JPH07307290A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPH07307290A
JPH07307290A JP9712794A JP9712794A JPH07307290A JP H07307290 A JPH07307290 A JP H07307290A JP 9712794 A JP9712794 A JP 9712794A JP 9712794 A JP9712794 A JP 9712794A JP H07307290 A JPH07307290 A JP H07307290A
Authority
JP
Japan
Prior art keywords
raw material
growth
flow rate
layer
mfc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9712794A
Other languages
Japanese (ja)
Other versions
JP3554582B2 (en
Inventor
Satoyasu Narita
里安 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP09712794A priority Critical patent/JP3554582B2/en
Publication of JPH07307290A publication Critical patent/JPH07307290A/en
Application granted granted Critical
Publication of JP3554582B2 publication Critical patent/JP3554582B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the consumption of a raw material at the time of vapor growth by sufficiently diminishing the raw material flowing on a vent line not used for growth until growth and controlling the raw material at a specified flow rate required for growth several min before usage. CONSTITUTION:A PH3 gas is made to flow to prevent the desorption of P from an InP substrate 1 at the time of a temperature rise at first. The flow rate of trimethyl indium TM-1-2 is increased gradually to a constant quantity at the time of growth several minutes before the growth of an InP buffer layer 2. After the temperature rise time is up, a reaction furnace is supplied with TM1-2 and PH3, and the InP buffer layer 2 is grown. The raw material of the next InGaAs light absorption layer 3 is set at the flow rate of the raw material of the light absorption layer 3 at several min after the completion of the growth of the InP buffer layer 2. The flow rates of TM1 and PH3 are reduced when the light absorption layer 3 begins to grow. Such operation is conducted up to a last InGaAs contact layer 5. Accordingly, the flow rates of raw material gases are sequence-controlled, thus diminishing the consumption of the raw materials at the time of vapor growth, then cutting down manufacturing cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は気相成長(CVD) 方法に関
する。半導体装置の製造において,基板上に原料の反応
生成物を成長または堆積して成膜する気相成長プロセス
が多用されている。
FIELD OF THE INVENTION The present invention relates to a vapor deposition (CVD) method. In the manufacture of semiconductor devices, a vapor phase growth process of growing or depositing a reaction product of a raw material on a substrate to form a film is often used.

【0002】[0002]

【従来の技術】従来の気相成長法における原料供給過程
を有機金属気相成長(MOCVD) 法を例にとり説明する。
2. Description of the Related Art A raw material supply process in a conventional vapor phase growth method will be described by taking a metal organic chemical vapor deposition (MOCVD) method as an example.

【0003】図2に気相成長成長法の一つである有機金
属気相成長法の基本的な配管系統図を示す。図で, MFC
1〜7 はマスフローコントローラである。この例では,
IV族原料の有機金属としてトリメチルインジウム(TMI),
トリエチルガリウム(TEG) が用いられている。また, V
族原料としてフォスヒン(PH3) , アルシン(AsH3)が用い
られている。
FIG. 2 shows a basic piping system diagram of a metal organic chemical vapor deposition method which is one of the vapor phase epitaxy methods. In the figure, MFC
1 to 7 are mass flow controllers. In this example,
Trimethylindium (TMI) as an organic metal of group IV raw material,
Triethylgallium (TEG) is used. Also, V
Foshin (PH 3 ) and arsine (AsH 3 ) are used as group materials.

【0004】図3はMOCVD 法を用いて成膜した受光装置
の断面図を示す。この例は,InP 基板 1上に, InP バッ
ファ層 2, InGaAs光吸収層 3, InP 窓層4,InGaAsコン
タクト層 5が順次成長された半導体層構造を示す。
FIG. 3 shows a cross-sectional view of a light-receiving device formed by MOCVD. This example shows a semiconductor layer structure in which an InP buffer layer 2, an InGaAs light absorption layer 3, an InP window layer 4, and an InGaAs contact layer 5 are sequentially grown on an InP substrate 1.

【0005】図4はMOCVD 法の各原料の流量制御シーケ
ンスを示す。従来の技術よれば,図4の流量制御シーケ
ンスに示されるように,原料は成長対象となる層以外の
成長過程においても,成長対象となる層を成長するのに
必要な量がベントラインに流れている。
FIG. 4 shows a flow rate control sequence of each raw material in the MOCVD method. According to the conventional technique, as shown in the flow rate control sequence of FIG. 4, the amount of raw material required to grow the growth target layer flows to the vent line even in the growth process other than the growth target layer. ing.

【0006】[0006]

【発明が解決しようとする課題】従来例では,原料は成
長時以外でも常に成長時の流量が流されているため,原
料の使用効率が悪く,デバイスの製造原価高となる。
In the conventional example, since the raw material is constantly supplied with the flow rate during the growth even during the growth, the use efficiency of the raw material is poor and the manufacturing cost of the device becomes high.

【0007】本発明は気相成長時の原料消費量の低減を
目的とする。
The present invention aims to reduce the amount of raw material consumed during vapor phase growth.

【0008】[0008]

【課題を解決するための手段】上記課題の解決は,組成
の異なる複数の層の成長方法であって,成長対象の層を
成長する際に,該成長対象の層に不必要な原料をベント
ラインに流す流量を,該不必要な原料を用いる層の成長
時に反応炉に該原料を流す流量より少なく制御する気相
成長方法により達成される。
[Means for Solving the Problems] A solution to the above problems is to provide a method of growing a plurality of layers having different compositions, wherein when a layer to be grown is grown, unnecessary raw materials are vented to the layer to be grown. This is achieved by a vapor phase growth method in which the flow rate of flowing through the line is controlled to be lower than the flow rate of the raw material flowing into the reactor when the layer using the unnecessary raw material is grown.

【0009】[0009]

【作用】本発明では,成長に使用していないベントライ
ンに流れる原料は,成長時になるまで流量を十分絞って
おき,使用する数分前に成長に必要な所定流量に制御す
ることにより,原料を有効利用している。
In the present invention, the flow rate of the raw material flowing through the vent line not used for growth is sufficiently reduced until the time of growth, and the raw material is controlled to a predetermined flow rate required for growth a few minutes before use. Are making effective use of.

【0010】例えば,図3に示した受光装置の積層膜を
成長する際に,使用していない原料のマスフローコント
ローラの最小設定値まで少なくすることにより,原料消
費量を減らすことができる。
For example, when growing the laminated film of the light receiving device shown in FIG. 3, it is possible to reduce the amount of raw material consumption by reducing the unused raw material to the minimum set value of the mass flow controller.

【0011】[0011]

【実施例】図1は本発明の実施例の説明図で,流量制御
シーケンスを示す。始めに昇温時はInP 基板からりん(P
)の離脱を防ぐため, V 族原料のフォスヒン(PH3) ガス
を流している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory diagram of an embodiment of the present invention, showing a flow rate control sequence. At the beginning of heating, phosphorus (P
In order to prevent the separation of), the fossine (PH 3 ) gas, which is a group V raw material, is flowing.

【0012】次に, InP バッフア層 2の成長 5分前にな
ったならば, トリメチルインジウム(TMI)-2 の流量を成
長時の所定値に増やしてゆく。この場合の時間 5分は配
管の太さやガス圧力や流量により, 必ずしも 5分とは限
らない。有機金属材料の取り出しの安定性により多少変
わる。同じく, V 族原料のアルシン(AsH3)も設定流量に
しておく。
Next, 5 minutes before the growth of the InP buffer layer 2, the flow rate of trimethylindium (TMI) -2 is increased to a predetermined value during the growth. The time of 5 minutes in this case is not always 5 minutes, depending on the thickness of the pipe, the gas pressure, and the flow rate. It depends on the stability of the extraction of the organometallic material. Similarly, the flow rate of the group V raw material arsine (AsH 3 ) is also set.

【0013】昇温時間終了後, TMI-2, AsH3 を反応炉に
供給し,InP バッフア層 2を成長する。InP バッフア層
2の成長終了 5分前になったら,次の層であるInGaAs光
吸収層 3の原料の流量を設定する。
After the heating time is completed, TMI-2 and AsH 3 are supplied to the reaction furnace to grow the InP buffer layer 2. InP buffer layer
5 minutes before the end of growth of 2, the flow rate of the raw material for the next layer, InGaAs light absorption layer 3, is set.

【0014】InGaAs光吸収層 3の成長が始まったなら
ば,InP 層成長で用いたTMI, PH3は必要がないため, マ
スフローコントローラの最低流量まで絞る。以上のよう
な操作を最後の層であるInGaAsコンタクト層 5まで行
う。これらの操作はマスフローコントローラに付属して
いるポテンショメータで手動操作してもよいが,実施例
では, 全層についてプログラムによる自動操作で行っ
た。
Once the growth of the InGaAs light absorption layer 3 has started, the TMI and PH 3 used in the growth of the InP layer are not necessary, so the flow rate is limited to the minimum flow rate of the mass flow controller. The above operation is repeated up to the final layer, InGaAs contact layer 5. These operations may be performed manually with the potentiometer attached to the mass flow controller, but in the embodiment, all the layers were automatically operated by a program.

【0015】但し, 最後のInGaAsコンタクト層 5の成長
時には,この後InP の成長をする必要がないので,PH3
のラインはバイパスの水素(H2)を流している。また,成
長中において,原料を使用していない場合に, 水素をバ
イパスで流していないのは,制御の安定性に問題がある
ためである。
However, when growing the last InGaAs contact layer 5, it is not necessary to grow InP after this, so PH 3
The line is flowing hydrogen (H 2 ) in the bypass. In addition, the reason why hydrogen is not passed by bypass during the growth when no raw material is used is that there is a problem in control stability.

【0016】ここで,実施例に使用したマスフローコン
トローラの最大, 最小定格流量を表1に示す。
Table 1 shows the maximum and minimum rated flow rates of the mass flow controller used in this embodiment.

【0017】[0017]

【表1】 次に,図3の構造の積層膜を成長する際の,設定流量と
スタンバイ時の流量と原料消費量(III 族のみ) を工程
順に示す。
[Table 1] Next, the set flow rate, the standby flow rate, and the raw material consumption (group III only) when growing the laminated film having the structure of Fig. 3 are shown in order of process.

【0018】 (1) 昇温(時間15分) MFC NO. MFC-1 MFC-2 MFC-3 MFC-4 MFC-5 MFC 流量(ccm) 10.0 10.0 25.0 10.0 647.0 原料 TMI-1 TEG-1 TMI-2 AsH3 PH3 原料消費量(ccm) 0.016 0.022 0.044 − − (2) InP バッファ層成長(時間40分) MFC NO. MFC-1 MFC-2 MFC-3 MFC-4 MFC-5 MFC 流量(ccm) 10.0 10.0 229.0 10.0 647.0 原料 TMI-1 TEG-1 TMI-2 AsH3 PH3 原料消費量(ccm) 0.016 0.022 0.40 − − (3) InGaAs層成長(時間 120分) MFC NO. MFC-1 MFC-2 MFC-3 MFC-4 MFC-5 MFC 流量(ccm) 122.0 90.3 25.0 106.0 50.0 原料 TMI-1 TEG-1 TMI-2 AsH3 PH3 原料消費量(ccm) 0.20 0.20 0.044 − − (4) InP 層成長(時間80分) MFC NO. MFC-1 MFC-2 MFC-3 MFC-4 MFC-5 MFC 流量(ccm) 10.0 10.0 229.0 10.0 647.0 原料 TMI-1 TEG-1 TMI-2 AsH3 PH3 原料消費量(ccm) 0.016 0.022 0.40 − − (5) InGaAs層成長(時間 6分) MFC NO. MFC-1 MFC-2 MFC-3 MFC-4 MFC-5 MFC 流量(ccm) 122.0 90.3 25.0 106.0 0.0 原料 TMI-1 TEG-1 TMI-2 AsH3 PH3 原料消費量(ccm) 0.016 0.022 0.40 − − (6) 実施例の原料消費量集計 原料 TMI-1 TEG-1 TMI-2 AsH3 PH3 原料消費量(ccm) 27.36 28.17 55.98 − − (7) 従来例の原料消費量 原料 TMI-1 TEG-1 TMI-2 AsH3 PH3 原料消費量(ccm) 52.2 52.2 104.4 − − (8) 実施例の従来例に対する原料消費量低減率 原料 TMI-1 TEG-1 TMI-2 AsH3 PH3 低減率 (%) 47.5 46.0 46.3 − − (1) Temperature rise (time 15 minutes) MFC NO. MFC-1 MFC-2 MFC-3 MFC-4 MFC-5 MFC Flow rate (ccm) 10.0 10.0 25.0 10.0 647.0 Raw material TMI-1 TEG-1 TMI- 2 AsH 3 PH 3 Raw material consumption (ccm) 0.016 0.022 0.044 − − (2) InP buffer layer growth (time 40 minutes) MFC NO.MFC-1 MFC-2 MFC-3 MFC-4 MFC-5 MFC Flow rate (ccm) ) 10.0 10.0 229.0 10.0 647.0 Raw material TMI-1 TEG-1 TMI-2 AsH 3 PH 3 Raw material consumption (ccm) 0.016 0.022 0.40 − − (3) InGaAs layer growth (120 minutes) MFC NO. MFC-1 MFC- 2 MFC-3 MFC-4 MFC-5 MFC Flow rate (ccm) 122.0 90.3 25.0 106.0 50.0 Raw material TMI-1 TEG-1 TMI-2 AsH 3 PH 3 Raw material consumption (ccm) 0.20 0.20 0.044 − − (4) InP layer Growth (80 minutes) MFC NO. MFC-1 MFC-2 MFC-3 MFC-4 MFC-5 MFC Flow rate (ccm) 10.0 10.0 229.0 10.0 647.0 Raw material TMI-1 TEG-1 TMI-2 AsH 3 PH 3 Raw material consumption Amount (ccm) 0.016 0.022 0.40 − − (5) InGaAs layer growth (time 6 minutes) MFC NO. MFC-1 MFC-2 MFC-3 MFC-4 MFC-5 MFC Flow rate (ccm) 122.0 90.3 25.0 106.0 0.0 Raw material TMI -1 TEG-1 TMI-2 AsH 3 PH 3 material consumption (ccm) 0.016 0.022 0.40 - (6) the raw material consumption aggregate material TMI-1 TEG-1 TMI- 2 AsH 3 PH 3 material consumption Example (ccm) 27.36 28.17 55.98 - - (7) raw material consumption of conventional raw TMI-1 TEG- 1 TMI-2 AsH 3 PH 3 Raw material consumption (ccm) 52.2 52.2 104.4 − − (8) Raw material consumption reduction rate of the example compared to the conventional example Raw material TMI-1 TEG-1 TMI-2 AsH 3 PH 3 reduction rate ( %) 47.5 46.0 46.3 − −

【0019】[0019]

【発明の効果】本発明によれば,気相成長時の原料消費
量を実施例では45%程度低減することができる。この結
果, 半導体装置の製造原価低減に寄与することができ
る。
According to the present invention, the raw material consumption during vapor phase growth can be reduced by about 45% in the embodiment. As a result, it can contribute to the reduction of the manufacturing cost of the semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例の説明図FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】 有機金属気相成長法の配管系統図[Figure 2] Piping system diagram for metalorganic vapor phase epitaxy

【図3】 実施例に使用した受光装置の断面図FIG. 3 is a cross-sectional view of a light receiving device used in an example.

【図4】 従来例の各原料の流量制御シーケンス図FIG. 4 is a flow rate control sequence diagram of each raw material of a conventional example.

【符号の説明】[Explanation of symbols]

1 InP 基板 2 InP バッファ層 3 InGaAs光吸収層 4 InP 窓層 5 InGaAsコンタクト層 1 InP substrate 2 InP buffer layer 3 InGaAs light absorption layer 4 InP window layer 5 InGaAs contact layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 組成の異なる複数の層の成長方法であっ
て,成長対象の層を成長する際に,該成長対象の層に不
必要な原料をベントラインに流す流量を,該不必要な原
料を用いる層の成長時に反応炉に該原料を流す流量より
少なく制御することを特徴とする気相成長方法。
1. A method for growing a plurality of layers having different compositions, wherein when a layer to be grown is grown, a flow rate of flowing a raw material unnecessary to the layer to be grown to a vent line is increased. A vapor phase growth method characterized in that the flow rate of the raw material is controlled to be smaller than the flow rate of the raw material in the reaction furnace during the growth of the layer using the raw material.
JP09712794A 1994-05-11 1994-05-11 Vapor phase growth method Expired - Lifetime JP3554582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09712794A JP3554582B2 (en) 1994-05-11 1994-05-11 Vapor phase growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09712794A JP3554582B2 (en) 1994-05-11 1994-05-11 Vapor phase growth method

Publications (2)

Publication Number Publication Date
JPH07307290A true JPH07307290A (en) 1995-11-21
JP3554582B2 JP3554582B2 (en) 2004-08-18

Family

ID=14183904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09712794A Expired - Lifetime JP3554582B2 (en) 1994-05-11 1994-05-11 Vapor phase growth method

Country Status (1)

Country Link
JP (1) JP3554582B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329252A (en) * 2006-06-07 2007-12-20 Sharp Corp Method and device for vapor phase epitaxial growth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329252A (en) * 2006-06-07 2007-12-20 Sharp Corp Method and device for vapor phase epitaxial growth

Also Published As

Publication number Publication date
JP3554582B2 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
JP2797233B2 (en) Thin film growth equipment
CN102174708B (en) The epitaxy of III nitride compound semiconductors structures
US7585769B2 (en) Parasitic particle suppression in growth of III-V nitride films using MOCVD and HVPE
JP3121131B2 (en) Low temperature and high pressure silicon deposition method
EP0853137A1 (en) High pressure MOCVD reactor system
CN111394789A (en) Gas inlet structure, gas inlet method and gas inlet equipment of chemical vapor deposition equipment
CN101816061B (en) Parasitic particle suppression in the growth of III-V nitride films using MOCVD and HVPE
US6352884B1 (en) Method for growing crystals having impurities and crystals prepared thereby
JPH07307290A (en) Vapor growth method
CN1440053A (en) P-ZnO thin film and preparation thereof
JP4879693B2 (en) MOCVD apparatus and MOCVD method
JP3948577B2 (en) Manufacturing method of semiconductor single crystal thin film
JP2736655B2 (en) Compound semiconductor crystal growth method
JP2757407B2 (en) Compound semiconductor crystal growth method
JP3052269B2 (en) Vapor phase growth apparatus and growth method thereof
CN220397289U (en) Gas transport system of semiconductor deposition equipment
JPS593099A (en) Growth method of compound semiconductor crystal
JP4089816B2 (en) Semiconductor epitaxial wafer manufacturing apparatus and dopant gas diluting apparatus
CN102925875A (en) Dual-mode system used for film growth and control method of dual-mode system
JP2715759B2 (en) Compound semiconductor vapor phase growth method
JP2743431B2 (en) Compound semiconductor vapor growth method and apparatus
JPH0897149A (en) Organic metal vapor growth method, and organic metal vapor growth device
JPH0517286A (en) Vapor growth device
JPH02122521A (en) Manufacture of compound semiconductor crystal layer
JP3030659B2 (en) MOVPE method and apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

EXPY Cancellation because of completion of term