JPH07305606A - Exhaust heat recovery system - Google Patents

Exhaust heat recovery system

Info

Publication number
JPH07305606A
JPH07305606A JP6120634A JP12063494A JPH07305606A JP H07305606 A JPH07305606 A JP H07305606A JP 6120634 A JP6120634 A JP 6120634A JP 12063494 A JP12063494 A JP 12063494A JP H07305606 A JPH07305606 A JP H07305606A
Authority
JP
Japan
Prior art keywords
engine
exhaust heat
recovery system
heat recovery
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6120634A
Other languages
Japanese (ja)
Other versions
JP3640411B2 (en
Inventor
Hiroshi Fujimoto
洋 藤本
Koji Okuda
浩二 奥田
Kosuke Nakatani
浩介 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP12063494A priority Critical patent/JP3640411B2/en
Publication of JPH07305606A publication Critical patent/JPH07305606A/en
Application granted granted Critical
Publication of JP3640411B2 publication Critical patent/JP3640411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/32Miller cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve an engine output by effectively recovering engine exhaust heat. CONSTITUTION:An exhaust gas supply pipe 13 from a mirror cycle gas engine 1 is connected to a steam generator 9. A steam turbine 10 is arranged on a circulation piping 6 of working substance fluid connected to the steam generator 9. A supercharger 12 is provided on an output shaft 10a of the steam turbine 10 for supplying compressed air to the mirror cycle gas engine 1. The supercharger 12 is driven with combustion exhaust gas from the mirror cycle gas engine as heat source, for improving an engine output.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディーゼルエンジン、
スターリングエンジン、ミラーサイクルガスエンジンな
どのエンジンで発生する排熱を回収して動力を取り出す
ように構成した排熱回収システムに関する。
The present invention relates to a diesel engine,
The present invention relates to an exhaust heat recovery system configured to recover exhaust heat generated by an engine such as a Stirling engine and a Miller cycle gas engine to extract power.

【0002】[0002]

【従来の技術】上述のような排熱回収システムとして
は、エンジン冷却用の冷却ジャケットから排出される温
水を、エンジンからの燃焼排ガスによって加熱し、その
冷却ジャケットからの熱と燃焼排ガスの熱とによって得
た温水を吸収式冷凍機の再生器に供給し、吸収式冷凍機
を作動するように構成したものがあった。
2. Description of the Related Art As an exhaust heat recovery system as described above, hot water discharged from a cooling jacket for cooling an engine is heated by combustion exhaust gas from an engine, and heat from the cooling jacket and heat of the combustion exhaust gas are combined with each other. There was a configuration in which the hot water obtained by the above was supplied to the regenerator of the absorption refrigerator to operate the absorption refrigerator.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来例
の場合、設計上再生器に供給する温水の温度は90℃程度
であり、通常 400〜 700℃にもなる燃焼排ガスの熱を利
用しているとはいうものの、エクセルギを有効に利用し
ていないのが実情であった。すなわち、高品位の熱を、
わざわざ低品位の熱にして利用するという無駄をしてい
た。
However, in the case of the conventional example, the temperature of the hot water supplied to the regenerator is about 90 ° C. by design, and the heat of the combustion exhaust gas, which usually reaches 400 to 700 ° C., is used. That said, the reality is that Excelgi is not being used effectively. That is, high-quality heat,
I wasted to use it as low-grade heat.

【0004】また、燃焼排ガスの熱を利用して得られた
温水で加熱された吸収液が吸収器に戻されて冷却される
ため、温水の熱の一部を無駄に吸収器冷却水に捨ててい
た。
Further, since the absorption liquid heated by the hot water obtained by utilizing the heat of the combustion exhaust gas is returned to the absorber and cooled, a part of the heat of the hot water is wasted to the absorber cooling water. Was there.

【0005】本発明は、このような事情に鑑みてなされ
たものであって、請求項1に係る発明の排熱回収システ
ムは、エンジン排熱を有効に回収してエンジン出力を向
上できるようにすることを目的とし、また、請求項2に
係る発明の排熱回収システムは、エンジン排熱をより有
効に回収できるようにすることを目的とし、また、請求
項3に係る発明の排熱回収システムは、構成簡単にして
エンジン出力を向上できるようにすることを目的とし、
また、請求項4に係る発明の排熱回収システムは、燃料
電池の排熱をも有効に回収できるようにすることを目的
とする。
The present invention has been made in view of such circumstances, and the exhaust heat recovery system of the invention according to claim 1 can effectively recover the engine exhaust heat and improve the engine output. The exhaust heat recovery system of the invention according to claim 2 aims to enable the engine exhaust heat to be recovered more effectively, and the exhaust heat recovery of the invention according to claim 3 The system aims to simplify the configuration and improve engine output,
Another object of the exhaust heat recovery system of the invention according to claim 4 is to enable effective recovery of exhaust heat of the fuel cell.

【0006】[0006]

【課題を解決するための手段】請求項1に係る発明の排
熱回収システムは、上述のような目的を達成するため
に、エンジンからの排ガスを熱源とする蒸気発生装置に
接続した作動流体の循環配管に蒸気タービンを設け、そ
の蒸気タービンにエンジンの過給機を連動連結して構成
する。
In order to achieve the above-mentioned object, the exhaust heat recovery system of the invention according to claim 1 provides a working fluid connected to a steam generator using exhaust gas from an engine as a heat source. A steam turbine is provided in the circulation pipe, and a turbocharger of the engine is interlockingly connected to the steam turbine.

【0007】また、請求項2に係る発明の排熱回収シス
テムは、上述のような目的を達成するために、請求項1
に係る発明の排熱回収システムにおいて、エンジンから
排出される温水を供給するエンジン温水供給管を吸収式
冷凍機の再生器に接続し、その再生器で予熱された吸収
液を作動流体として蒸気発生装置に供給するように構成
する。
Further, the exhaust heat recovery system of the invention according to claim 2 has the following features to achieve the above object.
In the exhaust heat recovery system of the invention according to claim 1, an engine hot water supply pipe for supplying hot water discharged from the engine is connected to a regenerator of an absorption refrigerator, and the absorbent preheated by the regenerator is used as a working fluid to generate steam. It is configured to supply to the device.

【0008】また、請求項3に係る発明の排熱回収シス
テムは、上述のような目的を達成するために、請求項1
または2に係る発明の排熱回収システムのエンジンをミ
ラーサイクルエンジンで構成する。
Further, the exhaust heat recovery system of the invention according to claim 3 is the same as that of claim 1 in order to achieve the above object.
Alternatively, the engine of the exhaust heat recovery system of the invention according to 2 is composed of a Miller cycle engine.

【0009】また、請求項4に係る発明の排熱回収シス
テムは、上述のような目的を達成するために、請求項2
または3に係る発明の排熱回収システムの再生器に、燃
料電池から排出される温水を供給する燃料電池温水供給
管を接続し、再生器と蒸気発生装置との間に熱交換器を
付設するとともに、燃料電池から排出される低圧蒸気を
供給する蒸気供給管を熱交換器に接続して構成する。
The exhaust heat recovery system according to a fourth aspect of the present invention is intended to achieve the above object.
Alternatively, a fuel cell hot water supply pipe for supplying hot water discharged from the fuel cell is connected to the regenerator of the exhaust heat recovery system of the invention according to 3 and a heat exchanger is provided between the regenerator and the steam generator. In addition, a steam supply pipe for supplying low-pressure steam discharged from the fuel cell is connected to the heat exchanger.

【0010】[0010]

【作用】請求項1に係る発明の排熱回収システムの構成
によれば、エンジンから排出される燃焼排ガスにより蒸
気発生装置で蒸気を発生させ、その蒸気によって蒸気タ
ービンを駆動して動力を取り出し、その動力により前記
エンジンの過給機を作動して圧縮空気をエンジンに供給
することができる。作動流体としては、水、ブタン等が
使用できるし、吸収式冷凍機を使用するときはアンモニ
ア水溶液(蒸気タービンに供給される主成分は水)、メ
チルアルコール等のアルコール水溶液(蒸気タービンに
供給される主成分は水)が使用できる。
According to the constitution of the exhaust heat recovery system of the invention as set forth in claim 1, steam is generated in the steam generator by the combustion exhaust gas discharged from the engine, and the steam drives the steam turbine to take out power. The power can operate the supercharger of the engine to supply compressed air to the engine. As the working fluid, water, butane, etc. can be used. When using an absorption refrigerator, an aqueous ammonia solution (the main component supplied to the steam turbine is water), an aqueous alcohol solution such as methyl alcohol (supplied to the steam turbine) is used. The main component is water).

【0011】また、請求項2に係る発明の排熱回収シス
テムの構成によれば、エンジンから排出されるエンジン
冷却後の温水を利用して吸収式冷凍機を作動するととも
に、その再生器で予熱された吸収液を蒸気発生装置に供
給することができる。一方、吸収式冷凍機から取り出さ
れる冷水を、冷房や冷凍用などの熱源に利用することが
できる。
According to the structure of the exhaust heat recovery system of the invention as claimed in claim 2, the absorption refrigerating machine is operated by utilizing the hot water after engine cooling discharged from the engine, and the regenerator is used to preheat the same. The absorbed liquid can be supplied to the steam generator. On the other hand, the cold water taken out from the absorption refrigerator can be used as a heat source for cooling or freezing.

【0012】また、請求項3に係る発明の排熱回収シス
テムの構成によれば、ミラーサイクルエンジンでは、圧
縮比を調整できるため、エンジン排熱による過給機の作
動に圧縮比を合わせて高出力状態を得ることができる。
According to the structure of the exhaust heat recovery system of the third aspect of the present invention, since the compression ratio can be adjusted in the Miller cycle engine, the compression ratio can be adjusted to a high level by the operation of the supercharger due to engine exhaust heat. The output status can be obtained.

【0013】また、請求項4に係る発明の排熱回収シス
テムの構成によれば、エンジンおよび燃料電池から排出
される温水を利用して吸収式冷凍機を作動し、かつ、燃
料電池から排出される低圧蒸気により、再生器で予熱さ
れた吸収液を更に加熱してから蒸気発生装置に供給する
ことができる。
According to the configuration of the exhaust heat recovery system of the invention as claimed in claim 4, the absorption chiller is operated using the hot water discharged from the engine and the fuel cell, and is discharged from the fuel cell. With the low-pressure steam, the absorption liquid preheated in the regenerator can be further heated and then supplied to the steam generator.

【0014】また、請求項5に係る発明の排熱回収シス
テムの構成によれば、エンジンからの排ガスを熱源とす
る蒸気発生装置に接続した作動流体の循環配管に蒸気タ
ービンを設け、前記蒸気タービンで発電機を駆動するこ
とにより排熱を電力として回収できる。この電力が電動
モータを駆動し、それによって過給機を運転することも
できる。
According to the structure of the exhaust heat recovery system of the invention as claimed in claim 5, a steam turbine is provided in the working fluid circulation pipe connected to the steam generator which uses the exhaust gas from the engine as a heat source. The exhaust heat can be recovered as electric power by driving the generator with. This electric power also drives the electric motor, which can also drive the supercharger.

【0015】[0015]

【実施例】次に、本発明の実施例を図面に基づいて詳細
に説明する。図1は、本発明に係る排熱回収システムの
第1実施例を示す概略構成図であり、ミラーサイクルガ
スエンジン1に、伝動クラッチ2を介して発電機3が連
動連結されている。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a first embodiment of an exhaust heat recovery system according to the present invention. A Miller cycle gas engine 1 is interlocked with a generator 3 via a transmission clutch 2.

【0016】ガスエンジン1のエンジン冷却部の出口と
入口とにわたって、第1のポンプ4を介装したエンジン
温水供給管5aと冷却水配管5bとから成る主配管5が
接続されている。主配管5に、作動流体としての水の循
環配管6に介装した第1の熱交換器7が接続されてい
る。
A main pipe 5 consisting of an engine hot water supply pipe 5a and a cooling water pipe 5b with a first pump 4 interposed is connected across the outlet and inlet of the engine cooling section of the gas engine 1. To the main pipe 5, a first heat exchanger 7 connected to a water circulation pipe 6 as a working fluid is connected.

【0017】循環配管6には、第2のポンプ8と蒸気発
生装置9と蒸気タービン10と復水器11とが介装され
ている。蒸気タービン10の出力軸10aに、前記ミラ
ーサイクルガスエンジン1に圧縮空気を供給する過給機
12が設けられ、そして、前記蒸気発生装置9には、前
記ミラーサイクルガスエンジン1からの燃焼排ガスを供
給する排ガス供給管13が接続されている。
A second pump 8, a steam generator 9, a steam turbine 10 and a condenser 11 are installed in the circulation pipe 6. The output shaft 10a of the steam turbine 10 is provided with a supercharger 12 for supplying compressed air to the Miller cycle gas engine 1, and the steam generator 9 is provided with the combustion exhaust gas from the Miller cycle gas engine 1. An exhaust gas supply pipe 13 to be supplied is connected.

【0018】以上の構成により、エンジン冷却によって
発生する温水(例えば、温度80〜 100℃)を水の予熱に
利用するとともに、ミラーサイクルガスエンジン1から
の燃焼排ガス(例えば、温度 400〜 750℃)を熱源とし
て水を気化蒸発させ、その蒸気により蒸気タービン10
を駆動して過給機12を駆動し、ミラーサイクルガスエ
ンジン1の動力を低下させずに圧縮空気を供給し、高出
力状態が得られるようになっている。
With the above construction, hot water (for example, a temperature of 80 to 100 ° C.) generated by cooling the engine is used for preheating water, and combustion exhaust gas from the Miller cycle gas engine 1 (for example, a temperature of 400 to 750 ° C.) Is used as a heat source to vaporize and evaporate water, and the steam is used to generate the steam turbine 10
To drive the supercharger 12 to supply compressed air without reducing the power of the Miller cycle gas engine 1 to obtain a high output state.

【0019】図2は、本発明に係る排熱回収システムの
第2実施例を示す概略構成図であり、第1実施例と異な
るところは次の通りである。すなわち、第1実施例にお
ける第1の熱交換器7と復水器11とに代えて、循環配
管6に、吸収式冷凍機14の再生器15と吸収液ポンプ
16と吸収器17とが設けられている。図中、18は凝
縮器、19は蒸発器をそれぞれ示し、アンモニア水溶液
やメタノール水溶液など、要するに、水を吸収剤とし、
水よりも沸点の低いものを冷媒とした吸収液を再生器1
5、吸収器17、凝縮器18および蒸発器19と循環さ
せ、蒸発器19から冷水を取り出し、その冷水を冷房や
冷凍用などの熱源に利用するようになっている。
FIG. 2 is a schematic configuration diagram showing a second embodiment of the exhaust heat recovery system according to the present invention. The difference from the first embodiment is as follows. That is, in place of the first heat exchanger 7 and the condenser 11 in the first embodiment, the circulation pipe 6 is provided with the regenerator 15, the absorption liquid pump 16, and the absorber 17 of the absorption refrigerator 14. Has been. In the figure, 18 is a condenser and 19 is an evaporator, respectively, that is, an aqueous ammonia solution, an aqueous methanol solution, etc.
The regenerator 1 uses an absorbing liquid that has a lower boiling point than water as the refrigerant.
5, the absorber 17, the condenser 18, and the evaporator 19 are circulated, cold water is taken out from the evaporator 19, and the cold water is used as a heat source for cooling or freezing.

【0020】また、冷却水配管5bに三方弁20を介し
て冷却塔21が接続され、図示しないが、エンジン温水
供給管5aに温度センサを設けてミラーサイクルガスエ
ンジン1から排出される冷却後の温水の温度を測定し、
その温水温度が設定範囲内に維持されてオーバーヒート
を回避できるように三方弁20の開度を自動的に調整す
るようになっている。他の構成は第1実施例と同じであ
り、同一図番を付すことにより、その説明は省略する。
A cooling tower 21 is connected to the cooling water pipe 5b via a three-way valve 20, and although not shown, a temperature sensor is provided in the engine hot water supply pipe 5a to discharge the cooled water from the Miller cycle gas engine 1 after cooling. Measure the temperature of hot water,
The opening degree of the three-way valve 20 is automatically adjusted so that the hot water temperature is maintained within the set range and overheat can be avoided. The other structure is the same as that of the first embodiment, and the description thereof is omitted by giving the same drawing numbers.

【0021】この第2実施例の構成によれば、ミラーサ
イクルガスエンジン1から排出される冷却後の温水の排
熱を利用して吸収式冷凍機14を作動し、かつ、再生器
15で予熱された吸収液(例えば、アンモニア水溶液)
から分離された作動流体(吸収液がアンモニア水溶液の
場合は、主として水)が蒸気発生装置9に供給され、前
述第1実施例と同様にして、燃焼排ガスを熱源として蒸
気タービン10を駆動するようになっている。
According to the structure of the second embodiment, the absorption refrigerating machine 14 is operated by utilizing the exhaust heat of the cooled hot water discharged from the Miller cycle gas engine 1, and the regenerator 15 preheats it. Absorbed liquid (eg, aqueous ammonia solution)
The working fluid (mainly water when the absorbing liquid is an aqueous ammonia solution) is supplied to the steam generator 9 so that the steam turbine 10 is driven by using the combustion exhaust gas as a heat source in the same manner as in the first embodiment. It has become.

【0022】図3は、本発明に係る排熱回収システムの
第3実施例を示す概略構成図であり、第2実施例と異な
るところは次の通りである。すなわち、第2実施例にお
ける循環配管6の、蒸気タービン10と吸収器17との
間に、復水器22と第2のポンプ23とが設けられてい
る。また、三方弁20および冷却塔21が省かれてい
る。他の構成は、第2実施例と同じであり、同一図番を
付すことにより、その説明は省略する。
FIG. 3 is a schematic configuration diagram showing a third embodiment of the exhaust heat recovery system according to the present invention. The difference from the second embodiment is as follows. That is, the condenser 22 and the second pump 23 are provided between the steam turbine 10 and the absorber 17 in the circulation pipe 6 in the second embodiment. Further, the three-way valve 20 and the cooling tower 21 are omitted. The other structure is the same as that of the second embodiment, and the description thereof will be omitted by giving the same drawing numbers.

【0023】この第3実施例の構成によれば、蒸気ター
ビン10を経た水を復水器22で冷却することにより、
蒸気タービン10の出入口の圧力差を大きくし、蒸気タ
ービン10の出力を高くできる。
According to the configuration of the third embodiment, by cooling the water passing through the steam turbine 10 with the condenser 22,
The output of the steam turbine 10 can be increased by increasing the pressure difference between the inlet and outlet of the steam turbine 10.

【0024】図4は、本発明に係る排熱回収システムの
第4実施例を示す概略構成図であり、第2実施例と異な
るところは次の通りである。すなわち、第2実施例にお
ける循環配管6の、再生器15と蒸気発生装置9との間
に、第2の熱交換器24が介装され、この第2の熱交換
器24に、燃料電池25から排出される低圧蒸気を供給
する蒸気供給管26が接続されている。また、エンジン
温水供給管5aの途中箇所に、燃料電池25から排出さ
れる温水を供給する燃料電池温水供給管27が接続され
ている。他の構成は、第2実施例と同じであり、同一図
番を付すことにより、その説明は省略する。
FIG. 4 is a schematic block diagram showing a fourth embodiment of the exhaust heat recovery system according to the present invention. The difference from the second embodiment is as follows. That is, the second heat exchanger 24 is interposed between the regenerator 15 and the steam generator 9 in the circulation pipe 6 in the second embodiment, and the fuel cell 25 is connected to the second heat exchanger 24. A steam supply pipe 26 is connected to supply low-pressure steam discharged from the. Further, a fuel cell hot water supply pipe 27 for supplying hot water discharged from the fuel cell 25 is connected to an intermediate part of the engine hot water supply pipe 5a. The other structure is the same as that of the second embodiment, and the description thereof will be omitted by giving the same drawing numbers.

【0025】この第4実施例の構成によれば、ミラーサ
イクルガスエンジン1による発電と燃料電池25による
発電とを組み合わせたコジェネレーションシステムなど
に適用した場合に、そのミラーサイクルガスエンジン1
のみならず、燃料電池25からの排熱をも有効に回収で
きる利点がある。
According to the configuration of the fourth embodiment, when applied to a cogeneration system or the like in which the power generation by the Miller cycle gas engine 1 and the power generation by the fuel cell 25 are combined, the Miller cycle gas engine 1
In addition, there is an advantage that exhaust heat from the fuel cell 25 can be effectively recovered.

【0026】図4において、第2の熱交換器24と蒸気
発生装置9との間に、第1の開閉弁28が介装されると
ともに、その第1の開閉弁28と第2の熱交換器24と
の間と再生器15とが、第2の開閉弁29を介装した配
管30を介して接続され、蒸気タービン10を駆動する
ときには、第1の開閉弁28のみを開き、一方、蒸気タ
ービン10を駆動しないときには第2の開閉弁29のみ
を開いて、第2の熱交換器24を経た吸収液を再生器1
5に戻すように構成されている。
In FIG. 4, a first opening / closing valve 28 is provided between the second heat exchanger 24 and the steam generator 9, and the first opening / closing valve 28 and the second heat exchange valve 28 are exchanged with each other. And the regenerator 15 are connected to each other via a pipe 30 having a second opening / closing valve 29 interposed therebetween, and when driving the steam turbine 10, only the first opening / closing valve 28 is opened, while When the steam turbine 10 is not driven, only the second opening / closing valve 29 is opened so that the absorption liquid that has passed through the second heat exchanger 24 is regenerated by the regenerator 1.
It is configured to return to 5.

【0027】図5は、本発明に係る排熱回収システムの
第5実施例を示す要部の概略構成図であり、第1実施例
と異なるところは次の通りである。すなわち、蒸気ター
ビン10に発電機31が連動連結されて電力を取り出す
ように構成され、一方、過給機12に電動モータ32が
連動連結され、発電機31の電力出力線33と電動モー
タ32とがトランス34を介して接続され、電動モータ
32に設定電力を供給するとともに、余剰電力を別途取
り出すように構成されている。この別途取り出された余
剰電力により別の電動モータを駆動し、その電動モータ
とミラーサイクルガスエンジン1のクランク軸とをギア
などにより連動連結し、ミラーサイクルガスエンジン1
の出力を一層向上させるようにしても良い。もちろん、
発電機31の出力電力は過給機12の駆動用電動モータ
32の動力源としての使用に限定されるものでは無く、
他の用途に使用しても良い。
FIG. 5 is a schematic view of the essential parts of a fifth embodiment of the exhaust heat recovery system according to the present invention. The difference from the first embodiment is as follows. That is, the steam turbine 10 is configured to interlockly connect the generator 31 to take out electric power, while the supercharger 12 is interlockingly connected to the electric power output line 33 of the generator 31 and the electric motor 32. Are connected via a transformer 34 so as to supply set electric power to the electric motor 32 and take out surplus electric power separately. Another electric motor is driven by the surplus power extracted separately, and the electric motor and the crankshaft of the Miller cycle gas engine 1 are interlocked and coupled by a gear or the like, and the Miller cycle gas engine 1
May be further improved. of course,
The output power of the generator 31 is not limited to use as the power source of the electric motor 32 for driving the supercharger 12,
It may be used for other purposes.

【0028】この第5実施例の構成によれば、過給機1
2の能力が一義的に決定されてしまうタイプのエンジ
ン、すなわち、上述のようなミラーサイクルガスエンジ
ン1以外のエンジンに適用する場合において、過給機1
2の能力に合った電力を電動モータ32に供給でき、好
適に使用できる。
According to the configuration of the fifth embodiment, the supercharger 1
2 is applied to an engine of a type in which the capacity of 2 is uniquely determined, that is, an engine other than the Miller cycle gas engine 1 described above, the supercharger 1
It is possible to supply the electric motor 32 with the electric power that matches the capacity of No. 2 and to use it suitably.

【0029】図6は、本発明に係る排熱回収システムの
変形例を示す要部の概略構成図であり、吸収液ポンプ1
6と再生器15との間に第3の熱交換器35が介装さ
れ、再生器15で蒸発された吸収式冷凍機14の冷媒蒸
気(例えば、アンモニア蒸気)を凝縮器18に供給する
前に第3の熱交換器35に供給して冷却し、その冷却効
率を向上するように構成されている。
FIG. 6 is a schematic configuration diagram of a main part showing a modified example of the exhaust heat recovery system according to the present invention.
Before supplying the refrigerant vapor (for example, ammonia vapor) of the absorption refrigerator 14 evaporated in the regenerator 15 to the condenser 18, a third heat exchanger 35 is interposed between the regenerator 15 and the regenerator 15. And is supplied to the third heat exchanger 35 for cooling to improve the cooling efficiency.

【0030】図7は、本発明に係る排熱回収システムの
別の変形例を示す要部の概略構成図であり、凝縮器18
を経た冷却水配管36が給湯タンク37内の下半側を通
してから冷却塔(図示せず)に接続され、一方、蒸気発
生装置9を経た排ガス供給管13が第4の熱交換器38
に接続されるとともに、その第4の熱交換器38と給湯
タンク37内の上半側とにわたって、第3のポンプ39
を介装した循環配管40が設けられている。
FIG. 7 is a schematic configuration diagram of a main part showing another modified example of the exhaust heat recovery system according to the present invention.
Through the lower half side of the hot water supply tank 37 and then connected to a cooling tower (not shown), while the exhaust gas supply pipe 13 through the steam generator 9 is connected to the fourth heat exchanger 38.
The third pump 39 is connected to the fourth heat exchanger 38 and the upper half of the hot water supply tank 37.
A circulation pipe 40 is provided which is interposed.

【0031】給湯タンク37の下部には給水管41が、
上部には給湯管42がそれぞれ接続され、かつ、給湯タ
ンク37の上下方向ほぼ中央部に、給湯管42に接続さ
れる廻し湯用のリターン配管43が接続され、吸収器1
7および凝縮器18での冷却に伴って回収した熱エネル
ギー、ならびに、蒸気発生装置9に供給後の燃焼排ガス
の熱エネルギーを給湯に利用し、排熱をより一層有効に
回収するように構成されている。
At the bottom of the hot water supply tank 37, there is a water supply pipe 41,
The hot water supply pipes 42 are respectively connected to the upper part, and the return pipe 43 for the hot water which is connected to the hot water supply pipe 42 is connected to substantially the center of the hot water supply tank 37 in the vertical direction.
7 and the heat energy of the combustion exhaust gas after being supplied to the steam generator 9 as well as the heat energy recovered by cooling in the condenser 18 are used for hot water supply, and exhaust heat is more effectively recovered. ing.

【0032】本発明は、上述実施例のようなミラーサイ
クルガスエンジン1に限らず、第5実施例の構成を採用
することにより、ディーゼルエンジンやスターリングエ
ンジンなど各種のエンジンを用いる排熱回収システムに
も好適に適用できる。
The present invention is not limited to the Miller cycle gas engine 1 as in the above-described embodiment, but is applicable to an exhaust heat recovery system using various engines such as a diesel engine and a Stirling engine by adopting the configuration of the fifth embodiment. Can also be suitably applied.

【0033】また、上記実施例では、エンジンによって
発電機3を駆動して電力を取り出す、いわゆるコジェネ
レーションシステムを示したが、エンジンによって各種
の機械装置を駆動する場合にも適用できる。
Further, in the above-mentioned embodiment, the so-called cogeneration system in which the engine drives the generator 3 to take out the electric power is shown, but the present invention can be applied to the case where various mechanical devices are driven by the engine.

【0034】[0034]

【発明の効果】以上の説明から明らかなように、請求項
1に係る発明の排熱回収システムによれば、エンジンか
ら排出される燃焼排ガスを利用し、蒸気タービンを駆動
して取り出した動力により、排熱源自体のエンジンの過
給機を作動して圧縮空気をエンジンに供給するから、エ
ンジンのクランク軸と過給機とをギアなどを介して連動
連結せずに済み、過給機駆動のための動力ロスを無くす
ことができ、エンジン排熱を有効に回収してエンジン出
力を向上できるようになった。
As is clear from the above description, according to the exhaust heat recovery system of the first aspect of the invention, the combustion exhaust gas discharged from the engine is used to drive the steam turbine to generate power. Since the exhaust heat source itself operates the turbocharger of the engine to supply compressed air to the engine, it is not necessary to interlock the crankshaft of the engine and the turbocharger via gears, and Power loss can be eliminated and engine exhaust heat can be effectively recovered to improve engine output.

【0035】また、請求項2に係る発明の排熱回収シス
テムによれば、エンジンから排出されるエンジン冷却後
の温水を、吸収式冷凍機の作動と蒸気発生装置に供給す
る吸収液の予熱に利用するから、吸収式冷凍機によって
取り出した冷水を冷房や冷凍などに利用でき、エンジン
排熱をより有効に回収できる。
According to the exhaust heat recovery system of the second aspect of the present invention, the hot water discharged from the engine after engine cooling is used for the operation of the absorption chiller and the preheating of the absorption liquid supplied to the steam generator. Since it is used, the cold water taken out by the absorption refrigerator can be used for cooling and freezing, and the engine exhaust heat can be more effectively recovered.

【0036】ガスエンジン等のエンジンでは、圧縮比を
高くすると出力が高くなるが、圧縮比を高くしすぎると
燃焼室内の温度が高くなり、ノッキングを起こす。この
ため、高圧縮比を保ちつつノッキングを防止して高出力
を得ることが重要である。一方、ミラーサイクルガスエ
ンジンは、圧縮開始時期を調整できる特徴がある。この
ミラーサイクルガスエンジンに、請求項3に係る発明を
適用し、過給機で圧縮された燃焼用空気を供給するとと
もに圧縮開始時期を遅らせると燃焼室内の温度の上昇を
抑えることができる。このため、ノッキングを防止しつ
つ高圧縮比の運転ができ、エンジン出力を高めることが
できる。エンジンのクランク軸から取り出した動力で過
給機を駆動する従来の方法ではメカニカルロスが大きく
なる。また、排熱回収で発電した電力で過給機を駆動す
ると発電ロスおよびモーターロスが発生する。これに対
して、排熱で駆動する蒸気タービンを過給機に連動連結
した請求項3に係る発明の排熱回収システムでは、メカ
ニカルロスが少ないうえ、排熱回収によって得られる動
力がフルに利用できるようにミラーサイクルガスエンジ
ンの吸入弁の閉止タイミングを調整すると、エンジン全
体の熱効率を飛躍的に向上させることができる。エンジ
ン排熱による過給機の作動に圧縮比を合わせて高出力状
態を得ることができるから、例えば、過給機の作動をエ
ンジンに合わせるために、蒸気タービンと過給機との連
動連結構成にギア変速とか周波数調整といった特別な構
成を付加せずに済み、過給機駆動のための動力ロスを無
くすこともできる。このため、構成簡単にしてより一層
エンジン出力を向上できる。
In an engine such as a gas engine, the output is increased when the compression ratio is increased, but if the compression ratio is too high, the temperature in the combustion chamber rises and knocking occurs. Therefore, it is important to prevent knocking and obtain high output while maintaining a high compression ratio. On the other hand, the Miller cycle gas engine has a feature that the compression start timing can be adjusted. When the invention according to claim 3 is applied to this Miller cycle gas engine and combustion air compressed by a supercharger is supplied and the compression start timing is delayed, the temperature rise in the combustion chamber can be suppressed. Therefore, it is possible to operate at a high compression ratio while preventing knocking, and it is possible to increase the engine output. The mechanical loss increases in the conventional method of driving the supercharger with the power taken out from the crankshaft of the engine. Further, when the supercharger is driven by the electric power generated by the exhaust heat recovery, power generation loss and motor loss occur. On the other hand, in the exhaust heat recovery system of the invention according to claim 3 in which the steam turbine driven by exhaust heat is linked to the supercharger, the mechanical loss is small and the power obtained by the exhaust heat recovery is fully utilized. Adjusting the closing timing of the intake valve of the Miller cycle gas engine so that the thermal efficiency of the entire engine can be dramatically improved. Since it is possible to obtain a high output state by matching the compression ratio with the operation of the supercharger due to engine exhaust heat, for example, in order to match the operation of the supercharger with the engine, the interlocking connection configuration of the steam turbine and the supercharger is used. It is not necessary to add a special structure such as gear shifting or frequency adjustment to the power supply, and power loss for driving the supercharger can be eliminated. Therefore, the engine output can be further improved by simplifying the configuration.

【0037】また、請求項4に係る発明の排熱回収シス
テムによれば、エンジンおよび燃料電池から排出される
低温排熱である温水を吸収式冷凍機の作動に利用し、更
に、燃料電池から排出される高温排熱である低圧蒸気と
エンジンから排出される高温排熱である燃焼排ガスによ
り、再生器で予熱された吸収液の加熱に利用するから、
エンジンおよび燃料電池のいずれの排熱をも有効に回収
できる。
According to the exhaust heat recovery system of the invention as defined in claim 4, the hot water, which is the low temperature exhaust heat discharged from the engine and the fuel cell, is utilized for the operation of the absorption refrigerator, and further, from the fuel cell. The low-pressure steam that is the high-temperature exhaust heat that is discharged and the combustion exhaust gas that is the high-temperature exhaust heat that is discharged from the engine are used to heat the absorption liquid that has been preheated in the regenerator.
Exhaust heat from both the engine and the fuel cell can be effectively recovered.

【0038】また、請求項5に係る発明の排熱回収シス
テムによれば、排熱を電力として回収できる。
According to the exhaust heat recovery system of the fifth aspect of the invention, the exhaust heat can be recovered as electric power.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る排熱回収システムの第1実施例を
示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a first embodiment of an exhaust heat recovery system according to the present invention.

【図2】本発明に係る排熱回収システムの第2実施例を
示す概略構成図である。
FIG. 2 is a schematic configuration diagram showing a second embodiment of the exhaust heat recovery system according to the present invention.

【図3】本発明に係る排熱回収システムの第3実施例を
示す概略構成図である。
FIG. 3 is a schematic configuration diagram showing a third embodiment of the exhaust heat recovery system according to the present invention.

【図4】本発明に係る排熱回収システムの第4実施例を
示す概略構成図である。
FIG. 4 is a schematic configuration diagram showing a fourth embodiment of the exhaust heat recovery system according to the present invention.

【図5】本発明に係る排熱回収システムの第5実施例を
示す要部の概略構成図である。
FIG. 5 is a schematic configuration diagram of essential parts showing a fifth embodiment of the exhaust heat recovery system according to the present invention.

【図6】本発明に係る排熱回収システムの変形例を示す
要部の概略構成図である。
FIG. 6 is a schematic configuration diagram of a main part showing a modified example of the exhaust heat recovery system according to the present invention.

【図7】本発明に係る排熱回収システムの別の変形例を
示す要部の概略構成図である。
FIG. 7 is a schematic configuration diagram of a main part showing another modified example of the exhaust heat recovery system according to the present invention.

【符号の説明】[Explanation of symbols]

1…ミラーサイクルガスエンジン 2…伝動クラッチ 3…発電機 5a…エンジン温水供給管 6…循環配管 7…第1の熱交換器 9…蒸気発生装置 10…蒸気タービン 11…復水器 12…過給機 13…排ガス供給管 14…吸収式冷凍機 15…再生器 17…吸収器 24…第2の熱交換器 25…燃料電池 26…蒸気供給管 27…燃料電池温水供給管 31…発電機 1 ... Miller cycle gas engine 2 ... Transmission clutch 3 ... Generator 5a ... Engine hot water supply pipe 6 ... Circulation piping 7 ... First heat exchanger 9 ... Steam generator 10 ... Steam turbine 11 ... Condenser 12 ... Supercharge Machine 13 ... Exhaust gas supply pipe 14 ... Absorption refrigerator 15 ... Regenerator 17 ... Absorber 24 ... Second heat exchanger 25 ... Fuel cell 26 ... Steam supply pipe 27 ... Fuel cell hot water supply pipe 31 ... Generator

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02G 5/04 B F25B 27/02 K H01M 8/04 J Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location F02G 5/04 B F25B 27/02 K H01M 8/04 J

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 エンジンからの排ガスを熱源とする蒸気
発生装置に接続した作動流体の循環配管に蒸気タービン
を設け、前記蒸気タービンに前記エンジンの過給機を連
動連結したことを特徴とする排熱回収システム。
1. An exhaust system characterized in that a steam turbine is provided in a circulation pipe for a working fluid connected to a steam generator using exhaust gas from an engine as a heat source, and a supercharger of the engine is linked to the steam turbine. Heat recovery system.
【請求項2】 請求項1に記載の排熱回収システムにお
いて、エンジンから排出される温水を供給するエンジン
温水供給管を吸収式冷凍機の再生器に接続し、その再生
器で予熱された吸収液を作動流体として蒸気発生装置に
供給する排熱回収システム。
2. The exhaust heat recovery system according to claim 1, wherein an engine hot water supply pipe for supplying hot water discharged from the engine is connected to a regenerator of an absorption chiller and preheated by the regenerator. An exhaust heat recovery system that supplies liquid as a working fluid to a steam generator.
【請求項3】 請求項1または2に記載のエンジンがミ
ラーサイクルガスエンジンである排熱回収システム。
3. An exhaust heat recovery system, wherein the engine according to claim 1 or 2 is a Miller cycle gas engine.
【請求項4】 請求項2または3に記載の再生器に、燃
料電池から排出される温水を供給する燃料電池温水供給
管を接続し、前記再生器と蒸気発生装置との間に熱交換
器を付設するとともに、前記燃料電池から排出される低
圧蒸気を供給する蒸気供給管を前記熱交換器に接続して
ある排熱回収システム。
4. A fuel cell hot water supply pipe for supplying hot water discharged from a fuel cell is connected to the regenerator according to claim 2 or 3, and a heat exchanger is provided between the regenerator and the steam generator. And a steam supply pipe for supplying low-pressure steam discharged from the fuel cell to the heat exchanger.
【請求項5】 エンジンからの排ガスを熱源とする蒸気
発生装置に接続した作動流体の循環配管に蒸気タービン
を設け、前記蒸気タービンで発電機を駆動することを特
徴とする排熱回収システム。
5. An exhaust heat recovery system characterized in that a steam turbine is provided in a working fluid circulation pipe connected to a steam generator using exhaust gas from an engine as a heat source, and a generator is driven by the steam turbine.
JP12063494A 1994-05-10 1994-05-10 Waste heat recovery system Expired - Fee Related JP3640411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12063494A JP3640411B2 (en) 1994-05-10 1994-05-10 Waste heat recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12063494A JP3640411B2 (en) 1994-05-10 1994-05-10 Waste heat recovery system

Publications (2)

Publication Number Publication Date
JPH07305606A true JPH07305606A (en) 1995-11-21
JP3640411B2 JP3640411B2 (en) 2005-04-20

Family

ID=14791084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12063494A Expired - Fee Related JP3640411B2 (en) 1994-05-10 1994-05-10 Waste heat recovery system

Country Status (1)

Country Link
JP (1) JP3640411B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012739A (en) * 2004-06-29 2006-01-12 Sinanen Co Ltd Fuel cell exhaust heat utilization system capable of effectively utilizing exhaust heat of fuel cell and building
GB2457744A (en) * 2008-02-22 2009-08-26 David Matthews Six-stroke compressed air and internal combustion engine combination
JP2010501785A (en) * 2006-12-05 2010-01-21 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Supercharger
WO2011046041A1 (en) 2009-10-16 2011-04-21 三菱重工業株式会社 Miller cycle engine
KR101300714B1 (en) * 2012-03-07 2013-08-26 대우조선해양 주식회사 Energy saving system of ship by using waste heat and recirculating exhaust gas
WO2018195633A1 (en) * 2017-04-26 2018-11-01 Associação Paranaense De Cultura - Apc Combined atkinson or miller and binary isobaric-adiabatic cycle engine and process for controlling the thermodynamic cycle of the combined cycle engine
WO2018195634A1 (en) * 2017-04-26 2018-11-01 Associação Paranaense De Cultura - Apc Combined atkinson or miller and binary isothermal-adiabatic cycle engine and process for controlling the thermodynamic cycle of the combined cycle engine
CN110080839A (en) * 2019-04-02 2019-08-02 华电电力科学研究院有限公司 Solve back pressure turbine thrust bearing shoe valve and the excessively high system and method for bearing return oil temperature in distributed energy resource system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012739A (en) * 2004-06-29 2006-01-12 Sinanen Co Ltd Fuel cell exhaust heat utilization system capable of effectively utilizing exhaust heat of fuel cell and building
JP2010501785A (en) * 2006-12-05 2010-01-21 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Supercharger
GB2457744A (en) * 2008-02-22 2009-08-26 David Matthews Six-stroke compressed air and internal combustion engine combination
WO2011046041A1 (en) 2009-10-16 2011-04-21 三菱重工業株式会社 Miller cycle engine
KR101300714B1 (en) * 2012-03-07 2013-08-26 대우조선해양 주식회사 Energy saving system of ship by using waste heat and recirculating exhaust gas
WO2018195633A1 (en) * 2017-04-26 2018-11-01 Associação Paranaense De Cultura - Apc Combined atkinson or miller and binary isobaric-adiabatic cycle engine and process for controlling the thermodynamic cycle of the combined cycle engine
WO2018195634A1 (en) * 2017-04-26 2018-11-01 Associação Paranaense De Cultura - Apc Combined atkinson or miller and binary isothermal-adiabatic cycle engine and process for controlling the thermodynamic cycle of the combined cycle engine
CN110080839A (en) * 2019-04-02 2019-08-02 华电电力科学研究院有限公司 Solve back pressure turbine thrust bearing shoe valve and the excessively high system and method for bearing return oil temperature in distributed energy resource system

Also Published As

Publication number Publication date
JP3640411B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
US6941759B2 (en) Solar power enhanced combustion turbine power plants and methods
CN106246268B (en) A kind of engine residual heat integrative recovery system
US5609029A (en) Thermal power engine and its operating method
CN206942884U (en) A kind of distributed energy resource system of LNG Power Vessels
JPH08144850A (en) Exhaust heat recovery system
JP4274619B2 (en) Waste heat recovery system
JPS5925154B2 (en) hot water making machine
US9030034B2 (en) Stationary power plant, in particular a gas power plant, for generating electricity
CN109519243A (en) Supercritical CO2With ammonium hydroxide combined cycle system and electricity generation system
US4087974A (en) Method and apparatus for generating steam
CN110567026B (en) Thermoelectric decoupling system of heat storage tank coupling absorption heat pump and operation method
Horuz Vapor absorption refrigeration in road transport vehicles
JP3640411B2 (en) Waste heat recovery system
JPH0354327A (en) Surplus power utilizing system
CN207715201U (en) A kind of double ORC afterheat utilizing systems of Vehicular internal combustion engine
CN109989848A (en) A kind of cascade recovery system for the more quality waste heats of I. C. engine exhaust
JPH1122418A (en) Steam plant
JP2752334B2 (en) Exhaust heat recovery system
CN107477905A (en) Reabsorb with absorbing the Absorption heat-transformer system and method that heat exchange occurs and combines
JP2942852B2 (en) Evaporative cooling engine of cogeneration
CN1222639A (en) Combined air conditioning system
JP4265714B2 (en) Waste heat absorption refrigerator
CN217763718U (en) Deep recovery type flue gas hot water type cold and warm water unit
JPH0828209A (en) Exhaust heat recovery system
JP2000018757A (en) Cooler

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees