間に保ち、加水分解
を進め凝集粒子の沈降を促し、液を清澄化した後、そこ
に器材を投入する方法が好ましく採用できる。この時に
温度は室温〜150℃で、0.1〜数十時間保持すれば
よい。
Immediately after adding the base material to the prepared metal fluoride aqueous solution and performing a film formation process, aggregated particles of metal acids such as stannic acid, indium acid, and antimonic acid produced by hydrolysis of the fluoride. May adhere to the film formed on the surface of the base material. As a method for preventing this, a method in which the prepared fluoride solution is kept at a predetermined temperature for a certain period of time to promote hydrolysis to promote sedimentation of agglomerated particles, the liquid is clarified, and then equipment is added thereto can be preferably adopted. At this time, the temperature may be room temperature to 150 ° C. and may be held for 0.1 to several tens hours.

【0020】基材としては、ガラス、プラスティック、
シリコン、金属など多くの種類のものが使用できる。特
に、石英ガラス、シリカコ−ティングされた汎用ガラ
ス、プラスティックなど腐食耐性に優れた材料には成膜
しやすい。また、容器などの曲面を有する物体表面に
も、調製液を入れ攪拌しながら所定温度に保持すること
により、成膜が簡単に行える。
As the substrate, glass, plastic,
Many types such as silicon and metal can be used. In particular, it is easy to form a film on a material having excellent corrosion resistance such as quartz glass, general-purpose glass coated with silica, and plastic. In addition, film formation can be easily performed by putting the preparation liquid on the surface of an object having a curved surface such as a container and maintaining the same at a predetermined temperature while stirring.

【0021】本発明の製造方法のもう一つの特徴は、2
種以上の金属酸化物からなる固溶体あるいは複合酸化物
などの多成分系酸化物被膜を、複数種の金属フッ化物を
溶解した溶液を使用することにより、すでに記載したと
同様の方法に従って、製造できることにある。例えば、
弗素が含有されたアンチモン含有スズ酸化物被膜は、S
nF2とSbF3を所定量ずつ溶解した水溶液に基材を接
触あるいは浸漬し、室温から150℃の範囲の温度に保
持することにより、簡単に形成できる。
Another feature of the manufacturing method of the present invention is that
It is possible to produce a multi-component oxide coating such as a solid solution or a complex oxide composed of one or more kinds of metal oxides by using a solution in which a plurality of kinds of metal fluorides are dissolved, according to the same method as described above. It is in. For example,
The antimony-containing tin oxide film containing fluorine is S
It can be easily formed by contacting or immersing the base material in an aqueous solution in which a predetermined amount of nF 2 and SbF 3 are dissolved and maintaining the temperature at room temperature to 150 ° C.

【0022】この場合、溶液の好ましい金属フッ化物濃
度、保持温度は、それぞれの単成分酸化物被膜を形成す
る場合と同様である。また例えばSnF2+SbF3など
の場合を含めて、各金属フッ化物の合計濃度は0.01
〜0.2mol/l、保持温度は、60〜80℃が好ま
しい。
In this case, the preferred metal fluoride concentration and holding temperature of the solution are the same as those for forming the respective single-component oxide coatings. In addition, including the case of SnF 2 + SbF 3, etc., the total concentration of each metal fluoride is 0.01
.About.0.2 mol / l, and the holding temperature is preferably 60 to 80.degree.

【0023】膜形成速度は、例えばSnF2+SbF3
水溶液を使用したときは、フッ化物濃度2×10-2〜5
×10-2mol/lの溶液を60℃で保持した場合は5
nm/hr、80℃で保持した場合は15〜20nm/
hrである。
The film forming rate is such that, when an aqueous solution of SnF 2 + SbF 3 is used, the fluoride concentration is 2 × 10 -2 to 5
5 x 10 -2 mol / l solution held at 60 ° C
nm / hr, 15 to 20 nm / when held at 80 ° C
It is hr.

【0024】被膜を構成するSb/Snの割合は、調製
液中のそれと概ね一致するが、Sb含有量10モル%ま
では、液中のSb量より被膜中のそれは多くなる傾向を
示し、10モル%以上では、逆の傾向を示す。例えば、
液中のSb/Snモル比を2/100にした場合、被膜
中には、3/100〜5/100含まれ、液中のモル比
を20/100にした場合、被膜中には、13/100
〜20/100含まれるという傾向を示す。
The ratio of Sb / Sn constituting the coating is almost the same as that in the prepared solution, but when the Sb content is up to 10 mol%, the Sb content in the coating tends to be higher than the Sb content in the solution. At mol% or higher, the opposite tendency is exhibited. For example,
When the Sb / Sn molar ratio in the liquid is 2/100, the film contains 3/100 to 5/100, and when the molar ratio in the liquid is 20/100, the film contains 13 / 100
.About.20 / 100 is included.

【0025】アンチモン含有スズ酸化物被膜以外にも、
スズ含有インジウム被膜を、SnF2とInF3・nH2
Oとを溶解させた溶液から同様の方法で形成することが
できる。またチタン/ニオブ/鉛系複合酸化物は、フッ
化チタン、フッ化ニオブ、及びフッ化鉛を溶解した水溶
液に基材を浸漬し、室温から150℃の範囲の温度で保
持することにより、簡単に形成できる。さらにそれ以外
の金属フッ化物を組み合わせて、所望の2成分、3成分
系酸化物被膜を形成することもできる。
Besides the antimony-containing tin oxide coating,
Apply tin-containing indium coating to SnF 2 and InF 3 · nH 2
It can be formed in the same manner from a solution in which O and O are dissolved. In addition, the titanium / niobium / lead-based composite oxide can be easily prepared by immersing the base material in an aqueous solution in which titanium fluoride, niobium fluoride, and lead fluoride are dissolved, and maintaining the temperature at room temperature to 150 ° C. Can be formed into It is also possible to form a desired binary or ternary oxide film by combining other metal fluorides.

【0026】成膜中の保持温度を高くするか、析出によ
り得られた被膜を加熱することにより、ペロブスカイト
構造の結晶性の被膜を得ることができる。
A crystalline coating having a perovskite structure can be obtained by increasing the holding temperature during film formation or heating the coating obtained by precipitation.

【0027】基材に析出した被膜は、弗素を含有する金
属酸化物からなる。この被膜中に含まれる弗素は、IR
スペクトル分析から、金属元素に結合した状態で、構造
中に存在していると推定される。含有弗素量は使用する
溶液中のフッ化物濃度ならびに保持温度に依存するが、
特に、濃度に強く依存する。例えば、スズ酸化物の場
合、SnF2濃度0.01mol/lでは、5〜7at
m%の弗素が被膜中に含まれ、0.1〜0.3mol/
lでは、10〜16atm%の弗素が含まれる。金属フ
ッ化物の種類により、含有弗素量は、多少異なるが、こ
の濃度依存性は共通しており、本発明のすべての酸化物
被膜において、3atm%から18atm%までの弗素
を含有させることができるが、18atmを越える弗素
を含有させることは困難である。
The coating film deposited on the substrate is composed of a metal oxide containing fluorine. The fluorine contained in this coating is IR
From the spectrum analysis, it is presumed that it is present in the structure in the state of being bound to the metal element. The content of fluorine depends on the concentration of fluoride in the solution used and the holding temperature,
In particular, it strongly depends on the concentration. For example, in the case of tin oxide, when the SnF 2 concentration is 0.01 mol / l, it is 5 to 7 at.
m% fluorine is contained in the coating, and 0.1 to 0.3 mol /
1 contains 10 to 16 atm% of fluorine. The amount of fluorine contained varies slightly depending on the type of metal fluoride, but this concentration dependence is common, and it is possible to contain 3 to 18 atm% of fluorine in all oxide films of the present invention. However, it is difficult to contain fluorine exceeding 18 atm.

【0028】本発明で得られた弗素含有金属酸化物被膜
は、大気、酸素、または不活性ガスなどの通常の雰囲気
中で焼成することにより、弗素が除去され、弗素を含ま
ない結晶性の高い金属酸化物被膜とすることができる。
弗素が除去される温度は、酸化物の種類に余り影響され
ず、加熱温度300℃では、90%以上の弗素が除去さ
れ、500℃ではほぼ全量除去される。本発明の製造方
法で得られた被膜は、緻密質であり、サブミクロンオ−
ダ−の厚みでは、焼成による割れや剥離はまったく見ら
れない。
The fluorine-containing metal oxide coating film obtained by the present invention has high fluorine-free crystallinity because fluorine is removed by firing in a normal atmosphere such as air, oxygen, or an inert gas. It can be a metal oxide coating.
The temperature at which fluorine is removed is not significantly affected by the type of oxide, and 90% or more of fluorine is removed at a heating temperature of 300 ° C., and almost all is removed at 500 ° C. The coating film obtained by the manufacturing method of the present invention is dense and has a submicron thickness.
At the thickness of the dare, no cracking or peeling due to firing was observed.

【0029】[0029]

【実施例】以下、実施例によって、本発明をさらに説明
する。しかし、本発明はこれら実施例にのみ限定される
ものではない。
EXAMPLES The present invention will be further described below with reference to examples. However, the present invention is not limited to these examples.

【0030】(実施例1)SnF240gを純水100
0mlに溶解した液と純水を用い、両者を所定量室温で
混合することによって、Sn濃度0.005、0.01
0、0.030、0.100mol/lの溶液をそれぞ
れ100ml調製した。この液を一旦減圧にし脱気した
後、そこに基材として石英ガラス、シリコン基板、ソ−
ダライムガラスを浸漬し、密閉して、それぞれ60℃、
80℃、110℃の恒温槽で15時間保持した。処理後
の液のpHは、濃度にほとんど依存せず、2.8〜3.
0であった。基材を取り出し、水洗し、基材表面に膜が
形成されているこを確認した。80℃、110℃では石
英ガラス以外の基材で、膜の剥離が一部分観察された
が、60℃では、すべての基材に密着した膜が形成され
た。膜の厚みなどをSEM観察から求めた。また、膜組
成をESCA並びにEPMAによって分析した結果、主
成分として、Sn、O、Fが検出され、SnとOの原子
比は、1:1.7〜1.9であり、F量は表1に示すよ
うに5atm%以上であった。この結果から、弗素含有
二酸化スズ膜が形成されていることが判った。以上の結
果を表1にまとめて示す。
Example 1 40 g of SnF 2 was added to 100 parts of pure water.
By using a liquid dissolved in 0 ml and pure water and mixing both at a predetermined amount at room temperature, Sn concentrations of 0.005 and 0.01
100 ml of 0, 0.030, and 0.100 mol / l solutions were prepared. After depressurizing this solution once and degassing it, quartz glass, silicon substrate, and soda are used as the base material.
Dalime glass is soaked and sealed, each at 60 ℃,
It was kept for 15 hours in a thermostat at 80 ° C and 110 ° C. The pH of the liquid after the treatment hardly depends on the concentration and is 2.8 to 3.
It was 0. The substrate was taken out and washed with water, and it was confirmed that a film was formed on the substrate surface. At 80 ° C. and 110 ° C., peeling of the film was partially observed on substrates other than quartz glass, but at 60 ° C., films adhered to all substrates were formed. The film thickness and the like were determined by SEM observation. In addition, as a result of analyzing the film composition by ESCA and EPMA, Sn, O, and F were detected as the main components, the atomic ratio of Sn and O was 1: 1.7 to 1.9, and the F amount was in the table. As shown in 1, it was 5 atm% or more. From this result, it was found that a fluorine-containing tin dioxide film was formed. The above results are summarized in Table 1.

【0031】[0031]

【表1】 [Table 1]

【0032】(実施例2)溶液濃度を変化させ、成膜処
理を40℃で110時間保持して行った以外は、実施例
1とまったく同様の方法で弗素含有酸化スズ膜を得た。
結果を表2に示す。表2に示すように、シリコン、ソ−
ダライムガラス、石英ガラスすべての基材に膜付けでき
た。
Example 2 A fluorine-containing tin oxide film was obtained in the same manner as in Example 1 except that the solution concentration was changed and the film forming treatment was carried out at 40 ° C. for 110 hours.
The results are shown in Table 2. As shown in Table 2, silicon,
Films could be applied to all base materials of dhalime glass and quartz glass.

【0033】[0033]

【表2】 [Table 2]

【0034】(実施例3)SnF21.57gを純水1
00mlに溶解した液を80℃で24h保持し、加水分
解による沈殿を生成させた。容器の底に沈殿を残した上
澄液に、基材として、石英ガラスとシリカコ−ティング
したソ−ダライムガラスを浸漬し、80℃に10時間放
置し、成膜処理を行った。得られた試料をSEM観察し
たところ、どちらの試料にも膜表面に付着粒子が非常に
少ない、厚み0.3μmの膜ができていることが判っ
た。試料を大気中で300℃または500℃で1時間焼
成し、EPMAによる分析を行った。300℃で焼成し
た試料では、SnとOが原子比1:2で含まれ、それ以
外として、0.4atm%のFが検出された。500℃
の試料では、SnとOが1:2で含まれ、それ以外何も
検出されなかった。また、300℃または500℃で焼
成した試料は、ともにX線回折により二酸化スズ膜が形
成されていることを確認した。
Example 3 1.57 g of SnF 2 was added to pure water 1
The liquid dissolved in 00 ml was kept at 80 ° C. for 24 hours to generate a precipitate by hydrolysis. Quartz glass and silica-coated soda lime glass were immersed as a substrate in the supernatant liquid that left a precipitate on the bottom of the container, and the soda lime glass was left to stand at 80 ° C. for 10 hours for film formation. When the obtained samples were observed by SEM, it was found that a film having a thickness of 0.3 μm was formed on each of the samples with very few adhered particles on the film surface. The sample was baked at 300 ° C. or 500 ° C. for 1 hour in the air, and analyzed by EPMA. The sample fired at 300 ° C. contained Sn and O in an atomic ratio of 1: 2, and other than that, 0.4 atm% of F was detected. 500 ° C
Sample No. 1 contained Sn and O at a ratio of 1: 2, and nothing else was detected. In addition, it was confirmed by X-ray diffraction that a tin dioxide film was formed in each of the samples baked at 300 ° C or 500 ° C.

【0035】(実施例4)SbF3を所定量秤量し、純
水100mlに溶解した液を調製した。液のSb濃度は
それぞれ0.01、0.03、0.100mol/lと
なるようにした。この液を一旦減圧にし、脱気した後、
そこに基材として石英ガラス、シリコン基板、及びソ−
ダライムガラスを浸漬し、密閉して、それぞれ60℃、
85℃の恒温槽で15時間保持した。基材を取り出し、
水洗し、基材表面に膜が形成されていることを確認し
た。膜の厚みなどをSEM観察から求めた。また、膜組
成をESCAによって分析した結果、Sb、O、Fが検
出された。IRスペクトル解析により、弗素はSb−F
の結合状態で酸化アンチモンの構造中に存在しているこ
とがわかった。すべての膜に、Fは5atm%以上検出
され、弗素含有酸化アンチモン膜であることがわかっ
た。また、各膜は、十分に緻密で結晶性のよいものであ
った。以上の結果を表3にまとめて示す。
(Example 4) A predetermined amount of SbF 3 was weighed and dissolved in 100 ml of pure water to prepare a liquid. The Sb concentrations of the liquid were set to 0.01, 0.03, and 0.100 mol / l, respectively. After depressurizing this liquid once and degassing,
Quartz glass, a silicon substrate, and
Dalime glass is soaked and sealed, each at 60 ℃,
It was kept in a constant temperature bath at 85 ° C. for 15 hours. Take out the base material,
It was washed with water, and it was confirmed that a film was formed on the surface of the substrate. The film thickness and the like were determined by SEM observation. As a result of ESCA analysis of the film composition, Sb, O, and F were detected. IR spectrum analysis shows that fluorine is Sb-F
It was found that they were present in the structure of antimony oxide in the bound state. F was detected at 5 atm% or more in all the films, and it was found that the film was a fluorine-containing antimony oxide film. In addition, each film was sufficiently dense and had good crystallinity. The above results are summarized in Table 3.

【0036】また、各弗素含有酸化アンチモン膜を50
0℃で1時間焼成し、X線回析により同定したところ、
Sb25であることが判った。なお、焼成した膜には、
Fは検出されなかった。また、割れや剥離は観察され
ず、緻密で結晶性のよい膜が得られた。
Further, each fluorine-containing antimony oxide film is formed into 50
When baked at 0 ° C. for 1 hour and identified by X-ray diffraction,
It was found to be Sb 2 O 5 . In addition, in the baked film,
F was not detected. No cracking or peeling was observed, and a dense film having good crystallinity was obtained.

【0037】[0037]

【表3】 [Table 3]

【0038】(実施例5)TiF440gを純水100
0mlに溶解した液と純水とを用い、両者を所定量室温
で混合することによって、Ti濃度0.005、0.0
10、0.030、0.100mol/lの溶液をそれ
ぞれ100ml調製した。そこに基材として、石英ガラ
ス、シリコン基板、ソ−ダライムガラスを浸漬し、密閉
して、60℃の恒温槽で15時間保持した。基材を取り
出し、水洗し、すべての基材表面に膜が形成されている
ことを確認した。結果を表4に示す。膜の厚みなどはS
EM観察から求めた。また、膜組成をESCAならびに
EPMAによって分析した結果、主成分として、Ti、
O、Fが検出され、TiとOの原子比は、1:1.7〜
1.9であり、F量は表4に示すように、5atm%以
上であった。またIRスペクトル分析によると、弗素
は、Ti−F結合の状態で、酸化チタンの構造中に存在
していた。この結果から、弗素含有酸化チタン膜が形成
されていることが判った。
Example 5 40 g of TiF 4 was added to 100 parts of pure water.
By using a solution dissolved in 0 ml and pure water and mixing both at a predetermined amount at room temperature, Ti concentrations of 0.005 and 0.0
100 ml of 10, 0.030 and 0.100 mol / l solutions were prepared. Quartz glass, silicon substrate, and soda lime glass were immersed therein as a substrate, sealed, and kept in a constant temperature bath at 60 ° C. for 15 hours. The substrate was taken out and washed with water, and it was confirmed that a film was formed on all the substrate surfaces. The results are shown in Table 4. The thickness of the film is S
It was determined from EM observation. As a result of analyzing the film composition by ESCA and EPMA, Ti,
O and F are detected, and the atomic ratio of Ti and O is 1: 1.7-
It was 1.9, and the F amount was 5 atm% or more, as shown in Table 4. According to the IR spectrum analysis, fluorine was present in the structure of titanium oxide in the state of Ti—F bond. From this result, it was found that the fluorine-containing titanium oxide film was formed.

【0039】[0039]

【表4】 [Table 4]

【0040】(実施例6)実施例5の石英ガラス上に形
成されたすべての膜を、大気中で300℃または500
℃でそれぞれ1hr焼成した。焼成後の膜組成をEPM
Aにより分析した結果、TiとOがモル比でほぼ1:2
で検出され、それ以外の元素は検出されなかった。ま
た、X線回析から焼成後の膜はアナタ−ゼタイプの2酸
化チタンであることがわかった。
(Embodiment 6) All the films formed on the quartz glass of Embodiment 5 were heated to 300 ° C. or 500 ° C. in the atmosphere.
Firing was performed for 1 hour at each temperature. The film composition after firing is EPM
As a result of analysis by A, the molar ratio of Ti and O is approximately 1: 2.
No other elements were detected. Further, it was found from the X-ray diffraction that the film after firing was anatase type titanium dioxide.

【0041】(実施例7)InF3・nH2O(n=3)
を所定量秤量し、純水100mlに溶解した液を調製し
た。液のIn濃度はそれぞれ0.009、0.018、
0.035、0.100mol/lとなるようにした。
この液を一旦減圧にし脱気した後、基材として石英ガラ
ス、シリコン基板、ソ−ダライムガラスを浸漬し、密閉
して、それぞれ60℃、80℃、110℃の恒温槽で1
5時間保持した。基材を取り出し、水洗し、基材表面に
膜が形成されているこを確認した。80℃及び110℃
では石英ガラス以外の基材で、膜の剥離が一部分観察さ
れたが、60℃では、すべての基材に密着した膜が形成
された。膜の厚みなどをSEM観察から求めた。また、
膜組成をESCAによって分析した結果、In、O、F
が検出された。すべての膜にFは3atm%以上検出さ
れ、弗素含有酸化インジウム膜が形成されていることが
判った。以上の結果を表5にまとめて示す。
Example 7 InF 3 .nH 2 O (n = 3)
Was weighed in a predetermined amount to prepare a liquid dissolved in 100 ml of pure water. In concentration of the liquid is 0.009, 0.018,
It was set to 0.035 and 0.100 mol / l.
After depressurizing this solution by depressurizing it once, immersing quartz glass, silicon substrate and soda lime glass as a base material, sealing them, and keeping them in a constant temperature bath at 60 ° C, 80 ° C and 110 ° C respectively.
Hold for 5 hours. The substrate was taken out and washed with water, and it was confirmed that a film was formed on the substrate surface. 80 ℃ and 110 ℃
Although peeling of the film was partially observed on substrates other than quartz glass, at 60 ° C., films adhered to all substrates were formed. The film thickness and the like were determined by SEM observation. Also,
As a result of analyzing the film composition by ESCA, In, O, F
Was detected. F was detected at 3 atm% or more in all the films, and it was found that a fluorine-containing indium oxide film was formed. The above results are summarized in Table 5.

【0042】また、基材表面に形成された弗素含有酸化
インジウム膜を、500℃で、1時間焼成しX線回析に
より同定したところ、In23膜であることが判った。
なお、焼成した膜にはFは検出されなかった。
Further, when the fluorine-containing indium oxide film formed on the surface of the base material was baked at 500 ° C. for 1 hour and identified by X-ray diffraction, it was found to be an In 2 O 3 film.
In addition, F was not detected in the baked film.

【0043】[0043]

【表5】 [Table 5]

【0044】(実施例8)InF3・nH2O(n=3)
1.6gを純水100mlに溶解した液を、60℃で2
4h保持し、加水分解による沈殿を生成させた。この沈
殿は容器の底に沈降し、液はかなり清澄度の高いものと
なった。そこに、基材として、石英ガラスとシリカコ−
ティングしたソ−ダライムガラスを浸漬し、80℃に2
0時間放置し、成膜処理を行った。得られた試料をSE
M観察したところ、膜表面に付着粒子が非常に少ない、
厚み0.1μmの膜ができていることが判った。試料を
それぞれ300℃または500℃で1時間大気中で焼成
した。ESCAで分析したところ、未焼成膜には、1
3.0atm%のFが含まれていたが、300℃焼成膜
には、0.5atm%しか含まれず、500℃焼成膜に
は、Fが検出されなかった。300℃または500℃焼
成膜をX線回折により同定したところ、C型結晶構造の
23であることを確認した。
Example 8 InF 3 .nH 2 O (n = 3)
A solution prepared by dissolving 1.6 g in 100 ml of pure water is used at 60 ° C for 2
It was held for 4 hours to generate a precipitate by hydrolysis. This precipitate settled to the bottom of the container, and the liquid became very clear. There, as a base material, quartz glass and silica core
Immerse the soda lime glass that has been dipped,
After standing for 0 hour, a film forming process was performed. The obtained sample is SE
When observed by M, very few particles adhered to the film surface,
It was found that a film having a thickness of 0.1 μm was formed. The samples were fired at 300 ° C. or 500 ° C. for 1 hour in air, respectively. When analyzed by ESCA, the unbaked film had 1
Although 3.0 atm% F was contained, the 300 ° C. calcined film contained only 0.5 atm%, and F was not detected in the 500 ° C. calcined film. When the fired film at 300 ° C. or 500 ° C. was identified by X-ray diffraction, it was confirmed to be I 2 O 3 having a C-type crystal structure.

【0045】(実施例9)SnF2とSbF3とをモル比
99:1〜70:30の範囲で、それぞれ所定量秤量
し、室温で同時に純水100mlに溶解させた。そこに
基材として、石英ガラス、シリコン基板、ソ−ダライム
ガラスを浸漬し、密閉して、それぞれ60℃または80
℃で24時間保持した。基材を取り出し、水洗し、基材
表面に膜ができていることを確認した。膜の厚さなどを
SEM観察から求めた。また、膜組成をEPMAによっ
て分析した結果、Sn,Sb,Fが検出された。さらに
被膜に含まれるSb量について、調製液のそれとの関係
を求めた。以上の結果をまとめて表6,7に示す。
(Example 9) SnF 2 and SbF 3 were weighed in predetermined amounts in the molar ratio range of 99: 1 to 70:30 and simultaneously dissolved in 100 ml of pure water at room temperature. Quartz glass, silicon substrate and soda lime glass are immersed therein as a base material and sealed, and the temperature is 60 ° C or 80 ° C, respectively.
Hold at 24 ° C for 24 hours. The substrate was taken out and washed with water, and it was confirmed that a film was formed on the substrate surface. The film thickness and the like were determined by SEM observation. Moreover, as a result of analyzing the film composition by EPMA, Sn, Sb, and F were detected. Furthermore, the relationship between the amount of Sb contained in the coating and that of the prepared liquid was determined. The above results are summarized in Tables 6 and 7.

【0046】[0046]

【表6】 [Table 6]

【0047】[0047]

【表7】 [Table 7]

【0048】(実施例10)SnF29.9×10-4
ol及びSbF31.0×10-5mol、SnF29.0
×10-4mol及びSbF31.0×10-4mol、さ
らにSnF29.6×10-3mol及びSbF34.0×
10-4molの3つを秤量し純水100mlに溶解した
液を調製した。この液を一旦減圧にし脱気した後、そこ
に基材として石英ガラス、シリコン基板、ソーダライム
ガラスを浸漬し、密閉して、60℃で24時間保持し
た。なおNo.3の実験のみ80℃で保持した。基材を
取り出し、水洗し、いずれの基材表面にも膜ができてい
ることを確認した。膜の厚さなどをSEM観察から求め
た。また膜組成をESCAによって分析した結果、Sn
とSbとが検出された。この膜を500℃、大気中で1
時間焼成し、電気伝導度を測定した結果、電子伝導性が
確認された。なお、焼成膜にはFが検出されなかった。
結果を表8に示す。
Example 10 SnF 2 9.9 × 10 −4 m
ol and SbF 3 1.0 × 10 −5 mol, SnF 2 9.0
× 10 −4 mol and SbF 3 1.0 × 10 −4 mol, and SnF 2 9.6 × 10 −3 mol and SbF 3 4.0 ×
Three of 10 −4 mol were weighed and dissolved in 100 ml of pure water to prepare a liquid. This solution was once depressurized and deaerated, and then quartz glass, a silicon substrate, and soda lime glass as a base material were immersed therein, sealed, and kept at 60 ° C. for 24 hours. No. Only 3 experiments were kept at 80 ° C. The substrate was taken out and washed with water, and it was confirmed that a film was formed on the surface of each substrate. The film thickness and the like were determined by SEM observation. Moreover, as a result of analyzing the film composition by ESCA, Sn
And Sb were detected. This film at 500 ℃, 1 in the atmosphere
As a result of firing for a time and measuring the electric conductivity, electronic conductivity was confirmed. In addition, F was not detected in the baked film.
The results are shown in Table 8.

【0049】[0049]

【表8】 [Table 8]

【0050】(実施例11)NbF5を所定量秤量し、
純水100mlに溶解した液を調製した。液のNb濃度
はそれぞれ0.01、0.03、0.100mol/l
となるようにした。そこに基材として石英ガラス、シリ
コン基板、及びソ−ダライムガラスを浸漬し、密閉し
て、60℃の恒温槽で15時間保持した。溶液は加水分
解したコロイド生成のため、濁りを示した。
(Example 11) A predetermined amount of NbF 5 was weighed,
A solution dissolved in 100 ml of pure water was prepared. The Nb concentration of the liquid is 0.01, 0.03, 0.100 mol / l, respectively.
So that Quartz glass, a silicon substrate, and soda lime glass as a base material were immersed therein, sealed, and kept in a constant temperature bath at 60 ° C. for 15 hours. The solution was cloudy due to the formation of hydrolyzed colloids.

【0051】溶液から基材を取り出し、水洗し、基材表
面に膜が形成されていることを確認した。膜の厚みなど
をSEM観察から求めた。また、膜組成をESCAによ
って分析した結果、Nb、O、Fが検出された。すべて
の膜に、Fは3atm%以上検出され、弗素含有酸化ニ
オブ膜であることがわかった。以上の結果を表9に示
す。
The substrate was taken out of the solution and washed with water, and it was confirmed that a film was formed on the surface of the substrate. The film thickness and the like were determined by SEM observation. As a result of ESCA analysis of the film composition, Nb, O, and F were detected. F was detected in all films at 3 atm% or more, and it was found that the film was a fluorine-containing niobium oxide film. The above results are shown in Table 9.

【0052】また、各弗素含有酸化ニオブ膜を大気中5
00℃で1時間焼成した。膜組成をESCAによって分
析した結果、Fは検出されず、NbとOのみが確認され
た。X線回析から酸化ニオブの結晶性被膜であることが
判った。
Further, each fluorine-containing niobium oxide film was formed in the atmosphere 5
It was baked at 00 ° C. for 1 hour. As a result of analyzing the film composition by ESCA, F was not detected and only Nb and O were confirmed. From X-ray diffraction, it was found to be a crystalline film of niobium oxide.

【0053】[0053]

【表9】 [Table 9]

【0054】(実施例12)TaF5を使用した以外
は、実施例11とまったく同様の実験を行い、弗素含有
酸化タンタル被膜が得られることを確認した。結果を表
10に示す。
(Example 12) Except that TaF 5 was used, the same experiment as in Example 11 was conducted, and it was confirmed that a fluorine-containing tantalum oxide film was obtained. The results are shown in Table 10.

【0055】[0055]

【表10】 [Table 10]

【0056】(実施例13)MnF3を使用し、溶液の
保持温度を80℃とした以外は実施例11とまったく同
様の実験を行い、弗素含有酸化マンガン被膜が得られる
ことを確認した。結果を表11に示す。
Example 13 The same experiment as in Example 11 was conducted except that MnF 3 was used and the holding temperature of the solution was 80 ° C., and it was confirmed that a fluorine-containing manganese oxide film was obtained. The results are shown in Table 11.

【0057】[0057]

【表11】 [Table 11]

【0058】(実施例14)CoF3とFeF3・3H2
Oをモル比9/1になるように所定量秤量し、純水10
0mlに溶解した液を調製した。液のCo+Fe濃度は
それぞれ0.01、0.03、0.100mol/lと
なるようにした。そこに基材として石英ガラス及びシリ
コンを浸漬し、密閉して、85℃の恒温槽で15時間保
持した。基材を取り出し、水洗し、基材表面に膜が形成
されていることを確認した。膜の厚みなどをSEM観察
から求めた。また、膜組成をEPMAによって分析した
結果、Co、Fe、O、Fが検出された。すべての膜
に、Fは3atm%以上検出され、弗素含有酸化コバル
ト/鉄被膜であることがわかった。以上の結果を表12
にまとめて示す。
[0058] (Example 14) CoF 3 and FeF 3 · 3H 2
A predetermined amount of O was weighed so that the molar ratio was 9/1, and pure water 10
A solution dissolved in 0 ml was prepared. The Co + Fe concentration of the liquid was set to 0.01, 0.03, and 0.100 mol / l, respectively. Quartz glass and silicon were immersed therein as a substrate, sealed, and kept in a constant temperature bath at 85 ° C. for 15 hours. The base material was taken out and washed with water, and it was confirmed that a film was formed on the surface of the base material. The film thickness and the like were determined by SEM observation. As a result of analyzing the film composition by EPMA, Co, Fe, O and F were detected. In all the films, F was detected in an amount of 3 atm% or more, and it was found that the film was a fluorine-containing cobalt oxide / iron film. The above results are shown in Table 12.
Are shown together.

【0059】また、弗素含有酸化コバルト/鉄被膜を5
00℃、1時間大気中で加熱し、弗素が除去された酸化
コバルト/鉄系被膜ができることを確認した。
Further, a fluorine-containing cobalt oxide / iron coating is used.
It was confirmed that a fluorine oxide-free cobalt oxide / iron-based coating film was formed by heating in the atmosphere at 00 ° C. for 1 hour.

【0060】[0060]

【表12】 [Table 12]

【0061】(実施例15)PbF4、TiF4をモル比
1/1になるように所定量秤量し、純水100mlに溶
解した液を調製した。液のPb+Ti濃度はそれぞれ
0.01、0.03、0.100mol/lとなるよう
にした。そこに基材として石英ガラスを浸漬し、密閉し
て、60℃の恒温槽で15時間保持した。基材を取り出
し、水洗し、基材表面に膜が形成されていることを確認
した。膜の厚みなどをSEM観察から求めた。また、膜
組成をEPMAによって分析した結果、Pb、Ti、
O、Fが検出された。すべての膜に、Fは3atm%以
上検出され、弗素含有酸化鉛/チタン被膜であることが
わかった。以上の結果を表13にまとめて示す。
(Example 15) PbF 4 and TiF 4 were weighed in predetermined amounts so that the molar ratio was 1/1, and a solution dissolved in 100 ml of pure water was prepared. The Pb + Ti concentrations of the liquid were set to 0.01, 0.03, and 0.100 mol / l, respectively. Quartz glass as a substrate was immersed therein, sealed, and kept in a constant temperature bath at 60 ° C. for 15 hours. The base material was taken out and washed with water, and it was confirmed that a film was formed on the surface of the base material. The film thickness and the like were determined by SEM observation. In addition, as a result of analyzing the film composition by EPMA, Pb, Ti,
O and F were detected. In all the films, F was detected at 3 atm% or more, and it was found that the film was a fluorine-containing lead oxide / titanium film. The above results are summarized in Table 13.

【0062】また、弗素含有酸化鉛/チタン被膜を30
0℃、1時間大気中で加熱し、弗素が除去されたチタン
酸鉛複合酸化物被膜ができることを確認した。
Also, a fluorine-containing lead oxide / titanium coating is used.
After heating at 0 ° C. for 1 hour in the atmosphere, it was confirmed that a fluorine-free lead titanate composite oxide film was formed.

【0063】[0063]

【表13】 [Table 13]

【0064】[0064]

【発明の効果】本発明の弗素含有金属酸化物被膜の製造
方法は、金属フッ化物のみからなる水溶液を使用し、こ
の溶液が加水分解する過程で生成する微小コロイドが基
材表面にて重合することにより、膜が形成されるという
原理を利用したものである。本法の特徴として、低温で
緻密な膜が形成できる、大面積の膜形成が容易である、
一度に大量の膜付けが行える、任意形状の表面に膜形成
可能、多成分組成の被膜を形成できる、さらに、製造装
置が簡単なものとなり、経済性に富むなどが挙げられ
る。
The method for producing a fluorine-containing metal oxide film of the present invention uses an aqueous solution consisting of a metal fluoride alone, and the microcolloid produced during the hydrolysis of this solution is polymerized on the surface of the substrate. This is based on the principle that a film is formed. The feature of this method is that a dense film can be formed at a low temperature, and a large-area film can be easily formed.
It is possible to apply a large amount of film at one time, to form a film on a surface having an arbitrary shape, to form a film with a multi-component composition, and to simplify the manufacturing apparatus, which is economical.

【0065】本発明方法で得られる弗素含有金属酸化物
被膜は、透明導電膜、赤外線、紫外線の選択吸収膜、帯
電防止膜、ガスセンサ−、光触媒作用を利用した機能性
被膜、圧電体、磁性薄膜など幅広い用途に利用すること
ができる。
The fluorine-containing metal oxide film obtained by the method of the present invention is a transparent conductive film, an infrared / ultraviolet selective absorption film, an antistatic film, a gas sensor, a functional film utilizing photocatalysis, a piezoelectric material, a magnetic thin film. It can be used for a wide range of purposes.

【0066】また得られた弗素含有金属酸化物被膜は、
容易に弗素を含まない金属酸化物被膜とすることができ
る。この被膜についても前述のような用途が考えられ
る。従って、工業上価値ある方法となる。
The obtained fluorine-containing metal oxide film is
A metal oxide film containing no fluorine can be easily formed. The use as described above is also conceivable for this coating. Therefore, it is an industrially valuable method.

───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願平5−249219 (32)優先日 平5(1993)10月5日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平5−257076 (32)優先日 平5(1993)10月14日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平6−53556 (32)優先日 平6(1994)3月24日 (33)優先権主張国 日本(JP) ─────────────────────────────────────────────────── ─── Continuation of the front page (31) Priority claim number Japanese Patent Application No. 5-249219 (32) Priority date Hei 5 (1993) October 5 (33) Priority claim country Japan (JP) (31) Priority Claim Number Japanese Patent Application No. 5-257076 (32) Priority Date No. 5 (1993) October 14 (33) Country of priority claim Japan (JP) (31) Priority claim number Japanese Patent Application No. 6-53556 (32) Priority Hihei 6 (1994) March 24 (33) Priority claiming countries Japan (JP)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】加水分解する性質を有する金属フッ化物を
溶解した溶液に、基材を接触または浸漬させ、金属フッ
化物の加水分解反応による生成物を基材表面に析出させ
ることにより、弗素を含有した金属酸化物被膜を液相中
で形成することを特徴とする弗素含有金属酸化物被膜の
製造方法。
1. A substrate is brought into contact with or immersed in a solution in which a metal fluoride having a property of being hydrolyzed is dissolved, and a product of the hydrolysis reaction of the metal fluoride is deposited on the surface of the substrate to thereby remove fluorine. A method for producing a fluorine-containing metal oxide film, which comprises forming the contained metal oxide film in a liquid phase.
【請求項2】加水分解する性質を有する金属フッ化物と
して、フッ化スズ、フッ化アンチモン、フッ化チタン、
フッ化インジウム水和物、フッ化鉛、フッ化クロム水和
物、フッ化コバルト、フッ化第二鉄水和物、フッ化マン
ガン、フッ化タングステン、フッ化ニオブ、フッ化タン
タル、フッ化バナジウム、及び/又はフッ化ジルコニウ
ムを使用する請求項1記載の製造方法。
2. As a metal fluoride having a property of being hydrolyzed, tin fluoride, antimony fluoride, titanium fluoride,
Indium fluoride hydrate, lead fluoride, chromium fluoride hydrate, cobalt fluoride, ferric fluoride hydrate, manganese fluoride, tungsten fluoride, niobium fluoride, tantalum fluoride, vanadium fluoride And / or zirconium fluoride is used.
【請求項3】加水分解する性質を有する金属フッ化物を
2種以上含む溶液を使用し、そこに基材を浸漬または接
触させ、その表面に弗素を含有した2種以上の金属酸化
物からなる被膜を形成する請求項1または2に記載の製
造方法。
3. A solution containing two or more kinds of metal fluorides having a property of hydrolyzing is used, and a base material is dipped or brought into contact therewith, and the surface thereof is composed of two or more kinds of metal oxides containing fluorine. The manufacturing method according to claim 1, wherein a coating film is formed.
【請求項4】金属フッ化物として、フッ化スズ及びフッ
化アンチモンを使用し、弗素含有アンチモン含有酸化ス
ズ被膜を形成する請求項3に記載の製造方法。
4. The method according to claim 3, wherein tin fluoride and antimony fluoride are used as the metal fluoride to form a fluorine-containing antimony-containing tin oxide film.
【請求項5】請求項1〜4いずれかの項に記載の方法で
得られた弗素含有金属酸化物被膜を焼成することによ
り、弗素を除去し、弗素を含まない金属酸化物被膜とす
ることを特徴とする金属酸化物被膜の製造方法。
5. A fluorine-containing metal oxide coating obtained by the method according to claim 1 is baked to remove fluorine to obtain a fluorine-free metal oxide coating. A method for producing a metal oxide film, comprising:
JP10525094A 1993-07-12 1994-05-19 Fluorine-containing metal oxide film and method for producing metal oxide film Expired - Fee Related JP3694901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10525094A JP3694901B2 (en) 1993-07-12 1994-05-19 Fluorine-containing metal oxide film and method for producing metal oxide film

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
JP17143093 1993-07-12
JP17514693 1993-07-15
JP20499293 1993-08-19
JP24921993 1993-10-05
JP25707693 1993-10-14
JP5-249219 1994-03-24
JP5-204992 1994-03-24
JP5-171430 1994-03-24
JP5-175146 1994-03-24
JP6-53556 1994-03-24
JP5-257076 1994-03-24
JP5355694 1994-03-24
JP10525094A JP3694901B2 (en) 1993-07-12 1994-05-19 Fluorine-containing metal oxide film and method for producing metal oxide film

Publications (2)

Publication Number Publication Date
JPH07309638A true JPH07309638A (en) 1995-11-28
JP3694901B2 JP3694901B2 (en) 2005-09-14

Family

ID=27564829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10525094A Expired - Fee Related JP3694901B2 (en) 1993-07-12 1994-05-19 Fluorine-containing metal oxide film and method for producing metal oxide film

Country Status (1)

Country Link
JP (1) JP3694901B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113853451A (en) * 2020-06-30 2021-12-28 松下知识产权经营株式会社 Laminated film structure and method for manufacturing laminated film structure
US20220259479A1 (en) * 2021-01-21 2022-08-18 The Regents Of The University Of Michigan Salt hydrate compositions for thermal energy storage systems
WO2022270253A1 (en) * 2021-06-24 2022-12-29 奥野製薬工業株式会社 Plating film and plating film production method
CN116615575A (en) * 2021-06-24 2023-08-18 奥野制药工业株式会社 Plating film and method for producing plating film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113853451A (en) * 2020-06-30 2021-12-28 松下知识产权经营株式会社 Laminated film structure and method for manufacturing laminated film structure
CN113853451B (en) * 2020-06-30 2023-05-23 松下知识产权经营株式会社 Laminated film structure and method for manufacturing laminated film structure
US11825608B2 (en) 2020-06-30 2023-11-21 Panasonic Intellectual Property Management Co., Ltd. Laminated film structure and method for manufacturing laminated film structure
EP4137606A4 (en) * 2020-06-30 2024-01-10 Panasonic Ip Man Co Ltd Laminated film structure and method for manufacturing laminated film structure
US20220259479A1 (en) * 2021-01-21 2022-08-18 The Regents Of The University Of Michigan Salt hydrate compositions for thermal energy storage systems
WO2022270253A1 (en) * 2021-06-24 2022-12-29 奥野製薬工業株式会社 Plating film and plating film production method
JP7215705B1 (en) * 2021-06-24 2023-01-31 奥野製薬工業株式会社 PLATING FILM AND METHOD FOR MANUFACTURING PLATING FILM
CN116615575A (en) * 2021-06-24 2023-08-18 奥野制药工业株式会社 Plating film and method for producing plating film
US11912612B2 (en) 2021-06-24 2024-02-27 Okuno Chemical Industries Co., Ltd. Plating film and plating film production method
CN116615575B (en) * 2021-06-24 2024-04-30 奥野制药工业株式会社 Plating film and method for producing plating film

Also Published As

Publication number Publication date
JP3694901B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
US4373013A (en) Electroconductive powder and process for production thereof
US6589906B2 (en) Methods for producing oxides or composites thereof
JPS59213643A (en) Method of setting magnesium fluoride layer on substrate
JP2541269B2 (en) Method of manufacturing oxide thin film
EP0294558B1 (en) Method for treating stainless steel surface by high temperature oxidation
JPH07309638A (en) Fluorine-containing metal oxide film and production of metal oxide film
JPH09228062A (en) Surface treatment of metal
JP2959927B2 (en) White conductive powder and method for producing the same
US3305389A (en) Process of coating lead with tin
JP3372435B2 (en) Method for producing titanium oxide film
US2762725A (en) Method of producing a metal film on a refractory base having a metal oxide film thereon
JP3115103B2 (en) Industrial material with fluorinated passivation film
US4569699A (en) Method for providing a corrosion resistant coating for magnesium containing materials
JP2872826B2 (en) Manufacturing method of oxide thin film
JPS639015B2 (en)
JPH0586605B2 (en)
JPH03285821A (en) Production of titanium oxide coating film
JPH04132636A (en) Formation of coating film of titanium oxide
JP2000272921A (en) Production of powdery titanium oxide and formation of titanium oxide coat
JP3191345B2 (en) Method of forming composite oxide thin film
JPH11147717A (en) Production of titanium oxide coating film
SU815074A1 (en) Method of producing indium coatings
JPS59141441A (en) Method for producing glass coated with titanium oxide film
JP4122117B2 (en) Method for producing amorphous tin oxide sol
JPH0222148B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20041005

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050607

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees