JPH07309320A - One-piece type heat-resistant polyester bottle and manufacture thereof - Google Patents

One-piece type heat-resistant polyester bottle and manufacture thereof

Info

Publication number
JPH07309320A
JPH07309320A JP10026694A JP10026694A JPH07309320A JP H07309320 A JPH07309320 A JP H07309320A JP 10026694 A JP10026694 A JP 10026694A JP 10026694 A JP10026694 A JP 10026694A JP H07309320 A JPH07309320 A JP H07309320A
Authority
JP
Japan
Prior art keywords
heat
bottle
crystallinity
panel
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10026694A
Other languages
Japanese (ja)
Other versions
JP2998559B2 (en
Inventor
Setsuko Nakamaki
勢津子 中牧
Kichiji Maruhashi
吉次 丸橋
Nobuyuki Kato
信行 加藤
Kenji Matsuno
建治 松野
Hideo Kurashima
秀夫 倉島
Hiroo Ikegami
裕夫 池上
Kimio Takeuchi
公生 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10026694A priority Critical patent/JP2998559B2/en
Publication of JPH07309320A publication Critical patent/JPH07309320A/en
Application granted granted Critical
Publication of JP2998559B2 publication Critical patent/JP2998559B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0223Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape

Abstract

PURPOSE:To improve the bottom strength by specifying a thickness of a bottom center, a birefringence index in a peripheral-thickness direction and a crystallization degree in a heat-resistant polyester bottle formed by draw-blow molding of thermoplastic polyester with a panel-rib structure for vacuum absorbing formed at a body. CONSTITUTION:In a heat-resistant polyester bottle formed by draw-blow molding of thermoplastic polyester and with a panel-rib structure for vacuum for absorbing formed on body parts 3, 4, a bottom 5 is equipped with a bottom center 12 and a peripheral contact part 11 extending outward in an axial direction in a self-standing structure. The bottle is made thin so that thickness is 0.5 to 2 times the thickness of a body center except a gate cut part of the bottom center 12, while molecules are oriented so that a birefringence index in a peripheral-thickness direction is 0.070 or more. In addition, the bottom center 12 has a crystallization degree 0.8 to 1.4 times that of the body center, and a panel 10 is also formed with a crystallization degree equal to that of the bottom center 12 or with a larger degree inside, thereby obtaining a container excellent in bottom strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、底部強度並びに耐熱性
と減圧吸収性と自立安定性とに優れたワンピースタイプ
の耐熱ポリエステルボトル及びその製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a one-piece type heat-resistant polyester bottle excellent in bottom strength, heat resistance, reduced-pressure absorption and self-standing stability, and a method for producing the same.

【0002】[0002]

【従来の技術】ポリエチレンテレフタレート(PET)
の如き熱可塑性ポリエステルの二軸延伸ブロー成形容器
は、優れた透明性や表面光沢を有すると共に、瓶に必要
な耐衝撃性、剛性、ガスバリヤー性をも有しており、各
種液体の瓶詰容器、即ちボトルとして利用されている。
2. Description of the Related Art Polyethylene terephthalate (PET)
Biaxially stretched blow molded containers of thermoplastic polyester such as those have excellent transparency and surface gloss, as well as the impact resistance, rigidity and gas barrier properties required for bottles, and are bottled containers for various liquids. That is, it is used as a bottle.

【0003】この瓶詰製品において、内容物の保存性を
高めるための包装技法として、熱間充填技法が知られて
いる。しかしながら、ポリエステル製ボトルは耐熱性に
劣るという欠点があり、これを改良するため、熱間充填
時における熱変形を防止するため、二軸延伸ブロー容器
を成形後に熱固定(ヒート・セット)することや、熱間
充填後における減圧変形を防止するため、胴部に減圧吸
収用のパネル−リブ構造を形成することが広く行われて
いる。
In this bottled product, a hot filling technique is known as a packaging technique for improving the storability of the contents. However, polyester bottles have the drawback of being inferior in heat resistance. To improve this, in order to prevent thermal deformation during hot filling, heat set (heat set) after molding the biaxially stretched blow container. In addition, in order to prevent deformation under reduced pressure after hot filling, it is widely practiced to form a panel-rib structure for absorbing reduced pressure on the body.

【0004】また、ボトルに自立性を持たせるために、
ボトルの丸い底部に軸方向外方及び径方向外方に突出し
た脚部を設けることも広く行われているが、この底部中
央部が未延伸乃至低延伸の状態で残留するため、ボトル
底部が落下衝撃等に弱い構造となっている。
In order to make the bottle self-supporting,
It is also widely practiced to provide legs protruding axially outward and radially outward to the round bottom of the bottle, but since the center of this bottom remains in an unstretched or low stretched state, the bottle bottom is It has a structure that is vulnerable to drop impacts.

【0005】特開平5−42536号公報には、有底の
一次成形体を金型内で半球状の底部を有する二次成形体
に延伸ブロー成形し、この二次成形体の底部のみを加熱
収縮させた後、更にこの底部を自立性が得られる形状に
二軸延伸ブロー成形することが記載されている。この方
法では、底周辺部の厚みが0.36mmであるのに対し
て、底中心部近傍の厚みが1.16mmであったことも
記載されている。
In JP-A-5-42536, a bottomed primary molded body is stretch blow molded into a secondary molded body having a hemispherical bottom in a mold, and only the bottom of the secondary molded body is heated. It is described that after shrinking, the bottom portion is further biaxially stretch blow molded into a shape capable of obtaining self-supporting property. In this method, it is also described that the thickness of the peripheral portion of the bottom was 0.36 mm, while the thickness of the central portion of the bottom was 1.16 mm.

【0006】[0006]

【発明が解決しようとする課題】即ち、従来の延伸ブロ
ー成形法によるワンピース型自立性ポリエステルボトル
は、底部中央部がどうしても未延伸乃至低延伸の状態で
残留し、容器の自立性のために半球状に比べて複雑な凹
凸構造を形成したワンピース構造のものでは、各部の延
伸倍率はより複雑に異なってくるため、この傾向はより
顕著なものとなってくる。このため、たとえ耐熱性の点
で問題のないボトルであっても、落下衝撃が底部に加え
られると、ボトル底部の割れ等を生じるのが問題であ
る。
That is, in the conventional one-piece type self-supporting polyester bottle produced by the stretch blow molding method, the center part of the bottom remains unstretched or low stretched. In the one-piece structure in which a more complicated uneven structure is formed than in the shape, this tendency becomes more remarkable because the draw ratio of each part varies more complicatedly. For this reason, even if the bottle has no problem in terms of heat resistance, it is a problem that when the drop impact is applied to the bottom, the bottom of the bottle is cracked.

【0007】また、耐熱ボトルの場合、熱間充填後の容
積縮小に伴う減圧を胴部のパネルが内側にパネリング変
形することで減圧を吸収するが、熱間充填すると、一
端、充填時にパネルが出る現象が生じると、内側へのパ
ネリング変形が機能しなくなるため、胴部のパネルが不
斉に変形するという事態を生じる。公知の延伸ブロー・
熱固定法では、ボトル内外の延伸配向の程度も内側が大
きく高温の金型を用いるため熱固定の程度(配向結晶化
の程度)もボトル外側が大きいので、内容物熱間充填時
にパネル部が出るという問題がある。
Further, in the case of a heat-resistant bottle, the reduced pressure due to the volume reduction after hot filling absorbs the reduced pressure by paneling deformation of the body panel to the inside. When the phenomenon occurs, the paneling deformation to the inside does not work, and the panel of the body part deforms asymmetrically. Known stretch blow
In the heat setting method, the degree of stretch orientation inside and outside the bottle is large, and since a high temperature mold is used, the degree of heat setting (degree of oriented crystallization) is also outside the bottle. There is a problem of going out.

【0008】従って、本発明の目的は、底部の機械的強
度及び耐熱性と減圧吸収性と自立安定性との組み合わせ
に優れており、内容物を熱間充填することが可能なワン
ピース耐熱ポリエステルボトル及びその製法を提供する
にある。
Therefore, the object of the present invention is excellent in the combination of the mechanical strength and heat resistance of the bottom, the vacuum absorption and the self-sustaining stability, and the one-piece heat-resistant polyester bottle capable of hot filling the contents. And to provide a manufacturing method thereof.

【0009】[0009]

【問題点を解決するための手段】本発明によれば、熱可
塑性ポリエステルのプリフォームを、延伸温度におい
て、少なくとも外周及び底が拘束されていない条件下に
延伸ブロー成形して、首部、滑らかな胴部及び底部を備
えた二次成形品に成形する工程と、該二次成形品を加熱
して胴部及び底部を熱固定すると共に、その収縮を許容
する工程と、熱処理工程での成形品をブロー成形型中で
ブロー成形して、前記底部を底中心と底中心よりも軸方
向外方に延びている周辺接地部とから成る自立性底形状
に且つ前記胴部を減圧吸収用のパネル−リブ構造に最終
成形する工程とから成ることを特徴とする底部強度並び
に耐熱性と減圧吸収性と自立安定性との組み合わせに優
れたワンピース型耐熱ポリエステルボトルの製造方法が
提供される。
According to the present invention, a thermoplastic polyester preform is stretch blow-molded at a stretching temperature under conditions where at least the outer periphery and the bottom are not constrained to give a smooth neck and smooth surface. A step of molding into a secondary molded product having a body and a bottom, a step of heating the secondary molded product to heat-fix the body and the bottom, permitting shrinkage thereof, and a molded product in a heat treatment step. Is blow-molded in a blow-molding die, and the bottom portion has a self-supporting bottom shape including a bottom center and a peripheral grounding portion extending axially outward from the bottom center, and the body portion is a panel for absorbing reduced pressure. A method for producing a one-piece heat-resistant polyester bottle, which is excellent in the combination of bottom strength, heat resistance, reduced-pressure absorption and self-standing stability, characterized in that it comprises a step of final forming into a rib structure.

【0010】熱可塑性ポリエステルの延伸ブロー成形で
形成され、首部、胴部及び底部を備え且つ前記胴部には
減圧吸収用のパネル−リブ構造が形成されている耐熱ポ
リエステルボトルにおいて、底部には底部中央部と底部
中央部よりも軸方向外方に延びている周辺接地部とがワ
ンピースの自立構造に形成されており、底部中央部は、
ゲート切断部を除いて、胴部中央部の肉厚の0.5乃至
2倍、特に0.55乃至1.50倍の厚みとなるように
薄肉化されていると共に、周方向−厚さ方向の複屈折率
が0.070以上、特に0.100以上となるように分
子配向されており、底部中央部は胴部中央部の結晶化度
の0.8乃至1.4倍、特に0.8乃至1.3倍の結晶
化度を有し且つパネル部の内側と外側がほぼ同じかもし
くは内側の方が大きい結晶化度を有することを特徴とす
る底部強度並びに耐熱性と減圧吸収性と自立安定性との
組み合わせに優れたワンピース型耐熱ポリエステルボト
ルが提供される。因みに、パネル部において内側の結晶
化度が大きいということは、内側のヒートセット効果が
大きく、熱収縮しにくいことを示す。したがって、パネ
ル部は外に出ないことになる。
A heat-resistant polyester bottle formed by stretch blow molding of thermoplastic polyester, having a neck portion, a body portion and a bottom portion, and having a panel-rib structure for absorbing reduced pressure in the body portion, wherein the bottom portion is the bottom portion. The center part and the peripheral grounding part that extends axially outward from the center part of the bottom part are formed in a one-piece self-supporting structure.
Except for the gate cut portion, the thickness is reduced to 0.5 to 2 times, particularly 0.55 to 1.50 times the thickness of the central portion of the body portion, and the thickness is in the circumferential direction-thickness direction. Has a birefringence of 0.070 or more, particularly 0.100 or more, and the center of the bottom has a crystallinity of 0.8 to 1.4 times the crystallinity of the center of the body. Bottom strength, heat resistance, and reduced pressure absorbency, characterized by having a crystallinity of 8 to 1.3 times and a crystallinity inside or outside of the panel portion being substantially the same or larger inside. Provided is a one-piece heat-resistant polyester bottle that is excellent in combination with self-sustaining stability. By the way, the fact that the crystallinity on the inside of the panel portion is large means that the heat setting effect on the inside is large and the heat shrinkage is difficult. Therefore, the panel portion does not go out.

【0011】ゲート切断部を除く底部中央部は35%以
上、特に37%以上の結晶化度を有するのがよい。
The central portion of the bottom excluding the gate cut portion preferably has a crystallinity of 35% or more, particularly 37% or more.

【0012】[0012]

【作用】本発明のワンピース型耐熱ポリエステルボトル
の製造では、熱可塑性ポリエステルのプリフォームを、
延伸温度において、少なくとも外周及び底が拘束されて
いない条件下に延伸ブロー(フリーブロー)成形して、
首部、滑らかな胴部及び底部を備えた二次成形品に成形
する。このフリーブローにより、底部も全く未拘束状態
で延伸されるので、胴部と同様に薄肉化され且つ分子配
向される。
In the production of the one-piece type heat-resistant polyester bottle of the present invention, a thermoplastic polyester preform is used.
At the stretching temperature, stretch blow molding (free blow) molding is performed under conditions where at least the outer periphery and the bottom are not constrained,
It is molded into a secondary molding with a neck, a smooth body and a bottom. By this free-blowing, the bottom portion is also stretched in an unrestrained state, so that it is thinned and molecularly oriented in the same manner as the body portion.

【0013】次いで、上記二次成形品を加熱して胴部及
び底部を熱固定すると共に、これらを自由収縮させる。
この熱処理により、胴部及び底部は、器壁の残留歪みが
緩和されると共に、器壁ポリエステルの配向結晶化が進
行する。この際、胴部は滑らかな状態で延伸ブローされ
ており、底部も延伸ブローされており、しかもこの状態
で熱処理と歪みの緩和とを受けるので、器壁の配向結晶
化は極めて一様なものとなっている。
Then, the secondary molded product is heated to heat-fix the body and the bottom and to shrink them freely.
By this heat treatment, in the body and the bottom, the residual strain of the vessel wall is relaxed and the oriented crystallization of the vessel wall polyester proceeds. At this time, the body is stretch-blown in a smooth state, the bottom is also stretch-blown, and in this state, heat treatment and strain relaxation are performed, so that the oriented crystallization of the vessel wall is extremely uniform. Has become.

【0014】最後に、熱処理工程での成形品をブロー成
形型中でブロー成形して、前記丸底部を底部中央部と底
部中央部よりも軸方向外方に延びている周辺接地部とか
ら成る自立性底形状に、胴部を減圧吸収性のパネル−リ
ブ構造に最終成形する。勿論、この最終ブロー成形工程
で用いる金型は、最終容器の自立底形状及びパネル−リ
ブの減圧吸収構造と一致するものでなければならない。
この最終ブロー成形工程で、容器底部に自立性と、容器
胴部に減圧吸収性とを付与することができる。
Finally, the molded product in the heat treatment step is blow-molded in a blow molding die, and the round bottom part is composed of a central part of the bottom part and a peripheral ground part extending axially outward from the central part of the bottom part. The body is finally formed into a self-supporting bottom shape into a vacuum-absorbent panel-rib structure. Of course, the mold used in this final blow molding process must match the free-standing bottom shape of the final container and the reduced pressure absorption structure of the panel-rib.
In this final blow molding step, it is possible to impart self-supporting property to the bottom of the container and absorb the reduced pressure to the body part of the container.

【0015】本発明では、上述したフリーブロー成形、
熱処理及び最終ブロー成形の組み合わせにより、底部中
央部を、ゲート切断部を除いて、胴部中央部の肉厚の
0.5乃至2倍、特に0.55乃至1.5倍の厚みとな
るように薄肉化し且つ周方向−厚さ方向の複屈折率が
0.070以上となるように分子配向させしかも胴部中
央部の結晶化度の0.8乃至1.4倍の結晶化度となる
ように配向結晶化させることができ、このような底部の
薄肉化及び配向結晶化を達成したことが本発明の顕著な
特徴である。
In the present invention, the above-mentioned free blow molding,
Through the combination of heat treatment and final blow molding, the thickness at the center of the bottom is 0.5 to 2 times, especially 0.55 to 1.5 times the thickness of the center of the body, excluding the gate cutting part. Is thinned and molecularly oriented so that the birefringence index in the circumferential direction and the thickness direction is 0.070 or more, and the crystallinity is 0.8 to 1.4 times the crystallinity of the central portion of the body. It is a remarkable feature of the present invention that the oriented crystallization can be performed as described above, and such thinning of the bottom portion and oriented crystallization are achieved.

【0016】この配向結晶化された底部に、底部中央部
と底部中央部よりも軸方向外方に延びている周辺接地部
とを形成させたことにより、自立安定性が得られるばか
りでなく、一様な配向結晶化により、底部が耐衝撃性に
優れたものとなり、更に底部の自立構造の熱変形も防止
されて、熱間充填後にも優れた自立安定性が維持される
ことになる。
By forming the central portion of the bottom portion and the peripheral ground portion extending axially outward from the central portion of the bottom portion on the oriented and crystallized bottom portion, not only self-sustaining stability is obtained, but also Due to the uniform oriented crystallization, the bottom portion has excellent impact resistance, and further, thermal deformation of the self-supporting structure of the bottom portion is prevented, and excellent self-sustaining stability is maintained even after hot filling.

【0017】また、一様に配向結晶化された胴部に、最
終ブロー成形工程で、パネル部とリブとから成る減圧吸
収構造を形成させることにより、パネル部の内側と外側
の結晶化度がほぼ同じかもしくは内側の方が大きい範囲
となり、熱間充填時の偏った熱変形が防止されるので、
冷却に伴う減圧発生時にパネルがパネリング変形を有効
に生じて、容器の不斉変形を防止されることになる。
Further, in the final blow molding step, the reduced pressure absorbing structure composed of the panel portion and the ribs is formed on the body portion which is uniformly oriented and crystallized, so that the crystallinity inside and outside the panel portion can be improved. Since it is almost the same or the inside is larger, uneven heat deformation during hot filling is prevented.
When the reduced pressure occurs due to cooling, the panel effectively causes paneling deformation, which prevents asymmetric deformation of the container.

【0018】尚、本明細書において、複屈折率とは、後
述する方法で測定されるものをいい、一方結晶化度と
は、下記式(1) 式中、ρ :測定密度(g/cm-3) ρam:非晶密度(1.335 g/cm-3) ρc :結晶密度(1.455 g/cm-3) 密度測定は、n−ヘプタン−四塩化炭素系密度勾配管
(株式会社池田理化)を作成し、20℃の条件下で行
う。 により求められる値をいう。
In the present specification, the birefringence means the value measured by the method described later, while the crystallinity means the following formula (1). In the formula, ρ: measured density (g / cm -3 ) ρam: amorphous density (1.335 g / cm -3 ) ρc: crystal density (1.455 g / cm -3 ) Density measurement is n-heptane-carbon tetrachloride A system density gradient tube (Ikeda Rika Co., Ltd.) is prepared and is performed at 20 ° C. The value obtained by

【0019】本発明のポリエステルボトルの構造の一例
を説明するための図1(側面断面図)及び図2(底面
図)において、このボトル1は、首部2、首部に錐台乃
至回転体状の上胴部3を介して接続された筒状の下胴部
4及び下胴部の下端に接続された底部5から成ってい
る。首部2にはキャップ締結用のネジ部6及びサポート
リング7が形成されている。下胴部4と上胴部3との間
には、熱時及び冷却時に緩衝作用を行う凹状ビード部8
が形成されており、下胴部4と底部5との間にも、熱時
及び冷却時に緩衝作用を行う段差部9が形成されてい
る。
In FIG. 1 (side sectional view) and FIG. 2 (bottom view) for explaining an example of the structure of the polyester bottle of the present invention, the bottle 1 has a neck portion 2, and a frustum or a rotary body in the neck portion. It is composed of a tubular lower body portion 4 connected through the upper body portion 3 and a bottom portion 5 connected to the lower end of the lower body portion. A screw portion 6 for fastening a cap and a support ring 7 are formed on the neck portion 2. Between the lower body portion 4 and the upper body portion 3, a concave bead portion 8 that cushions during heating and cooling is provided.
Is formed, and a stepped portion 9 is formed between the lower body portion 4 and the bottom portion 5 to provide a cushioning function during heating and cooling.

【0020】下胴部4には、ほぼ長方形のパネル部10
とこのパネル部に対する枠体としてのリブ部11とが周
方向に配置されて、減圧吸収機構を形成している。即
ち、このパネル部10が内方に向けて後退するパネリン
グ変形することにより、減圧吸収を行えるようになって
いる。
The lower body portion 4 has a substantially rectangular panel portion 10
The rib portion 11 as a frame body for the panel portion is arranged in the circumferential direction to form a reduced pressure absorbing mechanism. That is, the panel portion 10 is deformed by the paneling in which the panel portion 10 is retracted inward so that the reduced pressure can be absorbed.

【0021】底部5は底部中央部12と底部中央部より
も軸方向外方に延びている周辺接地部13とから成って
いる。この具体例において、底部5は、リング状の周辺
接地部13とドーム状に内向けにくぼんだ底部中央部1
2とからなっている。底部中央部10は周辺接地部11
よりも高さHだけ上側に凹んでおり、この高さが保たれ
ている限り、ボトルの自立安定性が維持される。
The bottom portion 5 comprises a bottom central portion 12 and a peripheral grounding portion 13 extending axially outwardly from the bottom central portion. In this specific example, the bottom portion 5 comprises a ring-shaped peripheral grounding portion 13 and a dome-shaped inwardly recessed bottom central portion 1
It consists of 2. Bottom central part 10 is a peripheral grounding part 11
It is recessed upward by a height H, and as long as this height is maintained, the self-sustaining stability of the bottle is maintained.

【0022】図1及び図2には、ボトル器壁の厚みのサ
ンプル位置も示されており、底部中央部のほぼ中心部
ア、底部中央部の周辺部ウ及びこれらの中間部イ並びに
胴部中間部エがあり、これらの位置は後述する例のサン
プル位置である。後述する例の表1及び2を参照された
い。本発明のボトルでは、最も厚肉となりやすい底部中
央部アでも、ゲート切断部を除いて、最も薄肉となりや
すい胴部中央部エの肉厚の0.5乃至2倍の厚みとなる
ように薄肉化されているという驚くべき事実が明らかと
なる。尚、ゲート切断部を厚みの測定の対象外としてい
るのは、延伸ブロー成形用プリフォームの底中心には、
ゲート(突起部)が必ず形成され、この部分は、たとえ
切り落とされた場合にも、幾分肉厚の状態で残留するこ
とによる。
FIGS. 1 and 2 also show a sample position of the thickness of the bottle container wall. The center part of the bottom part is approximately the center part, the center part of the bottom part is the peripheral part c, and the middle part thereof and the body part. There are intermediate portions D, and these positions are sample positions in the example described later. See Tables 1 and 2 in the examples below. In the bottle of the present invention, the thickness of the bottom center part a, which is most likely to be thick, is 0.5 to 2 times the thickness of the body center part d, which is most likely to be thin, except for the gate cutting part. The surprising fact that it has been realized becomes clear. In addition, what is excluded from the measurement of the thickness of the gate cutting portion, the bottom center of the stretch blow molding preform,
This is because a gate (protrusion) is always formed, and even if it is cut off, this portion remains in a slightly thick state.

【0023】また、表1および2にはボトルの器壁位置
と結晶化度との関係及び底部中央部の複屈折率も示され
ており、最も未配向の状態で残留しやすい底部中央部で
も、胴部とほぼ同様に0.07以上の複屈折率となるよ
うに高度に配向されているという事実が明らかとなる。
この底部中央部における高度の分子配向は、底部中央部
が延伸ブロー成形の際高度に薄肉化されることによるも
のであり、このように高度の分子配向状態で熱固定を行
うことにより、底部中央部に、胴部中央部の結晶化度の
0.8乃至1.4倍の結晶化度、即ち配向結晶を付与す
ることができる。
Tables 1 and 2 also show the relationship between the position of the wall of the bottle and the crystallinity and the birefringence of the center of the bottom. Even in the center of the bottom where the most unoriented state is likely to remain. The fact that it is highly oriented so as to have a birefringence of 0.07 or more becomes almost the same as that of the body.
The high degree of molecular orientation in the center of the bottom is due to the fact that the center of the bottom is highly thinned during stretch blow molding. A crystallinity of 0.8 to 1.4 times the crystallinity of the central portion of the body, that is, an oriented crystal can be imparted to the portion.

【0024】更に後述する例を参照すると、胴部のパネ
ル部10の結晶化度と、胴部のリブ部11の結晶化度と
がほぼ同じ値にいじされているという意外の事実も明ら
かとなる。
Further referring to the example described later, it is also clear that the crystallinity of the panel portion 10 of the body portion and the crystallinity of the rib portion 11 of the body portion are substantially the same. Become.

【0025】本発明において、底部中央部を、ゲート切
断部を除いて、胴部中央部の肉厚の0.5乃至2倍、特
に0.55乃至1.5倍の厚みとなるように薄肉化する
ことは特に重要であり、肉厚が上記範囲よりも薄いとき
には、底部の機械的強度が不足になり、一方上記範囲よ
りも厚いときには、底部の配向の程度が不足となるた
め、耐衝撃性が不満足な結果となる。同様に、耐衝撃性
の点で、底部中央部は周方向−厚さ方向の複屈折率が
0.070以上となるように分子配向されていることも
重要である。また、底部中央部は胴部中央部の結晶化度
の0.8乃至1.4倍、特に0.8乃至1.3倍の結晶
化度となるように配向結晶化されていることも重要であ
り、上記範囲よりも少ないときには、耐熱性、特に熱間
充填後における自立安定性の点で不十分であり、一方上
記範囲よりも大きいときには、底部の形状発現性の点で
不十分である。
In the present invention, the thickness of the central portion of the bottom is 0.5 to 2 times, especially 0.55 to 1.5 times the thickness of the central portion of the body, excluding the gate cutting portion. When the wall thickness is thinner than the above range, the mechanical strength of the bottom part becomes insufficient.On the other hand, when the wall thickness is thicker than the above range, the orientation of the bottom part becomes insufficient. The result is unsatisfactory. Similarly, from the viewpoint of impact resistance, it is also important that the bottom central portion be molecularly oriented so that the birefringence index in the circumferential direction and the thickness direction is 0.070 or more. It is also important that the central portion of the bottom portion is oriented and crystallized so as to have a crystallinity of 0.8 to 1.4 times, particularly 0.8 to 1.3 times as high as that of the central portion of the body. When it is less than the above range, it is insufficient in terms of heat resistance, especially in self-standing stability after hot filling, while when it is more than the above range, it is insufficient in terms of shape development of the bottom portion. .

【0026】ポリエステルプリフォームの延伸ブロー成
形に際して、金型及び延伸棒を使用すると、金型及び延
伸棒で支持される底部中心部は未延伸、即ち未配向の状
態で残留し、且つこれらに隣接する部分も低配向の状態
で残留し、耐衝撃性及び耐熱性の点で不満足となる。ま
た、胴のパネル部とリブ部とで、結晶化度に実質上の相
違があると、熱間充填時に熱変形を生じやすい。これら
の欠点は、本発明では、問題なく解消されている。
When a mold and a stretching rod are used in the stretch blow molding of the polyester preform, the center of the bottom portion supported by the mold and the stretching rod remains unstretched, that is, unoriented, and adjacent to them. The portions to be left also remain in a low orientation state, which is unsatisfactory in terms of impact resistance and heat resistance. Further, if there is a substantial difference in crystallinity between the panel portion and the rib portion of the body, thermal deformation is likely to occur during hot filling. In the present invention, these drawbacks are eliminated without any problem.

【0027】本発明によれば、フリーブロー成形、熱処
理及び最終ブロー成形の組み合わせにより、自立性のワ
ンピース型底形状としながら、底部中央部の薄肉化、高
度の配向結晶化とを行うことが可能となり、またパネル
−リブの減圧吸収構造を導入しながら、パネル部の肉厚
方向の配向結晶化度を同じレベルもしくは内側を大きく
維持することができる。このため、内容物を熱間充填
し、或いは次いで冷却したときの熱変形や不斉変形を防
止することができ、更に底部の耐衝撃性や自立安定性と
熱間充填時の自立安定保持性を向上させることができ
る。また、容器底部を薄肉化しながら、強度及び耐熱性
を向上させたため、容器の目付量を少なくし、これによ
り、容器コストの低減と軽量化とが可能となる。
According to the present invention, by combining free blow molding, heat treatment and final blow molding, it is possible to achieve a self-supporting one-piece bottom shape while reducing the thickness of the center of the bottom and highly oriented crystallization. Further, while introducing the reduced-pressure absorption structure of the panel-rib, the oriented crystallinity in the thickness direction of the panel portion can be maintained at the same level or large inside. Therefore, it is possible to prevent thermal deformation and asymmetrical deformation when the contents are hot-filled or subsequently cooled, and further, the impact resistance and self-sustaining stability of the bottom and the self-sustaining stable retention during hot-filling are possible. Can be improved. Further, since the strength and heat resistance are improved while reducing the thickness of the bottom of the container, the weight of the container is reduced, which makes it possible to reduce the cost and weight of the container.

【0028】[0028]

【発明の好適態様】本発明に用いるプリフォームを示す
図4において、このプリフォーム20は、首部21、胴
部22及び閉塞底部23から成っており、首部21に
は、ネジ等の蓋締結機構24及び容器保持のためのサポ
ートリング25等が設けられている。
BEST MODE FOR CARRYING OUT THE INVENTION Referring to FIG. 4 showing a preform used in the present invention, the preform 20 comprises a neck portion 21, a body portion 22 and a closed bottom portion 23. The neck portion 21 has a lid fastening mechanism such as a screw. 24 and a support ring 25 for holding the container are provided.

【0029】本発明に用いる熱可塑性ポリエステルはエ
チレンテレフタレート系熱可塑性ポリエステルを主体と
するであるのがよく、エステル反復単位の大部分、一般
に70モル%以上、特に80モル%以上をエチレンテレ
フタレート単位が占めるものであり、ガラス転移点(T
g)が50乃至90℃、特に55乃至80℃で、融点
(Tm)が200乃至275℃、特に220乃至270
℃にある熱可塑性ポリエステルが好適である。
The thermoplastic polyester used in the present invention is preferably composed mainly of an ethylene terephthalate type thermoplastic polyester, and most of the ester repeating units, generally 70 mol% or more, particularly 80 mol% or more, are ethylene terephthalate units. Glass transition point (T
g) 50 to 90 ° C., especially 55 to 80 ° C., and melting point (Tm) 200 to 275 ° C., especially 220 to 270.
Thermoplastic polyesters at ° C are preferred.

【0030】ホモポリエチレンテレフタレートが耐熱性
の点で好適であるが、エチレンテレフタレート単位以外
のエステル単位の少量を含む共重合ポリエステルやポリ
エチレンテレフタレートを主体とするポリエステルブレ
ンド物も使用し得る。
Although homopolyethylene terephthalate is preferable in terms of heat resistance, a copolymerized polyester containing a small amount of ester units other than ethylene terephthalate units and a polyester blend containing polyethylene terephthalate as a main component can also be used.

【0031】テレフタル酸以外の二塩基酸としては、イ
ソフタル酸、フタル酸、ナフタレンジカルボン酸等の芳
香族ジカルボン酸;シクロヘキサンジカルボン酸等の脂
環族ジカルボン酸;コハク酸、アジピン酸、セバチン
酸、ドデカンジオン酸等の脂肪族ジカルボン酸;の1種
又は2種以上の組合せが挙げられ、エチレングリコール
以外のジオール成分としては、プロピレングリコール、
1,4−ブタンジオール、ジエチレングリコール、1,
6−ヘキシレングリコール、シクロヘキサンジメタノー
ル、ビスフェノールAのエチレンオキサイド付加物等の
1種又は2種以上が挙げられる。
Dibasic acids other than terephthalic acid include aromatic dicarboxylic acids such as isophthalic acid, phthalic acid and naphthalenedicarboxylic acid; alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; succinic acid, adipic acid, sebacic acid and dodecane. Aliphatic dicarboxylic acids such as dionic acid; and combinations of two or more thereof. As the diol component other than ethylene glycol, propylene glycol,
1,4-butanediol, diethylene glycol, 1,
One or more of 6-hexylene glycol, cyclohexanedimethanol, and an ethylene oxide adduct of bisphenol A can be used.

【0032】用いるエチレンテレフタレート系熱可塑性
ポリエステルは、少なくともフィルムを形成するに足る
分子量を有するべきであり、用途に応じて、射出グレー
ド或いは押出グレードのものが使用される。その固有粘
度(I.V.)は一般的に0.6乃至1.4dl/g、
特に0.63乃至1.3dl/gの範囲にあるものが望
ましい。
The ethylene terephthalate type thermoplastic polyester used should have at least a molecular weight sufficient to form a film, and an injection grade or an extrusion grade is used depending on the application. Its intrinsic viscosity (IV) is generally 0.6 to 1.4 dl / g,
In particular, those in the range of 0.63 to 1.3 dl / g are desirable.

【0033】ポリエステルのプリフォームへの成形に
は、射出成形を用いることができる。即ち、プラスチッ
クを冷却された射出型中に溶融射出して、過冷却された
非晶質のプラスチックプリフォームに成形する。
Injection molding can be used for molding the polyester into a preform. That is, plastic is melt-injected into a cooled injection mold to form a supercooled amorphous plastic preform.

【0034】射出機としては、射出プランジャーまたは
スクリューを備えたそれ自体公知のものが使用され、ノ
ズル、スプルー、ゲートを通して前記ポリエステルを射
出型中に射出する。これにより、ポリエステル等は射出
型キャビティ内に流入し、固化されて延伸ブロー成形用
のプリフォームとなる。
An injection machine known per se equipped with an injection plunger or a screw is used, and the polyester is injected into an injection mold through a nozzle, a sprue and a gate. As a result, polyester or the like flows into the injection mold cavity and is solidified to form a stretch blow molding preform.

【0035】射出型としては、容器形状に対応するキャ
ビティを有するものが使用されるが、ワンゲート型或い
はマルチゲート型の射出型を用いるのがよい。射出温度
は270乃至310℃、圧力は28乃至110kg/c
2 程度が好ましい。
As the injection mold, one having a cavity corresponding to the shape of the container is used, but it is preferable to use a one-gate type or a multi-gate type injection mold. Injection temperature is 270 ~ 310 ℃, pressure is 28 ~ 110kg / c
About m 2 is preferable.

【0036】本発明によればまた、ポリエステルのプリ
フォームを、延伸温度において、少なくとも外周及び底
が拘束されていない条件下に延伸ブロー成形(フリーブ
ロー成形)して、首部、胴部及び底部を備えた二次成形
品に成形する。
According to the present invention, the polyester preform is stretch blow molded (free blow molded) at a stretching temperature under conditions where at least the outer periphery and the bottom are not constrained, so that the neck, the body and the bottom are formed. Mold into the provided secondary molded product.

【0037】プリフォームからの延伸ブロー成形には、
成形されるプリフォーム成形品に与えられた熱、即ち余
熱を利用して、プリフォーム成形に続いて延伸ブロー成
形を行う方法も使用できるが、一般には、一旦過冷却状
態のプリフォーム成形品を製造し、このプリフォームを
前述した延伸温度に加熱して延伸ブロー成形を行う方法
が好ましい。
For stretch blow molding from a preform,
The heat applied to the preform molded article to be molded, that is, residual heat, can be used to perform stretch blow molding following preform molding, but generally, a preform molded article once in a supercooled state is used. A method of producing and heating the preform to the above-mentioned stretching temperature to perform stretch blow molding is preferable.

【0038】プリフォームの延伸温度は、一般に85乃
至135℃、特に90乃至130℃の温度が適当であ
り、その加熱は、赤外線加熱、熱風加熱炉、誘電加熱等
のそれ自体公知の手段により行うことができる。また、
ボトル口部の耐熱性及び剛性を高めるために、プリフォ
ーム口部を予め熱結晶化させておくことが好ましい。こ
の口部熱結晶化は、プリフォーム口部を、他の部分と熱
的に絶縁した状態で、一般に140乃至220℃、特に
160乃至210℃の温度に加熱することにより行うこ
とができる。プリフォーム口部の結晶化度は25%以上
であるのがよい。
The stretching temperature of the preform is generally 85 to 135 ° C., particularly 90 to 130 ° C., and the heating is carried out by means known per se such as infrared heating, hot air heating furnace, dielectric heating and the like. be able to. Also,
In order to improve the heat resistance and rigidity of the bottle mouth portion, it is preferable to preliminarily thermally crystallize the preform mouth portion. This thermal crystallization of the mouth can be carried out by heating the mouth of the preform to a temperature of generally 140 to 220 ° C., particularly 160 to 210 ° C. while being thermally insulated from other portions. The crystallinity of the preform mouth is preferably 25% or more.

【0039】本発明では、フリーブロー成形により、2
次成形品を製造するが、延伸温度にあるプリフォーム
を、ブロー成形金型を用いることなしに、延伸棒で、軸
方向に引っ張り延伸すると共に、流体吹き込みにより周
方向に膨張延伸する。 延伸倍率は、軸方向延伸倍率を
2乃至3.6倍、特に2.2乃至3倍、周方向延伸倍率
を3乃至6.6倍、特に3.5乃至6倍とするのがよ
い。軸方向延伸倍率は、プリフォーム成形品の軸方向の
長さと延伸棒のストローク長とによって決定されるが、
周方向の延伸倍率は、流体の吹き込み圧で決定される。
In the present invention, by free blow molding, 2
The next molded article is manufactured. The preform at the stretching temperature is stretched and stretched in the axial direction with a stretching rod without using a blow molding die, and is expanded and stretched in the circumferential direction by blowing a fluid. As for the draw ratio, the axial draw ratio is 2 to 3.6 times, particularly 2.2 to 3 times, and the circumferential draw ratio is 3 to 6.6 times, and particularly 3.5 to 6 times. The axial stretch ratio is determined by the axial length of the preform molded product and the stroke length of the stretch rod,
The draw ratio in the circumferential direction is determined by the blowing pressure of the fluid.

【0040】フリーブロー成形は、従来の金型成形に比
べて、底部及び胴部を比較的均一な肉厚を有する2次成
形品に成形できるという利点があり、底部を胴部と同様
に薄肉化することはフリーブローにより可能となったも
のである。
The free blow molding has an advantage over the conventional die molding in that the bottom and the body can be formed into a secondary molded product having a relatively uniform wall thickness, and the bottom is as thin as the body. It was made possible by free blow.

【0041】一般に、室温での金型成形では、2次成形
品の温度は室温近傍にまで低下する。一方、本発明では
85〜135℃に加熱されたプリフォームをフリーブロ
ー成形して得られた2次成形品は、延伸による自己発熱
でさらに約20℃程度加算された状態にある。従って、
フリーブロー成形では、次いで行う二次成形品の加熱に
より上昇させる温度幅を比較的小さくでき、加熱の短時
間化に寄与する利点がある。
In general, in mold molding at room temperature, the temperature of the secondary molded product drops to around room temperature. On the other hand, in the present invention, the secondary molded product obtained by free-blow molding of the preform heated to 85 to 135 ° C. is in a state in which about 20 ° C. is further added due to self-heating due to stretching. Therefore,
The free-blow molding has an advantage that the temperature range raised by the subsequent heating of the secondary molded product can be made relatively small, which contributes to shortening the heating time.

【0042】本発明によれば、次いで二次成形品を加熱
して胴部及び底部を熱固定すると共に、その収縮を許容
する。この加熱温度は、一般に120乃至230℃、特
に130乃至220℃の温度が適当であり、この加熱は
赤外線等により行うことができる。2次成形品を加熱す
ることにより、容器壁を構成するポリエステルは、底部
及び胴部を含めて、配向結晶化すると共に、残留する応
力も緩和され、容積がやや収縮した3次成形品となる。
この熱処理時に、2次成形品中の流体を解放してもよい
し、2次成形品内に加圧の程度の低い流体が閉じこめら
れるようにしてもよい。
According to the present invention, the secondary molded product is then heated to heat-fix the body and the bottom, and the shrinkage thereof is allowed. A suitable heating temperature is generally 120 to 230 ° C., particularly 130 to 220 ° C., and this heating can be performed by infrared rays or the like. By heating the secondary molded product, the polyester forming the container wall, including the bottom and body, is oriented and crystallized, and the residual stress is relieved, and the volume becomes a slightly contracted tertiary molded product. .
During this heat treatment, the fluid in the secondary molded product may be released, or the fluid having a low degree of pressurization may be trapped in the secondary molded product.

【0043】二次成形品の加熱加熱工程はフリーブロー
成形途中にて開始することも可能であり、第1次ブロー
成形終了後赤外線加熱をする場合に比べてより生産効率
を上げることができる。
The heating and heating process of the secondary molded product can be started in the middle of free blow molding, and the production efficiency can be further improved as compared with the case of performing infrared heating after the completion of the primary blow molding.

【0044】本発明によれば、最後に、熱処理工程での
成形品(三次成形品)をブロー成形型中でブロー成形し
て、前記丸底部を底中心と底中心よりも軸方向外方に延
びている周辺接地部とから成る自立性底形状に最終成形
する。この最終ブロー成形に際して、当然のことなが
ら、用いるブロー成形金型のキャビテイは三次成形品よ
りも大きく、自立性底形状及びパネルリブ減圧吸収構造
を含めて、最終成形品の寸法及び形状に合致するもので
なければならない。
According to the present invention, finally, a molded product (tertiary molded product) in the heat treatment step is blow-molded in a blow molding die, and the round bottom portion is located at the center of the bottom and axially outward from the center of the bottom. Final forming into a self-supporting bottom shape consisting of an extending peripheral ground. In this final blow molding, of course, the cavity of the blow molding die used is larger than the tertiary molded product, and the size and shape of the final molded product, including the self-supporting bottom shape and the panel rib decompression absorbing structure, are matched. Must.

【0045】最終ブロー成形の温度は、フリー延伸ブロ
ー成形に比して温度の許容度があり、これよりも低くて
も或いは高くてもよく、一般に120乃至220℃、特
に130乃至210℃の温度が適当である。
The temperature of the final blow molding has a temperature tolerance as compared with that of the free stretch blow molding, and may be lower or higher than that. Generally, the temperature is 120 to 220 ° C., particularly 130 to 210 ° C. Is appropriate.

【0046】また、三次成形品では、熱処理による結晶
化で、弾性率が増加しているので、フリー延伸ブロー成
形に比して高い流体圧を用いて行うのがよく、一般に1
5乃至45kg/cm2 の圧力を用いるのが好ましい。
In addition, since the elastic modulus of the tertiary molded product increases due to crystallization by heat treatment, it is better to use a fluid pressure higher than that of free stretch blow molding, and in general, 1
It is preferable to use a pressure of 5 to 45 kg / cm 2 .

【0047】最終ブロー成形に際して、金型の温度は、
50乃至135℃の温度に維持して、成形後直ちに冷却
が行われるようにしてもよいし、或いは、最終成形品中
に冷風等を流して冷却が行われるようにしてもよい。
In the final blow molding, the temperature of the mold is
The temperature may be maintained at 50 to 135 ° C. and cooling may be performed immediately after molding, or cooling may be performed by passing cold air or the like through the final molded product.

【0048】本発明の耐熱ポリエステルボトルにおい
て、容器胴部の厚みは、ボトルの容積や用途によっても
相違するが、一般に200乃至500mm、特に250
乃至450mmの範囲にあるのがよく、一方目付量は2
5乃至38g/l、特に28乃至35g/lの範囲にあ
るのがよく、従来のボトルに比して、目付量を5%以上
節約することが可能である。
In the heat-resistant polyester bottle of the present invention, the thickness of the body of the container varies depending on the volume of the bottle and the use, but is generally 200 to 500 mm, and particularly 250.
To 450 mm, while the basis weight is 2
It is preferably in the range of 5 to 38 g / l, particularly 28 to 35 g / l, and it is possible to save the basis weight by 5% or more as compared with the conventional bottle.

【0049】本発明の耐熱ポリエステルボトルは、液体
内容物を熱間充填する用途に有用であり、各種飲料や液
体調味料等を充填保存する容器として有用である。熱間
充填温度は、50乃至110℃が適当である。
The heat-resistant polyester bottle of the present invention is useful for hot filling of liquid contents, and is useful as a container for filling and storing various beverages, liquid seasonings and the like. The hot filling temperature is suitably 50 to 110 ° C.

【0050】[0050]

【実施例】本発明を次の例で更に説明する。実施例、及
び比較例に挙げる容器特性値の評価、測定方法は次の通
りである。
The present invention will be further described in the following examples. The methods for evaluating and measuring the characteristic values of the containers described in Examples and Comparative Examples are as follows.

【0051】(a) 肉厚 マイクロメーター(φ2.38mmのボール測定子)を
使用して、サンプルの肉厚を測定した。
(A) Wall Thickness The wall thickness of the sample was measured using a micrometer (a ball measuring element having a diameter of 2.38 mm).

【0052】(b) 結晶化度 n−ヘプタン−四塩化炭素系密度勾配管(池田理化製)
を作成し、20℃の条件下でサンプルの密度を求めた。
これより、以下の式に従い、結晶化度を算出した。 ρ :測定密度(g/cm3 ) ρam:非晶密度(1.335g/cm3 ) ρc :結晶密度(1.455g/cm3
(B) Crystallinity n-heptane-carbon tetrachloride density gradient tube (made by Ikeda Rika)
Was prepared and the density of the sample was determined under the condition of 20 ° C.
From this, the crystallinity was calculated according to the following formula. ρ: measured density (g / cm 3 ) ρ am : amorphous density (1.335 g / cm 3 ) ρ c : crystal density (1.455 g / cm 3 )

【0053】(c) 複屈折 偏光顕微鏡 S型(直読式バビネ型コンペンセータ使
用、(株)ニコン製)を用いて、レターデーションRを
測定した。 複屈折 Δn=R/d (d:厚さ) より、複屈折を算出した。レターデーションを測定する
にあたり、サンプルはミクロトーム(Reichert−Jung
製)を用いて、スライスした。
(C) Birefringence A retardation R was measured using a polarizing microscope S type (using a direct-reading Babinet type compensator, manufactured by Nikon Corporation). Birefringence The birefringence was calculated from Δn = R / d (d: thickness). In measuring the retardation, the sample is a microtome (Reichert-Jung
Sliced) was used.

【0054】(d) 落下試験 ボトルに水を充填した。入れ目位置はボトル口部先端よ
り40mmとした。この充填ボトルを室温において、
1.2mの高さからコンクリート床面へ、5回垂直落下
した。ただし5回目より以前に割れが生じた場合は、そ
の回数迄の垂直落下とした。同一条件で作製したボトル
でn=3で行った。
(D) Drop test A bottle was filled with water. The insertion position was 40 mm from the tip of the mouth of the bottle. This filled bottle at room temperature,
It dropped vertically from a height of 1.2 m to the concrete floor surface five times. However, if cracking occurred before the 5th time, vertical drop was performed up to that number of times. Bottles manufactured under the same conditions were tested with n = 3.

【0055】(e) 耐熱試験 ボトル底部から高さ30mmに印をつけ、そこまで水を
入れてその印までの容量V0 を測定した。次にその水を
捨て、85℃の水をボトル口部先端より40mmの位置
まで入れ、キャップをして、横倒し1分、正立4分間放
置した。これを常温の水で冷却した後、内容液を捨て、
先に印をつけた位置までの容量V1 を水にて測定した。
これらの値を用い、底部及びその周辺の体積収縮率V’
=(V0−V1 )/V0 *100(%)を算出した。
(E) Heat resistance test A mark 30 mm in height from the bottom of the bottle was filled with water, and the capacity V 0 up to the mark was measured. Then, the water was discarded, and water at 85 ° C. was added up to a position 40 mm from the tip of the bottle mouth, a cap was put, the product was laid down for 1 minute, and left upright for 4 minutes. After cooling it with water at room temperature, discard the contents,
The volume V 1 up to the previously marked position was measured with water.
Using these values, the volume shrinkage ratio V'of the bottom and its periphery
= Was calculated (V 0 -V 1) / V 0 * 100 (%).

【0056】実施例1 ポリエチレンテレフタレート樹脂(三井ペット樹脂製、
J125TKL、固有粘度0.78dl/g、DEG共
重合率1.3重量%)を使用して、重量49gの有底プ
リフォームを射出成形にて作製した。次に口部を熱処理
により熱結晶化し白化させた。このプリフォームを赤外
線ヒーターにより加熱した後、外周及び底を拘束せず、
口部のみを固定した状態で、延伸棒とエアブローの吹き
込みにより、1次ブローボトルを得た(フリーブローボ
トル)。次に内圧を開放し、円筒状のヒーター内に挿入
し、加熱収縮させた後、今度は図1及び2に対応するキ
ャビティを備えた金型(金型温度70℃)を用いて延伸
ブローを行い、内容量約1.51の自立型1ピースボト
ル(図1)を得た。なお、各ブロー直前の温度は、プリ
フォーム及びボトルの高さの中央部の位置について、赤
外線放射温度計にて、プリフォーム温度及びボトル加熱
温度として測定した。これらの温度を変化させて、2次
ブロー直前のボトル表面温度を200℃、165℃で行
ったものをボトルA,Bとした。
Example 1 Polyethylene terephthalate resin (Mitsui PET Resin,
Using J125TKL, intrinsic viscosity 0.78 dl / g, DEG copolymerization rate 1.3% by weight), a bottomed preform having a weight of 49 g was produced by injection molding. Next, the mouth was thermally crystallized and whitened by heat treatment. After heating this preform with an infrared heater, without restraining the outer periphery and bottom,
With only the mouth fixed, a stretched rod and an air blow were blown to obtain a primary blow bottle (free blow bottle). Next, the internal pressure is released, the product is inserted into a cylindrical heater, heat-shrinked, and then stretch blow is performed using a mold having a cavity corresponding to FIGS. 1 and 2 (mold temperature 70 ° C.). Then, a self-supporting one-piece bottle (FIG. 1) having a content of about 1.51 was obtained. The temperature immediately before each blow was measured as a preform temperature and a bottle heating temperature with an infrared radiation thermometer at the position of the center of the height of the preform and the bottle. These temperatures were changed and the bottle surface temperature immediately before the secondary blowing was carried out at 200 ° C. and 165 ° C. to obtain bottles A and B.

【0057】これらボトルで底部については、底中心か
ら外方へ5mm、15mm、25mmの位置をそれぞれ
ア、イ、ウとし、ボトル胴部については高さ方向の中央
部(口部先端部から150mmの位置)をエ、パネル中
央部をオとして(図1)、各部の肉厚及び結晶化度を測
定した。尚、オについてはサンプルを内側、外側に折半
し測定した。その結果を表1に示す。ア部については、
断面がボトルの周方向対厚さ方向になるように、ミクロ
トームを用いて10μmにスライスし、(周方向−厚さ
方向)の複屈折Δnを測定した。
With respect to the bottom of these bottles, the positions 5 mm, 15 mm, and 25 mm outward from the center of the bottom are defined as a, a, and u, respectively, and the body of the bottle has a center in the height direction (150 mm from the tip of the mouth). The position) was set to D, and the center of the panel was set to O (FIG. 1), and the thickness and crystallinity of each part were measured. For E, the sample was halved inside and outside. The results are shown in Table 1. About part a,
A microtome was used to slice 10 μm so that the cross section was in the circumferential direction of the bottle versus the thickness direction, and the birefringence Δn in the (circumferential direction-thickness direction) was measured.

【0058】落下試験についてはn=3で行い、3本と
も割れが無い場合を○、2本が割れが無い場合をΔ、2
本以上割れる場合を×として、表2に示す。また、表1
から計算される底部と胴中央部の肉厚比及び結晶化度比
も合わせて表2に示す。
The drop test was carried out with n = 3, and when there were no cracks in all three, it was ◯, when there were no cracks in two, Δ2.
Table 2 shows the case where more than two pieces are broken. Also, Table 1
Table 2 also shows the wall thickness ratio and the crystallinity ratio of the bottom and the center of the body calculated from

【0059】比較例1 プリフォーム重量は59gにして、プリフォーム加熱の
操作までは実施例1と同様に行い、次にブロー金型を用
いて延伸棒とエアブローの吹き込みにより、図1と同様
のボトルを作製した。金型温度を胴部140℃、底部7
0℃で行ったのがボトルCであり、胴部底部ともに16
0℃で行ったのがボトルDである。実施例1と同様の測
定を行い、その結果を表1、表2に示す。
Comparative Example 1 The preform weight was set to 59 g, the preform heating operation was carried out in the same manner as in Example 1, and then the blow rod was blown with a stretching rod and an air blow to obtain the same result as in FIG. A bottle was made. Mold temperature is 140 ℃ for the body and 7 for the bottom
Bottle C was run at 0 ° C and the bottom of the body was 16
Bottle D was run at 0 ° C. The same measurement as in Example 1 was performed, and the results are shown in Tables 1 and 2.

【0060】表1、2より明らかなように、ボトルC、
Dは耐熱試験において底部及びその周辺の体積収縮率
V’が大きい。Cの底部中央部は低延伸部であり、配向
結晶化が起こっておらず、また金型も底部は70℃と低
温であるのでヒートセットもなされないので耐熱試験に
よる体積収縮率が大きいものと思われる。Dの底部はC
よりは延伸されているが、まだかなり厚肉で低延伸であ
る。また、薄い白化がみられた。これは金型が160℃
という高温であったために、低延伸部に熱結晶化による
球晶が生じたためであろう。そのため耐落下衝撃性は悪
くなっている。
As is clear from Tables 1 and 2, bottle C,
In the heat resistance test, D has a large volume shrinkage ratio V ′ at the bottom and its periphery. The center part of the bottom of C is a low stretched part, orientation crystallization did not occur, and since the bottom of the mold is as low as 70 ° C, heat setting is not performed, so the volume shrinkage ratio by heat resistance test is large. Seem. The bottom of D is C
More stretched, but still fairly thick and low stretched. In addition, a slight whitening was observed. This is a mold 160 ℃
This is probably because spherulites were generated in the low-stretched portion due to thermal crystallization due to the high temperature. Therefore, the drop impact resistance is poor.

【0061】ボトルA、Bは良好な耐落下衝撃性と耐熱
性を示している。これらのボトルは本発明の範囲に入る
肉厚比、結晶化度比及び複屈折を持ち合わせているため
である。
Bottles A and B show good drop impact resistance and heat resistance. This is because these bottles have a wall thickness ratio, a crystallinity ratio and a birefringence which are within the scope of the present invention.

【0062】また、ボトルA,Bのパネル部の結晶化度
は、それぞれ外側より内側の方が大きく、一方、ボトル
C,Dのパネル部の結晶化度は、それぞれ外側より内側
の方が小さい値を示した。前記(e)の耐熱試験を、1
00本のボトルについて行った結果では、ボトルA,
B,C,Dでの不斉変形発生数は、0/100,0/1
00,18/100,7/100であった。
Further, the crystallinity of the panel portions of the bottles A and B is higher inside than that of the outside, while the crystallinity degree of the panel portions of the bottles C and D is smaller inside than that of the outside. Showed the value. The heat resistance test of (e) above is 1
As a result of carrying out about 00 bottles,
The number of asymmetric deformation occurrences in B, C, D is 0/100, 0/1
It was 00,18 / 100,7 / 100.

【0063】[0063]

【表1】 [Table 1]

【0064】[0064]

【表2】 [Table 2]

【0065】[0065]

【発明の効果】本発明によれば、フリーブロー成形、熱
処理及び最終ブロー成形の組み合わせにより、自立性の
ワンピース型底形状としながら、底部中央部の薄肉化、
高度の配向結晶化とを行うことが可能となり、またパネ
ル−リブの減圧吸収構造を導入しながら、パネル及びリ
ブの配向結晶化度を同じレベルに維持することができ
る。このため、内容物を熱間充填し、或いは次いで冷却
したときの熱変形や不斉変形を防止することができ、更
に底部の耐衝撃性や自立安定性と熱時の自立安定保持性
を向上させることができる。また、容器底部を薄肉化し
ながら、強度及び耐熱性を向上させたため、容器の目付
量を少なくし、これにより、容器コストの低減と軽量化
とが可能となる。
According to the present invention, by combining free blow molding, heat treatment and final blow molding, the thickness of the central portion of the bottom portion is reduced while forming a self-supporting one-piece bottom shape.
It is possible to perform a high degree of oriented crystallization, and it is possible to maintain the oriented crystallinity of the panel and the rib at the same level while introducing the reduced-pressure absorption structure of the panel-rib. For this reason, it is possible to prevent thermal deformation and asymmetrical deformation when the contents are hot-filled or subsequently cooled, and further the impact resistance and self-sustaining stability of the bottom part and the self-sustaining stable holding property when heated are improved. Can be made. Further, since the strength and heat resistance are improved while reducing the thickness of the bottom of the container, the weight of the container is reduced, which makes it possible to reduce the cost and weight of the container.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のポリエステルボトルの構造の一例を説
明するための側面断面図である。
FIG. 1 is a side sectional view for explaining an example of a structure of a polyester bottle of the present invention.

【図2】図1のボトルの底面図である。2 is a bottom view of the bottle of FIG. 1. FIG.

【図3】本発明に用いるプリフォームを示す側面図であ
る。
FIG. 3 is a side view showing a preform used in the present invention.

【符号の説明】[Explanation of symbols]

1 ボトル 2 首部 3 上胴部 4 下胴部 5 底部 6 キャップ締結用のネジ部 7 サポートリング 8 凹状リブ 9 段差部 10 パネル部 11 リブ部 12 底部中央部 13 周辺接地部 20 プリフォーム 21 首部 22 胴部 23 閉塞底部 24 ネジ等の蓋締結機構 25 サポートリング 1 Bottle 2 Neck Part 3 Upper Body Part 4 Lower Body Part 5 Bottom Part 6 Screw Part for Cap Fastening 7 Support Ring 8 Concave Rib 9 Step Part 10 Panel Part 11 Rib Part 12 Bottom Center Part 13 Peripheral Ground Part 20 Preform 21 Neck Part 22 Body 23 Closed bottom 24 Lid fastening mechanism such as screws 25 Support ring

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年4月18日[Submission date] April 18, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】特開平5−42586号公報には、有底の
一次成形体を金型内で半球状の底部を有する二次成形体
に延伸ブロー成形し、この二次成形体の底部のみを加熱
収縮させた後、更にこの底部を自立性が得られる形状に
二軸延伸ブロー成形することが記載されている。この方
法では、底周辺部の厚みが0.36mmであるのに対し
て、底中心部近傍の厚みが1.16mmであったことも
記載されている。
In Japanese Unexamined Patent Publication (Kokai) No. 5-42586 , a bottomed primary molded body is stretch blow molded into a secondary molded body having a hemispherical bottom in a mold, and only the bottom of the secondary molded body is heated. It is described that after shrinking, the bottom portion is further biaxially stretch blow molded into a shape capable of obtaining self-supporting property. In this method, it is also described that the thickness of the peripheral portion of the bottom was 0.36 mm, while the thickness of the central portion of the bottom was 1.16 mm.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】尚、本明細書において、複屈折率とは、後
述する方法で測定されるものをいい、一方結晶化度と
は、下記式(1) 式中、ρ :測定密度(g/cm3 ) ρam:非晶密度(1.335 g/cm3 ) ρc :結晶密度(1.455 g/cm3 ) 密度測定は、n−ヘプタン−四塩化炭素系密度勾配管
(株式会社池田理化)を作成し、20℃の条件下で行
う。 により求められる値をいう。
In the present specification, the birefringence means the value measured by the method described later, while the crystallinity means the following formula (1). In the formula, ρ: measured density ( g / cm 3 ) ρam: amorphous density (1.335 g / cm 3 ) ρc: crystal density (1.455 g / cm 3 ) Density measurement is an n-heptane-carbon tetrachloride density gradient A tube (Ikeda Rika Co., Ltd.) is prepared and performed at 20 ° C. The value obtained by

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0048[Correction target item name] 0048

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0048】本発明の耐熱ポリエステルボトルにおい
て、容器胴部の厚みは、ボトルの容積や用途によっても
相違するが、一般に200乃至500μm、特に250
乃至450μmの範囲にあるのがよく、一方目付量は2
5乃至38g/l、特に28乃至35g/lの範囲にあ
るのがよく、従来のボトルに比して、目付量を5%以上
節約することが可能である。
In the heat-resistant polyester bottle of the present invention, the thickness of the body of the container varies depending on the volume of the bottle and the use, but is generally 200 to 500 μm , and particularly 250.
To 450 μm , while the basis weight is 2
It is preferably in the range of 5 to 38 g / l, particularly 28 to 35 g / l, and it is possible to save the basis weight by 5% or more as compared with the conventional bottle.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0058[Name of item to be corrected] 0058

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0058】落下試験についてはn=3で行い、3本と
も割れが無い場合を○、2本が割れが無い場合をΔ、2
本以上割れる場合を×として、表2に示す。また、表1
から計算される底部と胴中央部の肉厚比及び結晶化度比
も合わせて表2に示す。厚さ方向に分布がある場合もあ
るので、厚さのほぼ中央部における複屈折Δnを測定値
とした。
The drop test was carried out with n = 3, and when there were no cracks in all three, it was ◯, when there were no cracks in two, Δ2.
Table 2 shows the case where more than two pieces are broken. Also, Table 1
Table 2 also shows the wall thickness ratio and the crystallinity ratio of the bottom and the center of the body calculated from There may be a distribution in the thickness direction
Therefore, the birefringence Δn at the center of the thickness is measured.
And

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松野 建治 神奈川県横浜市南区六ツ川3−85−6横浜 パークタウンH−705号 (72)発明者 倉島 秀夫 神奈川県横須賀市岩戸3−26−16 (72)発明者 池上 裕夫 神奈川県相模原市西橋本3−5−21 (72)発明者 竹内 公生 神奈川県川崎市宮前区野川2297−5 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenji Matsuno Kenji Matsuno 3-85-6 Mutsukawa, Minami-ku, Yokohama-shi Kanagawa No. H-705 Yokohama Park Town H-705 (72) Hideo Kurashima 3-26-16 Iwato, Yokosuka City, Kanagawa Prefecture ( 72) Inventor Hiroo Ikegami 3-5-21 Nishihashimoto, Sagamihara City, Kanagawa Prefecture (72) Inventor Kimio Takeuchi 2297-5 Nogawa, Miyamae-ku, Kawasaki City, Kanagawa Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性ポリエステルのプリフォーム
を、延伸温度において、少なくとも外周及び底が拘束さ
れていない条件下に延伸ブロー成形して、首部、滑らか
な胴部及び底部を備えた二次成形品に成形する工程と、
該二次成形品を加熱して胴部及び底部を熱固定すると共
に、その収縮を許容する工程と、熱処理工程での成形品
をブロー成形型中でブロー成形して、前記底部を底中心
と底中心よりも軸方向外方に延びている周辺接地部とか
ら成る自立性底形状に且つ前記胴部を減圧吸収用のパネ
ル−リブ構造に最終成形する工程とから成ることを特徴
とする底部強度並びに耐熱性と減圧吸収性と自立安定性
とに優れたワンピース型耐熱ポリエステルボトルの製造
方法。
1. A secondary molded article having a neck portion, a smooth body portion and a bottom portion, which is obtained by subjecting a thermoplastic polyester preform to stretch blow molding at a stretching temperature under conditions where at least an outer periphery and a bottom are not constrained. The step of molding into
The secondary molded product is heated to heat-set the body and the bottom, and the shrinkage is allowed, and the molded product in the heat treatment process is blow-molded in a blow molding die so that the bottom is centered on the bottom. Bottom forming a self-supporting bottom shape consisting of a peripheral grounding portion extending axially outward from the center of the bottom and finally forming the body into a panel-rib structure for absorbing reduced pressure. A method for producing a one-piece heat-resistant polyester bottle which is excellent in strength, heat resistance, reduced-pressure absorption, and self-sustaining stability.
【請求項2】 熱可塑性ポリエステルの延伸ブロー成形
で形成され、首部、胴部及び底部を備え且つ胴部には減
圧吸収用のパネル−リブ構造が形成されている耐熱ポリ
エステルボトルにおいて、底部には底部中央部と底部中
央部よりも軸方向外方に延びている周辺接地部とがワン
ピースの自立構造に形成されており、底部中央部は、ゲ
ート切断部を除いて、胴部中央部の肉厚の0.5乃至2
倍の厚みとなるように薄肉化されていると共に、周方向
−厚さ方向の複屈折率が0.070以上となるように分
子配向されており、底部中央部は胴部中央部の結晶化度
の0.8乃至1.4倍の結晶化度を有し且つパネル部の
内外側はほぼ同じもしくは内側が大きい結晶化度を有す
ることを特徴とする底部強度並びに耐熱性と減圧吸収性
と自立安定性とに優れたワンピース型耐熱ポリエステル
ボトル。
2. A heat-resistant polyester bottle which is formed by stretch blow molding of a thermoplastic polyester and has a neck portion, a body portion and a bottom portion, and a panel-rib structure for absorbing reduced pressure is formed in the body portion. The bottom center part and the peripheral grounding part extending axially outward from the bottom center part are formed in a one-piece self-supporting structure, and the bottom center part is the meat of the body center part except the gate cutting part. 0.5 to 2 thick
It is thinned to have double the thickness and molecularly oriented so that the birefringence index in the circumferential direction-thickness direction is 0.070 or more, and the bottom center part is crystallized in the body center part. Has a crystallinity of 0.8 to 1.4 times the degree of crystallinity, and the inner and outer sides of the panel part have substantially the same crystallinity or the inner part has a large crystallinity. One-piece heat-resistant polyester bottle with excellent self-standing stability.
【請求項3】 ゲート切断部を除く底部中央部が35%
以上の結晶化度を有する請求項2記載のワンピース型耐
熱ポリエステルボトル。
3. The central portion of the bottom excluding the gate cut portion is 35%.
The one-piece heat-resistant polyester bottle according to claim 2, which has the above crystallinity.
JP10026694A 1994-05-13 1994-05-13 One-piece heat-resistant polyester bottle and its manufacturing method Expired - Fee Related JP2998559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10026694A JP2998559B2 (en) 1994-05-13 1994-05-13 One-piece heat-resistant polyester bottle and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10026694A JP2998559B2 (en) 1994-05-13 1994-05-13 One-piece heat-resistant polyester bottle and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH07309320A true JPH07309320A (en) 1995-11-28
JP2998559B2 JP2998559B2 (en) 2000-01-11

Family

ID=14269407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10026694A Expired - Fee Related JP2998559B2 (en) 1994-05-13 1994-05-13 One-piece heat-resistant polyester bottle and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2998559B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004034340A (en) * 2002-06-28 2004-02-05 Toyo Seikan Kaisha Ltd Multilayered structure for packaging
WO2006011612A1 (en) * 2004-07-27 2006-02-02 Toyo Seikan Kaisha, Ltd. Polyester container excellent in resistance to heat and impact, and method for production thereof
JP2006035747A (en) * 2004-07-29 2006-02-09 Toyo Seikan Kaisha Ltd Polyester vessel showing excellence in heat resistance and impact resistance and its manufacturing method
JP2008018727A (en) * 2007-08-14 2008-01-31 Toyo Seikan Kaisha Ltd Multilayered structure for packaging
JP2014121852A (en) * 2012-12-21 2014-07-03 Mitsubishi Plastics Inc Plastic bottle
WO2018123944A1 (en) 2016-12-26 2018-07-05 サントリーホールディングス株式会社 Resin-made container
JP2018104025A (en) * 2016-12-26 2018-07-05 サントリーホールディングス株式会社 Resin container

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073261A1 (en) 2011-11-18 2013-05-23 東洋製罐株式会社 Container consisting of synthetic resin

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004034340A (en) * 2002-06-28 2004-02-05 Toyo Seikan Kaisha Ltd Multilayered structure for packaging
WO2006011612A1 (en) * 2004-07-27 2006-02-02 Toyo Seikan Kaisha, Ltd. Polyester container excellent in resistance to heat and impact, and method for production thereof
US7833467B2 (en) 2004-07-27 2010-11-16 Toyo Seikan Kaisha, Ltd. Polyester container having excellent heat resistance and shock resistance and method of producing the same
JP2006035747A (en) * 2004-07-29 2006-02-09 Toyo Seikan Kaisha Ltd Polyester vessel showing excellence in heat resistance and impact resistance and its manufacturing method
JP4635506B2 (en) * 2004-07-29 2011-02-23 東洋製罐株式会社 Polyester container excellent in heat resistance and impact resistance and production method thereof
JP2008018727A (en) * 2007-08-14 2008-01-31 Toyo Seikan Kaisha Ltd Multilayered structure for packaging
JP2014121852A (en) * 2012-12-21 2014-07-03 Mitsubishi Plastics Inc Plastic bottle
WO2018123944A1 (en) 2016-12-26 2018-07-05 サントリーホールディングス株式会社 Resin-made container
JP2018104025A (en) * 2016-12-26 2018-07-05 サントリーホールディングス株式会社 Resin container

Also Published As

Publication number Publication date
JP2998559B2 (en) 2000-01-11

Similar Documents

Publication Publication Date Title
EP0683029B1 (en) Biaxially-drawn blow-molded container having excellent heat resistance and method for producing the same
JP3612775B2 (en) Heat-resistant pressure-resistant self-supporting container and manufacturing method thereof
AU679186B2 (en) Method of forming container with high-crystallinity sidewalland low-clystallinity base
US7866496B2 (en) Lightweight finish for hot-fill container
JPH0351568B2 (en)
US5858300A (en) Self-sustaining container
NZ209211A (en) Blow moulding a container in two moulds with intermould transfer under pressure
KR101308299B1 (en) Polyester bottle with resistance to heat and pressure and process for producing the same
US4603066A (en) Poly(ethylene terephthalate) articles
JPS6359513A (en) Manufacture of hollow polyester molded body
JP2998559B2 (en) One-piece heat-resistant polyester bottle and its manufacturing method
JP3616687B2 (en) Self-supporting container with excellent heat and pressure resistance
JPS6356104B2 (en)
JP7059563B2 (en) Preform manufacturing method
JPS6357312B2 (en)
JP2755284B2 (en) One-piece pressure-resistant or heat-resistant polyester bottle and method for producing the same
JP3449182B2 (en) Manufacturing method of heat-resistant stretched resin container
JPH07285527A (en) Heat resistant and pressure resistant self-standing container
JP4186431B2 (en) Stretch blow molded container
JP3835428B2 (en) Heat-resistant stretched resin container
JP3178538B2 (en) Biaxially stretch blow molded bottle and molding method
JPH06143397A (en) Heat-fixation polyester molded container and manufacture thereof
JP2016210089A (en) Production method for thin-walled heat resistant polyester bottle
JP2520736B2 (en) Beverage polyester container
JPH0930522A (en) Polyester container, and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 14

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees