JPH0730794B2 - Hydrostatic air bearing - Google Patents

Hydrostatic air bearing

Info

Publication number
JPH0730794B2
JPH0730794B2 JP2222728A JP22272890A JPH0730794B2 JP H0730794 B2 JPH0730794 B2 JP H0730794B2 JP 2222728 A JP2222728 A JP 2222728A JP 22272890 A JP22272890 A JP 22272890A JP H0730794 B2 JPH0730794 B2 JP H0730794B2
Authority
JP
Japan
Prior art keywords
air bearing
bearing
damping coefficient
damping
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2222728A
Other languages
Japanese (ja)
Other versions
JPH04107321A (en
Inventor
孝 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuroda Precision Industries Ltd
Original Assignee
Kuroda Precision Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuroda Precision Industries Ltd filed Critical Kuroda Precision Industries Ltd
Priority to JP2222728A priority Critical patent/JPH0730794B2/en
Publication of JPH04107321A publication Critical patent/JPH04107321A/en
Publication of JPH0730794B2 publication Critical patent/JPH0730794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば超精密加工機、測定器又は半導体製造
装置等の諸種の精密機器の軸受として使用される静圧空
気軸受に関するものである。
Description: TECHNICAL FIELD The present invention relates to a hydrostatic air bearing used as a bearing for various precision equipment such as an ultra-precision processing machine, a measuring instrument, or a semiconductor manufacturing apparatus. .

[従来の技術] 一般に、この種の静圧空気軸受は油圧静圧軸受やその他
の転がり軸受等と比較して精度が極めて高いという優れ
た長所を有しているが、その反面において剛性が小さい
という欠点がある。一方、最近の高精度の測定器や精密
加工機等では、精度上又は環境上から剛性が大きな静圧
空気軸受が要求されている。
[Prior Art] In general, this type of static pressure air bearing has an excellent advantage that its precision is extremely high as compared with a hydrostatic pressure bearing and other rolling bearings, but on the other hand, it has low rigidity. There is a drawback that. On the other hand, in recent high-precision measuring instruments, precision processing machines, and the like, static pressure air bearings having high rigidity are required in terms of precision and environment.

[発明が解決しようとする課題] 一般に、静圧空気軸受の剛性を高めるには、大きなポケ
ットを用いることが考えられるが、その場合の設計や製
作方法によって不安定振動を生ずることがある。特に、
静圧空気軸受においては、ばね定数と減衰係数の大きさ
は互いに相反する関係にあるため、ばね定数を高くしよ
うとすると減衰係数が小さくなって不安定振動が発生し
易くなる。逆に、不安定振動の発生を抑制しようとする
と、軸の減衰係数を大きくするために、ばね定数を或る
程度犠性にしなければならなくなる。このような問題に
対処するため、従来においても軸受内に磁性流体を付加
して軸の減衰係数を高めるようにした静圧空気軸受が、
例えば実開平2−27017号公報に開示されている。
[Problems to be Solved by the Invention] Generally, in order to increase the rigidity of the hydrostatic air bearing, it is conceivable to use a large pocket, but unstable vibration may occur depending on the design and manufacturing method in that case. In particular,
In a hydrostatic air bearing, the magnitude of the spring constant and the magnitude of the damping coefficient are contradictory to each other. Therefore, if the spring constant is increased, the damping coefficient becomes small and unstable vibration is likely to occur. Conversely, in order to suppress the occurrence of unstable vibration, the spring constant must be sacrificed to some extent in order to increase the damping coefficient of the shaft. In order to deal with such a problem, a hydrostatic air bearing in which a magnetic fluid has been added to the inside of the bearing to increase the damping coefficient of the shaft has been conventionally used.
For example, it is disclosed in Japanese Utility Model Publication No. 2-27017.

しかし、この従来例では磁性流体やそれを収納する容器
については深い洞察がなされていないし、また効果的な
設計方法については何も記載されていないので、場合に
よっては効果が得られない可能性もある。また、減衰係
数を考慮して設計された静圧空気軸受がないため、測定
器や工作機械等に用いられても、テーブルの位置決めに
おいて外乱に対する収束特性や復元性に問題がある。
However, in this conventional example, no deep insight has been made on the magnetic fluid or the container that accommodates it, and there is no description about an effective design method, so there is a possibility that the effect may not be obtained in some cases. is there. Further, since there is no hydrostatic air bearing designed in consideration of the damping coefficient, there is a problem in the convergence property and the resilience to the disturbance in the positioning of the table even when it is used in a measuring instrument or a machine tool.

また、通常の静圧空気軸受では軸受自体に約0.01μm程
度の振幅を有する微細な自己振動が発生し、更に駆動系
を接続すると0.1μm以上の振幅を持つ微振動が発生す
る。これらの微振動は精密測定や精密加工等において精
度低下をきたす原因となる。
Further, in a normal static pressure air bearing, fine self-vibration having an amplitude of about 0.01 μm is generated in the bearing itself, and when a drive system is further connected, a fine vibration having an amplitude of 0.1 μm or more is generated. These slight vibrations cause a decrease in precision in precision measurement and precision processing.

そこで、このような微振動を除去又は減少させるため、
軸受の外部に油ダンパ機構又は摩擦機構等のダンパ機構
を付加する方法が採用されているが、設備が大掛かりに
なる微振動を効果的に除去できず、またこのような外部
ダンパ機構により、かえって運動精度に影響を及ぼし精
度が劣化する場合もある。
Therefore, in order to eliminate or reduce such micro vibration,
A method of adding a damper mechanism such as an oil damper mechanism or a friction mechanism to the outside of the bearing is adopted, but it is not possible to effectively remove the minute vibration that causes large equipment, and by such an external damper mechanism, rather There is also a case where it affects the motion accuracy and deteriorates.

本発明の目的は、このような問題を改善するため、静圧
空気軸受に流体ダンパを付加することにより、軸受全体
の減衰特性を向上し、高剛性化に伴う減衰係数の低下及
び不安定振動の発生を防止し、更に最適な減衰係数が任
意に設定できるようにした静圧空気軸受を提供すること
にある。
The object of the present invention is to improve the damping characteristics of the entire bearing by adding a fluid damper to the hydrostatic air bearing in order to improve such a problem, and to reduce the damping coefficient and unstable vibration due to high rigidity. Another object of the present invention is to provide a static pressure air bearing which prevents the occurrence of the above and further allows an optimum damping coefficient to be arbitrarily set.

本発明の更なる目的は、軸受自体に発生する自己振動又
は駆動系の外乱による微振動を除去又は減少してより安
定した軸受性能が得られる静圧空気軸受を搭載すること
にある。
A further object of the present invention is to mount a hydrostatic air bearing that can eliminate or reduce self-vibration generated in the bearing itself or microvibration due to disturbance of the drive system to obtain more stable bearing performance.

[課題を解決するための手段] 上述の目的を達成するために、本発明に係る静圧空気軸
受においては、固定部と可動部を有する滑動型の静圧空
気軸受において、前記固定部と可動部の何れか一方に重
力方向に向けて設けた凹部と、該凹部に微小隙間を有し
て嵌合するように他方に設けた突体とを有し、前記微小
隙間に介在させ粘性を有する非圧縮流体とから成り減衰
係数を可変とした減衰用ダンパ機構を設け、該減衰用ダ
ンパ機構の減衰係数は前記微小隙間の大きさと、前記凹
部と突部の対向面積の大きさと、前記非圧縮流体の粘度
との少なくとも1つに応じて設定するようにしたたこと
を特徴とする。
[Means for Solving the Problems] In order to achieve the above-mentioned object, in a hydrostatic air bearing according to the present invention, in a sliding hydrostatic air bearing having a fixed portion and a movable portion, the fixed portion and the movable portion are movable. One of the parts has a recess provided in the direction of gravity, and a protrusion provided on the other so as to fit in the recess with a minute gap, and has a viscosity interposed in the minute gap. A damping damper mechanism made of an uncompressed fluid and having a variable damping coefficient is provided, and the damping coefficient of the damping damper mechanism is the size of the minute gap, the size of the facing area between the recess and the protrusion, and the uncompressed value. It is characterized in that it is set according to at least one of the viscosity of the fluid.

[作用] 上述の構成を有する静圧空気軸受は、静圧空気軸受内の
流体ダンパの形状や微小隙間間の大きさ及びこの微小隙
間内に供給される非圧縮流体の粘度によって、軸受全体
の減衰係数は適切な値に設定され、また流体ダンパは軸
受自体に発生する微細な自己振動や外乱による微振動を
抑制する。
[Operation] The static pressure air bearing having the above-described configuration is designed to have The damping coefficient is set to an appropriate value, and the fluid damper suppresses minute self-vibration generated in the bearing itself and minute vibration caused by disturbance.

[実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Examples] The present invention will be described in detail based on the illustrated examples.

第1図は本発明をエアウエイ静圧空気軸受に適用した場
合の実施例を示す断面図であり、第2図はその平面図で
ある。静圧空気軸受を構成する一方の部材はガイド部材
1であり、他方の可動部材はスライダ2であって、両者
の間にはスライダ2のエアノズル3から噴射される圧縮
空気によって適当な軸受隙間gが保持されている。軸受
機能を妨げない位置において、ガイド部材1にその移動
方向に延在する凹部4が形成され、この凹部4内には
水、シリコン油、その他の油圧作動油等の非圧縮性流体
Aが供給されてる。また、スライダ2には凹部4にダン
パ隙間である微小隙間を介して嵌合される突体5が一体
的に形成されており、凹部4と突体5との間のダンパ隙
間に介在する非圧縮流体Aによりダンパ機構を構成して
いる。
FIG. 1 is a sectional view showing an embodiment in which the present invention is applied to an airway static pressure air bearing, and FIG. 2 is a plan view thereof. One of the members forming the static pressure air bearing is a guide member 1, the other movable member is a slider 2, and a suitable bearing gap g is provided between them by compressed air injected from an air nozzle 3 of the slider 2. Is held. A recess 4 extending in the moving direction is formed in the guide member 1 at a position where the bearing function is not hindered, and an incompressible fluid A such as water, silicone oil, or other hydraulic fluid is supplied into the recess 4. Has been done. Further, the slider 2 is integrally formed with a protrusion 5 which is fitted into the recess 4 via a minute gap which is a damper gap, and a non-contact member interposed in the damper gap between the recess 4 and the protrusion 5. The compressed fluid A constitutes a damper mechanism.

この実施例の場合に、第3図に示すようにスライダ2の
Y方向の動きに対しては、凹部4の底面と突体5の先端
面との間のダンパ隙間D1が対応し、またX方向の動きに
対しては、凹部4の側面と突体5の側面との間のダンパ
隙間D2が対応して、それぞれダンパ機構を構成してい
る。この場合の減衰特性つまり減衰係数の変化は、突体
5のダンパ隙間D1、D2を形成している対向面の面積とダ
ンパ隙間D1、D2の大きさ及び非圧縮流体Aの粘度によっ
て決定される。
In the case of this embodiment, as shown in FIG. 3, the damper gap D1 between the bottom surface of the concave portion 4 and the tip surface of the projecting body 5 corresponds to the movement of the slider 2 in the Y direction, and X The damper gap D2 between the side surface of the concave portion 4 and the side surface of the projecting body 5 corresponds to the movement in the direction, and each constitutes a damper mechanism. In this case, the damping characteristic, that is, the change in the damping coefficient, is determined by the area of the opposing surfaces forming the damper gaps D1 and D2 of the projecting body 5, the size of the damper gaps D1 and D2, and the viscosity of the incompressible fluid A. .

第4図、第5図は第2の実施例を示し、凹部4の断面形
状を略V字形とし、それに嵌合される突体5の形状も凹
部4に対応してV字形とした例を示している。この実施
例の場合には、第6図に示すように可動部材であるスラ
イダ2のX方向及びY方向の動きを斜め方向のダンパ隙
間D3で対応することができる。
FIG. 4 and FIG. 5 show a second embodiment in which the recess 4 has a substantially V-shaped cross-section, and the projection 5 fitted therein has a V-shape corresponding to the recess 4. Shows. In the case of this embodiment, as shown in FIG. 6, movement of the slider 2 as a movable member in the X and Y directions can be accommodated by the damper gap D3 in the oblique direction.

第7図は形成のスラスト型軸受に適用した場合におい
て、上下方向の減衰特性を調整するための実験装置を示
し、第8図はそのスラスト軸受部11のノズル配置例を示
している。この場合は、静圧空気軸受を構成する一方の
部材はスラスト軸受部11、他方の部材はスラスト板12で
あり、スラスト軸受部11の上面に配置されたエアノズル
13からの圧縮空気によって、両者間には軸受隙間gが保
持されている。また、スラスト軸受部11に上面には非圧
縮流体Aを収容する凹部14が設けられ、スラスト板12に
は凹部14と適当なダンパ隙間Dを介して嵌合される突体
15が一体的に形成され、スラスト板12上には負荷16が配
置されている。
FIG. 7 shows an experimental apparatus for adjusting the damping characteristic in the vertical direction when applied to the formed thrust bearing, and FIG. 8 shows an example of the nozzle arrangement of the thrust bearing portion 11. In this case, one member constituting the static pressure air bearing is the thrust bearing portion 11, and the other member is the thrust plate 12, and the air nozzle arranged on the upper surface of the thrust bearing portion 11.
A bearing gap g is held between the two by compressed air from 13. Further, the thrust bearing portion 11 is provided with a concave portion 14 for containing the non-compressed fluid A on the upper surface thereof, and the thrust plate 12 is fitted with the concave portion 14 via a proper damper gap D.
15 is integrally formed, and a load 16 is arranged on the thrust plate 12.

本実験装置において、スラスト軸受部11は外径が100mm
φ、内径が54mmφであり、その間においてエアノズル13
が内円と外円にそれぞれ8個ずつ合計16個配置されてい
る。また、スラスト板12とその上に載置されている負荷
16の合計荷重は14Kgwである。また、非圧縮流体Aには
粘度0.0002Kgf/cm.Sのシリコン油が用いられている。
In this experimental device, the thrust bearing 11 has an outer diameter of 100 mm.
φ, the inner diameter is 54 mmφ, and the air nozzle 13
There are 16 in total, 8 in each of the inner and outer circles. In addition, the thrust plate 12 and the load placed on it
The total load of 16 is 14 Kgw. Further, as the non-compressed fluid A, silicone oil having a viscosity of 0.0002 Kgf / cm.S is used.

本装置では、凹部14の底は上下方向に移動可能にして、
ダンパ隙間Dの大きさを変化できるようになっている。
この装置を用いて上下方向の減衰特性を調べるため、第
9図に示すように上から衝撃力を加え、更にダンパ隙間
Dを変化させてスラスト板12がどのように運動するかを
変位計を用いて測定したところ、第10図に示すような結
果が得られた。第10図において、実線で示す曲線aは流
体ダンパの無い状態で静圧空気軸受のみの減衰特性を示
し、また破線bはダンパ隙間Dを100μmに設定した場
合、一点鎖線cはダンパ隙間Dを50μmに設定した場
合、二点鎖線dはダンパ隙間Dを10μmに設定した場合
のそれぞれの減衰特性を示している。
In this device, the bottom of the recess 14 is movable in the vertical direction,
The size of the damper gap D can be changed.
In order to investigate the damping characteristics in the vertical direction using this device, as shown in FIG. 9, an impact force is applied from above and the damper gap D is further changed to see how the thrust plate 12 moves. When used for measurement, the results shown in FIG. 10 were obtained. In FIG. 10, a curved line a shown by a solid line shows the damping characteristic of only the hydrostatic air bearing without a fluid damper, and a broken line b shows a damper gap D when the damper gap D is set to 100 μm. When set to 50 μm, the two-dot chain line d shows the respective damping characteristics when the damper gap D is set to 10 μm.

この実験結果で示されるように、凹部14と突体15との間
のダンパ隙間Dを例えば圧電素子を用いて変位すること
によって、軸受全体の減衰特性を任意に設定することが
可能である。勿論、ダンパ隙間Dに介在する非圧縮流体
Aの粘度又はダンパ対向面の面積を変えることによって
も、軸受の減衰特性を設定することができる。
As shown by the experimental results, the damping characteristics of the entire bearing can be set arbitrarily by displacing the damper gap D between the concave portion 14 and the projecting body 15 by using, for example, a piezoelectric element. Of course, the damping characteristic of the bearing can also be set by changing the viscosity of the non-compressed fluid A present in the damper gap D or the area of the surface facing the damper.

以上は実験による例であるが、このような流体ダンパ機
構を有する静圧空気軸受の減衰特性は計算によっても求
めることができ、一般の精密加工機や測定器等で要求さ
れる適切な減衰係数を持つ静圧空気軸受を任意に設計す
ることが可能である。更に、上述した減衰特性としての
作用とは別に、非圧縮流体Aの粘性は軸受可動部材の運
動方向にも減衰として作用するから、この機能も有効に
利用することができる。
Although the above is an example by experiment, the damping characteristics of a hydrostatic air bearing having such a fluid damper mechanism can be obtained by calculation, and the appropriate damping coefficient required for general precision processing machines and measuring instruments can be obtained. It is possible to arbitrarily design the static pressure air bearing with. Further, in addition to the action as the damping characteristic described above, the viscosity of the non-compressed fluid A also acts as the damping in the movement direction of the bearing movable member, so that this function can be effectively used.

また、スラスト軸受の場合に、第11図、第12図に示すよ
うに凹部14を環状溝とし、この凹部14内に嵌合される突
体15をバランス上少なくとも3個所設けるようにしても
よい。
Further, in the case of a thrust bearing, as shown in FIGS. 11 and 12, the recess 14 may be an annular groove, and at least three protrusions 15 fitted into the recess 14 may be provided for balance. .

静圧空気軸受を諸種の精密加工機や測定器等の実機に要
素部品として実際に組込んだ場合は、実機又は静圧空気
軸受が受ける負荷変動や環境変化など外乱に対して適切
な減衰係数が得られる機構が可能である。例えば、前述
のダンパ隙間の大きさを圧電素子等の微小変位機構によ
って制御することにより、能動的に適切な減衰係数を得
ることができる。
When the hydrostatic air bearing is actually installed as an element part in various types of precision processing machines and measuring machines, etc., an appropriate damping coefficient for disturbances such as load fluctuations and environmental changes received by the actual machine or hydrostatic air bearings Is possible. For example, by controlling the size of the damper gap described above by a minute displacement mechanism such as a piezoelectric element, an appropriate damping coefficient can be actively obtained.

なお、本実施例はスラスト軸受、エアウエイ軸受の外、
エアスピンドル等の静圧空気軸受全般に適用可能であ
る。
In addition, in this embodiment, in addition to the thrust bearing and the airway bearing,
It can be applied to all static pressure air bearings such as air spindles.

[発明の効果] 以上説明したように本発明に係る静圧空気軸受は、軸受
内に流体ダンパ機構を付加することにより、静圧空気軸
受の高剛性化に伴う不安定振動の発生及び減衰係数の低
下を防止することができる。また、減衰機構を付加でき
るため、静圧空気軸受の用途に応じて剛性を犠性にする
ことなく、適切な減衰係数を設定することができる。更
に、軸受への動的変動に対しダンパ隙間を機械的に変化
させることにより、適切な減衰係数を得る制御機構が可
能である。
[Advantages of the Invention] As described above, in the hydrostatic air bearing according to the present invention, by adding the fluid damper mechanism in the bearing, the generation of the unstable vibration and the damping coefficient accompanying the high rigidity of the hydrostatic air bearing are achieved. Can be prevented. Further, since a damping mechanism can be added, an appropriate damping coefficient can be set without sacrificing rigidity depending on the application of the static pressure air bearing. Furthermore, by mechanically changing the damper gap in response to dynamic fluctuations in the bearing, a control mechanism that obtains an appropriate damping coefficient is possible.

また、流体ダンパは軸受自体に発生する微細な自己振動
及び駆動系等の外乱による微振動を抑制する作用を行う
ため、精密測定や精密加工等においてこれらの微振動に
よる影響を小さくすることができ、安定した性能及び精
度を得ることができる。
Further, since the fluid damper acts to suppress the minute self-vibration generated in the bearing itself and the minute vibration due to the disturbance of the drive system, it is possible to reduce the influence of these minute vibrations in the precision measurement and the precision machining. It is possible to obtain stable performance and accuracy.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明に係る静圧空気軸受の実施例を示し、第1
図は第1の実施例の断面図、第2図はその平面図、第3
図はその作用説明図、第4図は第2の実施例の断面図、
第5図は平面図、第6図は作用説明図、第7図はスラス
ト軸受に適用した第3の実施例の断面図、第8図はスラ
スト軸受部の平面図、第9図、第10図は実験値のグラフ
図、第11図は第4の実施例の断面図、第12図は第11図の
B−B線による断面図である。 符号1はガイド部材、2はスライダ、3はエアノズル、
4は凹部、5は突体、11はスラスト軸受部、12はスラス
ト板、13はエアノズル、14は凹部、15は突体、16は負荷
である。
The drawings show an embodiment of a hydrostatic air bearing according to the present invention.
FIG. 3 is a sectional view of the first embodiment, FIG. 2 is its plan view, and FIG.
FIG. 4 is an explanatory view of its operation, FIG. 4 is a sectional view of the second embodiment,
FIG. 5 is a plan view, FIG. 6 is an explanatory view of operation, FIG. 7 is a sectional view of a third embodiment applied to a thrust bearing, FIG. 8 is a plan view of a thrust bearing portion, FIG. 9, and FIG. FIG. 11 is a graph of experimental values, FIG. 11 is a sectional view of the fourth embodiment, and FIG. 12 is a sectional view taken along the line BB of FIG. Reference numeral 1 is a guide member, 2 is a slider, 3 is an air nozzle,
Reference numeral 4 is a recess, 5 is a protrusion, 11 is a thrust bearing portion, 12 is a thrust plate, 13 is an air nozzle, 14 is a recess, 15 is a protrusion, and 16 is a load.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】固定部と可動部を有する滑動型の静圧空気
軸受において、前記固定部と可動部の何れか一方に重力
方向に向けて設けた凹部と、該凹部に微小隙間を有して
嵌合するように他方に設けた突体と、前記微小隙間に介
在させ粘性を有する非圧縮流体とから成り減衰係数を可
変とした減衰用ダンパ機構を設け、該減衰用ダンパ機構
の減衰係数は前記微小隙間の大きさと、前記凹部と突部
の対向面積の大きさと、前記非圧縮流体の粘度との少な
くとも1つに応じて設定するようにしたことを特徴とす
る静圧空気軸受。
1. A sliding type static pressure air bearing having a fixed portion and a movable portion, wherein a concave portion provided in one of the fixed portion and the movable portion in the direction of gravity and a minute gap in the concave portion. A damping damper mechanism having a variable damping coefficient, which comprises a protrusion provided on the other side so as to be fitted together and an incompressible fluid having viscosity interposed in the minute gap, and the damping coefficient of the damping damper mechanism is provided. Is set according to at least one of the size of the minute gap, the size of the facing area of the recess and the protrusion, and the viscosity of the incompressible fluid.
【請求項2】前記減衰用ダンパ機構に減衰係数を能動的
に制御する減衰係数制御手段を付加した請求項1に記載
の静圧空気軸受。
2. The hydrostatic air bearing according to claim 1, wherein damping coefficient control means for actively controlling a damping coefficient is added to the damping damper mechanism.
【請求項3】前記減衰係数制御手段を前記微小隙間の大
きさを制御する微小変位機構とした請求項2に記載の静
圧空気軸受。
3. The hydrostatic air bearing according to claim 2, wherein the damping coefficient control means is a minute displacement mechanism for controlling the size of the minute gap.
【請求項4】前記微小変位機構を圧電素子とした請求項
3に記載の静圧空気軸受。
4. The hydrostatic air bearing according to claim 3, wherein the minute displacement mechanism is a piezoelectric element.
JP2222728A 1990-08-24 1990-08-24 Hydrostatic air bearing Expired - Fee Related JPH0730794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2222728A JPH0730794B2 (en) 1990-08-24 1990-08-24 Hydrostatic air bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2222728A JPH0730794B2 (en) 1990-08-24 1990-08-24 Hydrostatic air bearing

Publications (2)

Publication Number Publication Date
JPH04107321A JPH04107321A (en) 1992-04-08
JPH0730794B2 true JPH0730794B2 (en) 1995-04-10

Family

ID=16786970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2222728A Expired - Fee Related JPH0730794B2 (en) 1990-08-24 1990-08-24 Hydrostatic air bearing

Country Status (1)

Country Link
JP (1) JPH0730794B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008003297A1 (en) * 2008-01-05 2009-07-23 Khs Ag Apparatus for treating containers and method for operating such a device
JP5617229B2 (en) * 2009-11-26 2014-11-05 株式会社東京精密 Air spindle and air supply device
JP6127486B2 (en) * 2012-12-10 2017-05-17 株式会社ジェイテクト Hydrostatic fluid guide device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716624U (en) * 1980-07-02 1982-01-28

Also Published As

Publication number Publication date
JPH04107321A (en) 1992-04-08

Similar Documents

Publication Publication Date Title
CN105179480B (en) A kind of gas suspension device of active control orifice inlet port air pressure
JP7319717B2 (en) Axial dynamic bearing for precise positioning
US8282282B2 (en) Motion guide device and method of assembling motion guide device
US3208270A (en) Vibration testing slip table
JPH0953640A (en) Static pressure bearing device
TWI435985B (en) Active compensating hydrostatic bearing and hydrostatic bearing module using the same
JPH0730794B2 (en) Hydrostatic air bearing
US4946293A (en) Gas bearing having an auxiliary reservoir
US6120004A (en) Variable capillary apparatus for hydrostatic bearing and motion error compensating method using same
Wang et al. Dynamic characteristics of externally pressurized, double-pad, circular thrust bearings with membrane restrictors
JP3143582B2 (en) Hydrostatic bearing device and positioning stage using the same
CN102943812A (en) Active compensation-type hydrostatic bearing and hydrostatic bearing module adopting the active compensation-type hydrostatic bearing
JP2008144918A (en) Squeeze air bearing, and positioning guide device using it
KR100269776B1 (en) Active capillary apparatus for a hydraulic bearing and displacement error compensating method by using the same
JP5404296B2 (en) Gas bearing and positioning device
JP3194590B2 (en) Movable body guidance device
JP2001173653A (en) Fluid bearing device
JP2000002243A (en) Static pressure air bearing device
JPH10331852A (en) Fluid bearing device
JP4273743B2 (en) Positioning device
JPH06307449A (en) Static pressure gas bearing
JPH03244825A (en) Bearing device
JPH0530547U (en) XY table
JPH01153812A (en) Linear roller guide device
JPH0359285B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080410

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees