JPH07305111A - High workability steel sheet and method for increasing its strength by irradiation of high density energy - Google Patents

High workability steel sheet and method for increasing its strength by irradiation of high density energy

Info

Publication number
JPH07305111A
JPH07305111A JP32537894A JP32537894A JPH07305111A JP H07305111 A JPH07305111 A JP H07305111A JP 32537894 A JP32537894 A JP 32537894A JP 32537894 A JP32537894 A JP 32537894A JP H07305111 A JPH07305111 A JP H07305111A
Authority
JP
Japan
Prior art keywords
less
steel sheet
strength
nitrogen
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32537894A
Other languages
Japanese (ja)
Inventor
Tetsuo Toyoda
哲夫 十代田
Koichi Makii
浩一 槇井
Akihito Sato
章仁 佐藤
Shinichiro Nakamura
真一郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Toyota Motor Corp
Original Assignee
Kobe Steel Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Toyota Motor Corp filed Critical Kobe Steel Ltd
Priority to JP32537894A priority Critical patent/JPH07305111A/en
Publication of JPH07305111A publication Critical patent/JPH07305111A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To increase the strength of the prescribed part of a high workability steel by irradiating the prescribed part of a high workability steel sheet with high density energy to form a molten zone penetrated by the same, furthermore adding nitrogen to the molten zone and rapidly solidifying the same to regulate the concn. of nitrogen to a specified one. CONSTITUTION:Prior to the working of a high workability steel sheet or after the working, the prescribed part is irradiated with high density energy (laser beam) in an atmosphere of gaseous nitrogen to form a molten zone penetrating the prescribed part, and furthermore, nitrogen is added to the molten zone. Next, this steel sheet is rapidly solidified to regulate the nitrogen concn. in the solidified phase to 300 to 800ppm. moreover, the compsn. of the steel preferably regulated to the one contg., by weight, <=0.1% C, <=2.0% Si, <=3.0% Mn, <=100ppm N (not contg. zero in every cases), and the balance Fe with inevitable impurities. Thus, the strength of the prescribed part of the high workability steel sheet can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高加工性鋼板を高強度
化する技術に関し、詳細には高加工性鋼板の有する高加
工特性に悪影響を与えることなく所望部位を高強度化す
る方法、即ち該高加工性鋼板を加工してから高強度化を
図りたい場合には加工後に高強度化したい部分を選んで
(加工前に高強度化したいときは強加工を行なわない箇
所を選んで)、その部位に高密度エネルギー源からの照
射を行って高強度化する方法に関するものである。なお
以下の説明においては、自動車用部材のひとつであるメ
ンバー類を代表的に取り上げて説明するが、本発明の適
用対象鋼板はこれによって制限されるものではなく、上
記両特性の要求される分野に対して広く利用することが
できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for strengthening a high workability steel plate, and more particularly, a method for strengthening a desired portion without adversely affecting the high workability of the high workability steel plate, That is, if it is desired to increase the strength after processing the high workability steel sheet, select a portion to be strengthened after processing (if you want to increase the strength before processing, select a portion that is not subjected to strong processing). The present invention relates to a method of irradiating the portion with a high-density energy source to increase the strength. In the following description, the members that are one of the members for automobiles will be described as a representative example, but the steel sheet to which the present invention is applied is not limited thereto, and is a field in which both the above characteristics are required. Can be widely used against.

【0002】[0002]

【従来の技術】自動車用部材、特にメンバー類等は加工
性と強度という2つの相反する特性が要求されている。
即ちメンバー類を自動車ボディの滑らかな曲線に添わせ
るように配置するためには優れた加工性を有しているこ
とが必要であり、一方いったん装着した後は、走行中の
衝突事故に対して優れた防護作用を発揮するという立場
から所定の部分が希望強度まで高強度化されておらなけ
ればならない。そこで加工性に富んだ軟鋼板をプレス成
形した後で高密度エネルギー源による照射を行い、該プ
レス成形部品の所定部分を高強度化するという技術が提
案されている(特開昭61−99629)。しかしなが
ら前記特許公開公報に記載された照射条件によれば、高
強度エネルギー源から例えばレーザ照射を行うと、板厚
方向における熱影響の度合いが不均一となって形状に歪
みを生じ、レーザ処理後の形状修正が必要になること、
並びにレーザ照射の必要本数が非常に多くなり、全処理
時間が長くなってしまうという点で実用化が妨げられて
いた。
2. Description of the Related Art Automotive members, particularly members and the like, are required to have two contradictory characteristics, that is, workability and strength.
In other words, it is necessary to have excellent workability in order to arrange the members so that they follow the smooth curve of the car body. From the standpoint of exerting an excellent protective action, it is necessary that the prescribed part be strengthened to the desired strength. Therefore, a technique has been proposed in which a mild steel sheet having high workability is press-formed and then irradiated with a high-density energy source to increase the strength of a predetermined portion of the press-formed part (Japanese Patent Laid-Open No. 61-99629). . However, according to the irradiation conditions described in the above-mentioned patent publication, for example, when laser irradiation is performed from a high intensity energy source, the degree of thermal influence in the plate thickness direction becomes uneven and distortion occurs in the shape, and after laser processing It is necessary to modify the shape of
In addition, the number of laser irradiations required is very large, and the total processing time becomes long, which impedes practical application.

【0003】一方特開平4−72010にも、プレス成
形品にレーザ照射を行って強度上昇をはかる技術が開示
されている。この特許公開公報においては、炭素鋼板を
用いてレーザ処理を行ったときには強度上昇が得られる
旨示されている。しかしながらこの特許公開公報におい
ては、鋼板組成に関しては炭素量に言及しているのみ
で、合金成分や金属組織とレーザ処理条件についての関
係、さらにはそれらと強度上昇量の関係については全く
知見が得られていない。これに対し本発明者等の研究に
よれば、レーザ処理時の強度上昇は、レーザ処理条件だ
けではなく、合金成分や金属組織にも大きく依存してい
ることが明らかになった。従ってレーザ処理によって大
幅な強度上昇を得るためには、この関係を明確にするこ
とが必要であり、この様な観点から種々検討を行った結
果、先に特願平4−230569、同230570、同
230574〜230577等の特許出願を行なった。
On the other hand, Japanese Patent Application Laid-Open No. 4-72010 discloses a technique of irradiating a press-formed product with laser to increase the strength. In this patent publication, it is shown that an increase in strength can be obtained when laser processing is performed using a carbon steel sheet. However, in this patent publication, only the carbon content is referred to regarding the steel plate composition, and it is completely possible to obtain the knowledge about the relationship between the alloy composition and the metal structure and the laser processing condition, and the relationship between them and the strength increase amount. Has not been done. On the other hand, the research conducted by the present inventors has revealed that the increase in strength during laser processing largely depends not only on the laser processing conditions but also on the alloy components and the metal structure. Therefore, it is necessary to clarify this relationship in order to obtain a large increase in strength by laser processing. As a result of various studies from this viewpoint, Japanese Patent Application Nos. 4-230569, 230570, The patent applications such as the above-mentioned 230574 to 230577 were filed.

【0004】このようなプレス成形前及びその後のレー
ザ硬化処理を基本構成とする従来技術においては、対象
鋼の合金成分や金属組織及び高密度エネルギー源による
照射条件が検討の中心課題となっており、対象鋼の合金
成分や金属組織を特定しなくとも該照射部位を常に高強
度化することができる様な技術の提供という観点からの
研究は不十分なものであった。その為先に述べた如く、
合金成分や金属組織が著しく制限され、その結果として
鋼板の加工性がおのずと制限されざるを得なかったとい
う実情がある。従って素材鋼板の合金成分や金属組織等
の制限を余り受けることなく上記の様な高強度化を確実
に達成することができる技術の完成が待たれていた。
In the prior art based on the laser hardening treatment before and after such press forming as a basic constitution, the alloying components of the target steel, the metal structure, and the irradiation conditions by the high-density energy source are the main subjects of the study. However, research has been insufficient from the viewpoint of providing a technique capable of constantly increasing the strength of the irradiated portion without specifying the alloy composition or metallographic structure of the target steel. Therefore, as mentioned above,
The alloy composition and the metal structure are remarkably limited, and as a result, the workability of the steel sheet is naturally limited. Therefore, there has been awaited the completion of a technique capable of reliably achieving the above-described high strength without being limited by the alloy composition and metal structure of the raw steel sheet.

【0005】なお特開昭61−232087には、焦点
距離の長い集光レンズによるレーザ溶接において、N2
ガスもしくはN2 とArの混合ガスを用いて溶け込みを
深くする技術が開示されている。しかしながらこの技術
は、N2 ガスにレーザを照射した時のプラズマ発生状況
に着目したものであり、以下詳述していく様な本発明と
は技術思想上全く異なるものである。
Japanese Patent Laid-Open No. 61-232087 discloses that N 2 is used in laser welding using a condenser lens having a long focal length.
A technique for deepening the penetration by using a gas or a mixed gas of N 2 and Ar is disclosed. However, this technique focuses on the state of plasma generation when N 2 gas is irradiated with a laser, and is completely different in technical concept from the present invention described in detail below.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは、高密度
エネルギー照射による高強度化効果を、合金元素の種類
や金属組織等の制限を余り受けることなく安定して高度
に達成することのできる方法を検討した。即ち加工性に
ついての悪影響を余り受けることのない素材を選んだ場
合であっても、高密度エネルギー照射によって形成され
る溶融域の雰囲気ガスを窒素リッチに制御すれば、即ち
それによって溶融域の鋼を窒化すれば、素材鋼板の違い
による差を余り受けることなく高強度化を達成できるこ
とを見い出し本発明を完成するに至った。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention The inventors of the present invention are to achieve a high strength effect by high-density energy irradiation stably and highly without being limited by the kinds of alloying elements and metal structures. I examined possible methods. That is, even if a material that does not significantly affect the workability is selected, if the atmosphere gas in the melting region formed by high-density energy irradiation is controlled to be nitrogen-rich, that is, the steel in the melting region is It has been found that, by nitriding the steel, it is possible to achieve high strength without being greatly affected by the difference in the material steel plates, and the present invention has been completed.

【0007】[0007]

【課題を解決するための手段】本発明の高強度化達成方
法とは、高加工性鋼板に対し、加工に先立つて、または
加工を行った後に、該鋼板または加工品の所定部位に高
密度エネルギーを照射し、該所定部位を貫通する溶融域
を形成すると共に、該溶融域に窒素を添加し、次いでこ
れを急速凝固させて該凝固相中の窒素濃度を300−8
00ppmとすることを基本構成要旨とするものであ
る。
[Means for Solving the Problems] The method for achieving high strength according to the present invention means that a high workability steel sheet is densely formed on a predetermined portion of the steel sheet or the processed product before or after the working. Energy is irradiated to form a melting zone penetrating the predetermined portion, nitrogen is added to the melting zone, and then this is rapidly solidified to adjust the nitrogen concentration in the solidification phase to 300-8.
The basic constitution is to set it to 00 ppm.

【0008】本発明高強度化方法を適用するに好適な素
材鋼板は、上記説明主旨に述べた如く、合金成分や金属
組織という面からの制限を受けるものではないが、合金
成分に関しては、下記に示す様な成分を含有するものが
特に好まれる。 C :0.1%以下(0%を含まない) Si:2.0%以下(0%を含まない) Mn:2.5%以下(0%を含まない) N :100ppm以下(0ppmを含む) を含んで残部がFe及び不可避的不純物よりなるもの、
更には、 Cr:2.5%以下(0%を含む) Nb:0.3%以下(0%を含む) V :0.3%以下(0%を含む) のいずれか1種以上を含むもの、更には、 P :0.15%以下(0%を含む) Cu:2.5%以下(0%を含む) Ni:1.5%以下(0%を含む) Mo:1.0%以下(0%を含む) Ti:0.1%以下(0%を含む) Zr:0.1%以下(0%を含む) W :0.1%以下(0%を含む) B :50ppm 以下(0%を含む) REM:0.02%以下(0%を含む) Ca:0.02%以下(0%を含む) Al:0.1%以下(0%を含む) のいずれか1種以上を含むもの。
The material steel sheet suitable for applying the strengthening method of the present invention is not limited by the alloy component and the metal structure, as described in the above description, but the alloy component is as follows. Those containing components such as those shown in are particularly preferred. C: 0.1% or less (0% is not included) Si: 2.0% or less (0% is not included) Mn: 2.5% or less (0% is not included) N: 100 ppm or less (0 ppm is included) ) And the balance consisting of Fe and inevitable impurities,
Furthermore, Cr: 2.5% or less (including 0%) Nb: 0.3% or less (including 0%) V: 0.3% or less (including 0%) Further, P: 0.15% or less (including 0%) Cu: 2.5% or less (including 0%) Ni: 1.5% or less (including 0%) Mo: 1.0% Below (including 0%) Ti: 0.1% or less (including 0%) Zr: 0.1% or less (including 0%) W: 0.1% or less (including 0%) B: 50 ppm or less (Including 0%) REM: 0.02% or less (including 0%) Ca: 0.02% or less (including 0%) Al: 0.1% or less (including 0%) Including the above.

【0009】[0009]

【作用】本発明は高密度エネルギーの照射によって形成
される溶融域の中に窒素を添加(窒化)することを要点
とするものであるから、溶融域形成部の雰囲気ガス中に
おける窒素ガス濃度を高めておくことが必要である。こ
の様な窒化方法としては、レーザ照射時のアシストガス
として窒素を含む不活性ガスを用いて溶鋼を窒化する方
法が代表的手段として例示されるが、本発明は窒化方法
を規定するものではなく、例えばチャンバ内において雰
囲気ガスを窒素ガス雰囲気またはアンモニアガス等の窒
化雰囲気としてレーザ照射しても良い。表1の鋼種1を
用い、アシストガスの窒素分率を変えてレーザ照射実験
を行なった。結果を表2に示す。
In the present invention, the main point is to add (nitriding) nitrogen into the melting region formed by irradiation with high-density energy. It is necessary to raise it. As such a nitriding method, a method of nitriding molten steel by using an inert gas containing nitrogen as an assist gas at the time of laser irradiation is exemplified as a typical means, but the present invention does not prescribe a nitriding method. Alternatively, for example, laser irradiation may be performed in the chamber as a nitrogen gas atmosphere or a nitriding atmosphere such as ammonia gas. A laser irradiation experiment was conducted using steel type 1 in Table 1 and changing the nitrogen fraction of the assist gas. The results are shown in Table 2.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】ここではレーザ出力3kw,走査速度3m
/分で行なった。これから分かる様に、ビード部の窒素
量が300ppm以上に増加すると窒化に伴う強度上昇
量が増大し、さらに800ppm以上になると強度上昇
量がかえって低下することがわかる。
Here, the laser output is 3 kw and the scanning speed is 3 m.
/ Min. As can be seen, when the amount of nitrogen in the bead portion is increased to 300 ppm or more, the amount of strength increase due to nitriding is increased, and when it is 800 ppm or more, the amount of strength increase is rather decreased.

【0013】また図1には表1の鋼種1を用い、窒素ガ
ス50%/アルゴンガス50%の混合ガスを用いてレー
ザ照射条件を変えて強度上昇量を計った結果を示した
(試験片の形状、寸法およびレーザ照射位置は図1中に
併記)。ここでは100J/mm2 以上の高密度エネル
ギーを用いたことによって大きな強度上昇量が得られて
いる。これは板厚を貫通する溶融層が得られる条件と一
致しており、この条件が必要であることが分かる。表2
にはビードの最高硬さも示したが、ビード部の窒素量が
300ppm以上においては最高硬さが大幅に上昇して
おり、これが強度上昇の原因と考えられる。しかし、最
高硬さは800pp以上の窒化によっても低下していな
い。そこで硬さが低下しないのにもかかわらず強度上昇
量が低下している原因を究明すべく引張試験片の破面観
察を行なった。その結果窒素量が800ppmを超える
試験片においては破面にブローホールが多数観察され
た。つまり窒素量が800ppmを超えると凝固時に多
量のブローホールを生じ、これが引張強度の上昇を妨げ
ていることが分かった。次に、本発明鋼板において特に
望ましい合金成分として上記に掲げたものについて、夫
々の選定理由と成分範囲を推奨した理由について説明す
る。
In addition, FIG. 1 shows the results of measuring the amount of increase in strength by using steel type 1 in Table 1 and changing the laser irradiation conditions using a mixed gas of nitrogen gas 50% / argon gas 50% (test piece). The shape, size, and laser irradiation position are also shown in FIG. Here, a large amount of increase in strength is obtained by using high density energy of 100 J / mm 2 or more. This is consistent with the condition that a molten layer penetrating the plate thickness is obtained, and it is understood that this condition is necessary. Table 2
Also shows the maximum hardness of the bead, but the maximum hardness is significantly increased when the nitrogen content in the bead portion is 300 ppm or more, which is considered to be the cause of the strength increase. However, the maximum hardness is not lowered even by nitriding at 800 pp or more. Therefore, the fracture surface of the tensile test piece was observed in order to investigate the cause of the decrease in the strength increase despite the hardness not decreasing. As a result, a large number of blowholes were observed on the fracture surface in the test piece having a nitrogen content of more than 800 ppm. That is, it was found that when the nitrogen content exceeds 800 ppm, a large amount of blowholes are generated during solidification, which prevents the tensile strength from increasing. Next, the reasons for selecting each of the above-listed particularly preferable alloy components in the steel sheet of the present invention and the reason for recommending the component range will be described.

【0014】本発明鋼は、特にプレス成形等の冷間加工
用途に好適なものでなければならずこのためにはCはそ
の添加量が少ないほど好ましい。また上述した窒化によ
る強度の上昇効果は、C量の低い領域において顕著にな
る。このような観点から、C量の上限を0.1%と定め
た。
The steel of the present invention must be particularly suitable for cold working such as press forming. For this purpose, the smaller the amount of C added, the more preferable. Further, the above-described effect of increasing the strength by nitriding becomes remarkable in the region where the C content is low. From such a viewpoint, the upper limit of the amount of C is set to 0.1%.

【0015】Siはレーザ処理性改善のため、あるいは
素材鋼板の各種要求特性に応じて添加されるが、2.0
%を超えると表面肌荒れを起こすので、上限を2.0%
とした。Mnはレーザ加工による強度上昇に必須の元素
であり、また素材鋼板の各種要求特性に応じて添加され
る。しかしあまり多量に添加すると鋼板の冷間成形性を
損なうので、添加量の上限は3.0%、好ましくは2.
5%とする。下限値は特に限定されないが、好ましくは
1.2%以上の添加が推奨される。
Si is added in order to improve the laser processability or according to various required characteristics of the raw steel sheet.
%, The surface becomes rough, so the upper limit is 2.0%.
And Mn is an element essential for increasing the strength by laser processing, and is added according to various required properties of the raw steel sheet. However, if too much is added, the cold formability of the steel sheet is impaired, so the upper limit of the addition is 3.0%, preferably 2.
5%. The lower limit is not particularly limited, but it is recommended to add 1.2% or more.

【0016】Nについては、本発明鋼が特にプレス成形
等の冷間加工用途に好適なものでなければならないとい
う観点から、その添加量は少ないほど好ましい。100
ppmを超えるNが存在すると、素材鋼板の伸びが大幅
に劣化するので、上限は100ppmと定めた。本発明
における代表的含有元素は上記のとおりであり、残部は
Fe及び不可避的不純物であるが、所望によっては以下
に示す様な元素を添加することもできる。
From the viewpoint that the steel of the present invention must be particularly suitable for cold working applications such as press forming, the N content is preferably as small as possible. 100
The presence of N in excess of ppm significantly deteriorates the elongation of the raw steel sheet, so the upper limit was set to 100 ppm. The typical contained elements in the present invention are as described above, and the balance is Fe and unavoidable impurities. However, if desired, the following elements can be added.

【0017】Crはレーザ処理による強度上昇、特に窒
化を併用した時の強度向上に有効であるが、必要以上に
添加することは不経済であるので、上限は2.5%とし
た。下限値は特に限定されないが、好ましくは0.3%
以上の添加が推奨される。
Cr is effective in increasing the strength by laser treatment, especially in strength when nitriding is also used, but it is uneconomical to add more than necessary, so the upper limit was made 2.5%. The lower limit is not particularly limited, but is preferably 0.3%
The above additions are recommended.

【0018】Nbも窒化を併用した時のレーザ処理によ
る強度上昇に有効であるが、必要以上に添加することは
不経済であるので、上限は0.3%とした。下限値は特
に限定されないが、好ましくは0.005%以上の添加
が推奨される。Vも窒化を併用した時のレーザ処理によ
る強度上昇に有効であるが、必要以上に添加することは
不経済であるので、上限は0.3%とした。下限値は特
に限定されないが、好ましくは0.005%以上の添加
が推奨される。
Nb is also effective in increasing the strength by laser treatment when nitriding is also used, but it is uneconomical to add more than necessary, so the upper limit was made 0.3%. The lower limit is not particularly limited, but it is recommended to add 0.005% or more. V is also effective for increasing the strength by laser treatment when nitriding is also used, but it is uneconomical to add more than necessary, so the upper limit was made 0.3%. The lower limit is not particularly limited, but it is recommended to add 0.005% or more.

【0019】上記元素のほか、更に次の様な元素を添加
することも推奨される場合がある。Pは含有量を少なく
することによって冷間加工性を向上できるが、鋼の強化
元素としても期待されるので、必要に応じて添加するこ
ともある。しかし0.15%を超えて多量に添加する
と、鋼の脆化が著しくなるので添加量は0.15%以下
とする。
In addition to the above elements, it may be recommended to add the following elements. Although the cold workability can be improved by reducing the content of P, it is expected as a strengthening element for steel, so P may be added if necessary. However, if a large amount is added in excess of 0.15%, the embrittlement of the steel becomes remarkable, so the addition amount is made 0.15% or less.

【0020】Cuは時効析出によって素材強度を確保す
る機能を発揮するものであり、しかも母材の耐食性を向
上させることができるので、素材の特性向上元素として
有効である。しかしながら多量に添加する場合には鋼板
に表面疵を生じさせるので、Niとの複合添加によって
その改善をはかることが必要になる。従ってCuとNi
を複合添加するとともに、その添加量はCuに対しては
2.5%以下、Niに対しては経済的理由により1.5
%以下するのが望ましい。下限値は特に限定されない
が、好ましくはCu:0.4%以上、Ni:0.4%以
上の添加が推奨される。
Cu has the function of ensuring the strength of the material by aging precipitation, and can improve the corrosion resistance of the base material, and is therefore an effective element for improving the characteristics of the material. However, when added in a large amount, surface defects are generated in the steel sheet, and therefore it is necessary to improve the effect by adding Ni together. Therefore Cu and Ni
In addition to the composite addition, the addition amount is 2.5% or less for Cu and 1.5 for Ni for economic reasons.
% Or less is desirable. The lower limit is not particularly limited, but it is recommended to add Cu: 0.4% or more and Ni: 0.4% or more.

【0021】Moはレーザ処理による強度上昇に有効な
元素であるが、1.0%を超えて多量に添加すること
は、経済上の不利益となるので、上限は1.0%とす
る。またTi,Zr,Wの各元素は鋼の強度上昇に有効
であるが、上限は経済的制約から夫々0.1%とする。
Mo is an element effective in increasing the strength by laser treatment. However, adding a large amount exceeding 1.0% is economically disadvantageous, so the upper limit is made 1.0%. Further, each element of Ti, Zr, and W is effective for increasing the strength of steel, but the upper limits are set to 0.1% due to economic constraints.

【0022】Bはレーザ照射による強度上昇効果の発揮
に特に有用な添加元素として推奨する。但し50ppm
を超えると母材料の延性を著しく劣化させるので50p
pm以下とする。下限値については特に設定する必要が
ないが、5ppm以上の添加を推奨することができる。
B is recommended as an additional element that is particularly useful for exerting the effect of increasing the strength by laser irradiation. However, 50ppm
If it exceeds 50p, the ductility of the base material will be significantly deteriorated, so 50p
pm or less. Although there is no particular need to set the lower limit value, addition of 5 ppm or more can be recommended.

【0023】本発明では更に他の元素の添加を許容して
いる。この様な元素としてCaは、鋼の介在物形態を制
御するために添加しても良い。しかし過多に添加すると
介在物量が増えて鋼板の冷間成形性および靱性を劣化さ
せるので、上限を0.02%とする。尚Caの同効元素
としてその全部または一部をREMに置換してもよい
が、REMの上限は0.02%とする。
In the present invention, addition of other elements is allowed. As such an element, Ca may be added to control the inclusion morphology of steel. However, if added excessively, the amount of inclusions increases and the cold formability and toughness of the steel sheet deteriorate, so the upper limit is made 0.02%. It should be noted that REM may be replaced in whole or in part as an equivalent element of Ca, but the upper limit of REM is 0.02%.

【0024】不可避的不純元素としては、脱酸性元素と
して添加するAlを挙げることができる。Alはアルミ
キルド鋼の場合に添加される元素であるが、0.1%を
超えるとc系介在物を多く生成して表面傷の原因となる
ので、その上限は0.1%と定める。
The unavoidable impurity element may be Al added as a deoxidizing element. Al is an element added in the case of aluminum-killed steel, but if it exceeds 0.1%, a large amount of c-based inclusions are generated and cause surface scratches, so the upper limit is set to 0.1%.

【0025】以上述べた様に本発明鋼は、素材段階では
優れた冷間加工性を示し、いったん加工した後は所望部
分を、或は加工に先立っては非加工部を選んで夫々レー
ザ照射等によって高強度化されるので、使用条件の下で
は大幅な強度上昇が可能である。尚本発明方法の適用さ
れる鋼板は、熱延鋼板、冷延鋼板のいずれであってもよ
く、また各種表面処理、例えば亜鉛めっき等のめっきを
施したものであってもよい。
As described above, the steel of the present invention exhibits excellent cold workability at the material stage, and laser irradiation is carried out by selecting a desired portion after processing once or a non-processed portion prior to processing. Since the strength is increased by the above, it is possible to significantly increase the strength under the conditions of use. The steel sheet to which the method of the present invention is applied may be either a hot-rolled steel sheet or a cold-rolled steel sheet, and may be subjected to various surface treatments such as galvanizing.

【0026】本発明では高密度エネルギーが照射される
部分、即ち高強度化を達成したい部分のみを集中的に窒
化することによって当該部分の硬度を上昇せしめ、大幅
な強度上昇を得る。レーザ照射によって大幅な強度上昇
を得るためには、素材鋼板中の炭素量や合金量を増やし
ておく必要があるというのが通常の考え方であろうが、
本発明では窒化による強化が有効に作用するため、鋼材
中に予め必要以上に炭素量、合金量を増やしておく必要
がなくなり、素材の加工性を確保することが可能にな
る。そのため、例えばメンバー等の部品において必要と
考えられる部分のみを窒素雰囲気でレーザ処理をして強
度を発揮させれば良いのであって、素材鋼板自体にはプ
レス成形に必要な変形能を合わせて持たせることができ
る。一方、素材の鋼材自体を高窒素量とすることは非常
に困難であり、また鋼材の加工性が著しく劣化してしま
うため、プレス成形品への加工が困難となる。
In the present invention, the hardness of that portion is increased by intensively nitriding only the portion to which high-density energy is irradiated, that is, the portion for which high strength is desired to be achieved, and a large increase in strength is obtained. In order to obtain a large strength increase by laser irradiation, it is a normal idea that it is necessary to increase the amount of carbon and alloy in the raw steel sheet,
Since strengthening by nitriding effectively acts in the present invention, it becomes unnecessary to preliminarily increase the amount of carbon and the amount of alloy in the steel material, and it becomes possible to secure the workability of the material. Therefore, for example, it is only necessary to perform laser processing in a nitrogen atmosphere only on a portion considered necessary in a member such as a member so as to exert strength, and the material steel plate itself has a deformability necessary for press forming. Can be made. On the other hand, it is very difficult to make the raw material steel material to have a high nitrogen content, and the workability of the steel material is significantly deteriorated, which makes it difficult to process the press-formed product.

【0027】また成形品の種類によってはプレス成形に
影響を及ぼさない部分のみをレーザ照射によって高強度
化する場合もあり、その様な場合には、プレス成形する
前にレーザ照射を行なうが、平板を対象として取扱うの
で高密度エネルギー照射等の処理が容易であり、従って
照射処理性が良好であり、且つ処理材の特性の確保も容
易である。この様にプレス成形する前にレーザ等によっ
て高強度化することも可能である。
Depending on the type of the molded product, only the portion that does not affect the press molding may be strengthened by the laser irradiation. In such a case, the laser irradiation is performed before the press molding. Since it is handled as a target, it is easy to perform high-density energy irradiation and the like, and therefore the irradiation processability is good, and the characteristics of the processing material can be easily secured. In this way, it is possible to increase the strength with a laser or the like before press molding.

【0028】[0028]

【実施例】表1に示した成分の材料を溶製し、圧延によ
って1.4mm厚さの板とし、組織調整を行なった。レ
ーザ照射は直線状に行ない、5mm間隔に3本の照射を
行なった。なおそのときのレーザ出力は3kw、走査速
度は3m/minとした。レーザの集光には焦点距離5
インチのレンズを用い、焦点位置は板内とし、溶融相が
板厚を貫通する状態で走査した。なおアシストガスはセ
ンターガスとして流し、流量は20リットル/minと
した。レーザ走査線が試験片中央に位置する様にJIS
5号引張試験片を加工して引張試験を行なった。
[Examples] The materials having the components shown in Table 1 were melted and rolled into a plate having a thickness of 1.4 mm, and the structure was adjusted. Laser irradiation was performed linearly, and three irradiations were performed at 5 mm intervals. The laser output at that time was 3 kW and the scanning speed was 3 m / min. 5 focal length for focusing laser
An inch lens was used, the focal position was within the plate, and scanning was performed with the molten phase penetrating the plate thickness. The assist gas was flown as a center gas, and the flow rate was 20 liter / min. JIS so that the laser scanning line is located in the center of the test piece.
A No. 5 tensile test piece was processed and a tensile test was performed.

【0029】まず、アシストガスをアルゴン、窒素の混
合ガスとして、その混合比を変えてビード部の窒化程度
を変化させて、窒化による強度上昇量を比較して表2に
示した(既述)。ここでは表1の鋼種1を使って実験を
行なった。この表から、ビード部窒化量が300〜80
0ppmで大きな窒化強化量が得られていることが分か
る。
First, the assist gas is a mixed gas of argon and nitrogen, the mixing ratio is changed to change the nitriding degree of the bead portion, and the strength increase amount due to the nitriding is compared and shown in Table 2 (described above). . Here, an experiment was conducted using steel type 1 in Table 1. From this table, the bead portion nitriding amount is 300 to 80.
It can be seen that a large amount of nitriding enhancement is obtained at 0 ppm.

【0030】次に表1の全鋼種を用い、成分の影響を調
べた。アシストガスをアルゴンガス100%の場合とア
ルゴン50%/窒素50%とした場合の差から窒化強化
量を求めた。その結果を表3に示したが、炭素量によっ
て窒化に基づく強化に差が見られ、炭素量が0.1%を
超えている実験No.10においては、実験No.9に
比べて窒化量に差が見られないのにもかかわらず、あま
り大きな窒化強化量が得られていない。従って炭素量
は、好ましくは0.1%以下とすることが推奨される。
Next, the influence of the composition was investigated by using all the steel types shown in Table 1. The nitriding strengthening amount was obtained from the difference between the case where the assist gas was 100% argon gas and the case where the assist gas was 50% argon / 50% nitrogen. The results are shown in Table 3, and the difference in the strengthening based on nitriding was observed depending on the carbon amount, and the experiment No. in which the carbon amount exceeded 0.1%. In Experiment No. 10, Experiment No. Although the amount of nitriding is not different from that of No. 9, a very large amount of nitriding strengthening is not obtained. Therefore, it is recommended that the carbon content is preferably 0.1% or less.

【0031】[0031]

【表3】 [Table 3]

【0032】表4には、表1の鋼種1を使用してめっき
の影響を調べた結果を示すものであるが、めっきによる
影響は一切認められず、本発明で得られた強度上昇鋼板
の適用には大きな制限がないことが分かる。
Table 4 shows the results of investigating the effect of plating by using the steel type 1 of Table 1, but no effect of plating was observed, and the strength-increasing steel sheets obtained by the present invention were It turns out that there are no major restrictions on the application.

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【発明の効果】本発明は以上の様に構成されており、高
密度エネルギー源からの照射によって板厚を貫通する溶
融凝固域を形成する際に、溶融部分のみを窒化して素材
鋼板よりも窒素量を高めることにより、該照射部の強度
を著しく強化し得ることになった。そして本発明によれ
ば、素材鋼板の成分組成および組織を大きく制限せずに
素材鋼自体としては加工性の良好なものを選択使用する
ことができ、また強化の必要な部分のみにレーザ照射窒
化が可能であり、任意の位置が強化された成形品を容易
に得ることができる。
EFFECTS OF THE INVENTION The present invention is configured as described above, and when forming a melt-solidification region that penetrates the plate thickness by irradiation from a high-density energy source, only the melted portion is nitrided By increasing the amount of nitrogen, the strength of the irradiated part can be remarkably enhanced. Further, according to the present invention, it is possible to select and use a material steel having good workability as the material steel itself without largely limiting the component composition and structure of the material steel sheet, and to perform laser irradiation nitriding only on a portion requiring strengthening. It is possible to easily obtain a molded product in which any position is reinforced.

【図面の簡単な説明】[Brief description of drawings]

【図1】レーザ照射のエネルギー密度と強度上昇量の関
係を示すグラフ。
FIG. 1 is a graph showing the relationship between the energy density of laser irradiation and the amount of increase in intensity.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/58 C23C 8/26 (72)発明者 槇井 浩一 兵庫県加古川市尾上町池田字池田開拓2222 番地1 株式会社神戸製鋼所加古川研究地 区内 (72)発明者 佐藤 章仁 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 中村 真一郎 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication C22C 38/58 C23C 8/26 (72) Inventor Koichi Makii Ikeda, Ikeda, Kamikawa, Kakogawa, Hyogo Pioneering 2222 Address 1 Kobe Steel Works, Kakogawa Research Area (72) Inventor Akito Sato 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Inventor Shinichiro Nakamura 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高加工性鋼板に対し、加工に先立つて、
または加工を行った後に、該鋼板または加工品の所定部
位に高密度エネルギーを照射し、該所定部位を貫通する
溶融域を形成すると共に、該溶融域に窒素を添加し、次
いでこれを急速凝固させて該凝固相中の窒素濃度を30
0−800ppmとすることを特徴とする高加工性鋼板
を高密度エネルギーの照射によって高強度化する方法。
1. A high workability steel plate, prior to processing,
Alternatively, after processing, a predetermined area of the steel plate or the processed product is irradiated with high-density energy to form a molten area penetrating the predetermined area, nitrogen is added to the molten area, and then this is rapidly solidified. And the nitrogen concentration in the solidification phase is adjusted to 30
A method of increasing the strength of a high workability steel sheet by irradiating high-density energy, which is characterized in that the content is 0 to 800 ppm.
【請求項2】 合金元素として、 C :0.1%以下(重量%の意味、以下同じ)(0%
を含まない) Si:2.0%以下(0%を含まない) Mn:3.0%以下(0%を含まない) N :100ppm以下(0ppmを含む) を含んで残部がFe及び不可避的不純物よりなるもので
あって、請求項1に記載の方法によって高強度化するこ
とのできる高加工性鋼板。
2. As an alloying element, C: 0.1% or less (meaning% by weight; the same applies hereinafter) (0%
Si: 2.0% or less (0% is not included) Mn: 3.0% or less (0% is not included) N: 100 ppm or less (0 ppm is included) and the balance is Fe and unavoidable A highly workable steel sheet which is made of impurities and which can be strengthened by the method according to claim 1.
【請求項3】 合金元素として更に、 Cr:2.5%以下(0%を含む) Nb:0.3%以下(0%を含む) V :0.3%以下(0%を含む) のいずれか1種以上を含むものである請求項2に記載の
高加工性鋼板。
3. As an alloying element, Cr: 2.5% or less (including 0%) Nb: 0.3% or less (including 0%) V: 0.3% or less (including 0%) The highly workable steel sheet according to claim 2, which comprises any one or more of them.
【請求項4】 合金元素として更に、 P :0.15%以下(0%を含む) Cu:2.5%以下(0%を含む) Ni:1.5%以下(0%を含む) Mo:1.0%以下(0%を含む) Ti:0.1%以下(0%を含む) Zr:0.1%以下(0%を含む) W :0.1%以下(0%を含む) B :50ppm 以下(0%を含む) REM:0.02%以下(0%を含む) Ca:0.02%以下(0%を含む) Al:0.1%以下(0%を含む) のいずれか1種以上を含むものである請求項2または3
に記載の高加工性鋼板。
4. As an alloying element, P: 0.15% or less (including 0%) Cu: 2.5% or less (including 0%) Ni: 1.5% or less (including 0%) Mo : 1.0% or less (including 0%) Ti: 0.1% or less (including 0%) Zr: 0.1% or less (including 0%) W: 0.1% or less (including 0%) ) B: 50 ppm or less (including 0%) REM: 0.02% or less (including 0%) Ca: 0.02% or less (including 0%) Al: 0.1% or less (including 0%) The method according to claim 2 or 3, which comprises any one or more of
Highly workable steel sheet described in.
JP32537894A 1994-03-18 1994-12-27 High workability steel sheet and method for increasing its strength by irradiation of high density energy Withdrawn JPH07305111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32537894A JPH07305111A (en) 1994-03-18 1994-12-27 High workability steel sheet and method for increasing its strength by irradiation of high density energy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-49234 1994-03-18
JP4923494 1994-03-18
JP32537894A JPH07305111A (en) 1994-03-18 1994-12-27 High workability steel sheet and method for increasing its strength by irradiation of high density energy

Publications (1)

Publication Number Publication Date
JPH07305111A true JPH07305111A (en) 1995-11-21

Family

ID=26389608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32537894A Withdrawn JPH07305111A (en) 1994-03-18 1994-12-27 High workability steel sheet and method for increasing its strength by irradiation of high density energy

Country Status (1)

Country Link
JP (1) JPH07305111A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024074A (en) * 2012-07-24 2014-02-06 Nippon Steel & Sumitomo Metal Hot press formed product having low strength part and manufacturing method of the same
CN104164539A (en) * 2014-07-27 2014-11-26 北京工业大学 Laser treatment method for raising stress corrosion resistance and abrasive resistance of nuclear power 690 alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024074A (en) * 2012-07-24 2014-02-06 Nippon Steel & Sumitomo Metal Hot press formed product having low strength part and manufacturing method of the same
CN104164539A (en) * 2014-07-27 2014-11-26 北京工业大学 Laser treatment method for raising stress corrosion resistance and abrasive resistance of nuclear power 690 alloy
CN104164539B (en) * 2014-07-27 2016-06-01 北京工业大学 A kind of laser processing method improving nuclear power 690 alloy stress corrosion resistance and wear resistance

Similar Documents

Publication Publication Date Title
JP6787466B2 (en) Manufacturing method of high-strength galvanized steel sheet and manufacturing method of high-strength member
RU2147040C1 (en) High-strength two-phase steel plate with increased rigidity and welding suitability
EP2434027B1 (en) Steel material for high heat input welding
EP2735623B1 (en) High-strength steel sheet for warm forming and process for producing same
TW201522666A (en) Ferrite-martensite two-phase stainless steel, and method for producing same
JP2004323970A (en) High strength hot dip galvanized steel sheet, and its production method
CN112912525B (en) Steel sheet and method for producing same
JP5002991B2 (en) Method for producing ferritic stainless steel cold-rolled steel sheet excellent in surface distortion resistance and surface properties and coated steel sheet
CN113195750B (en) High-strength steel material and method for producing same
KR20210011904A (en) Method for welding coated steel sheets
US20220184707A1 (en) Steel Material In Powder Form And Process For Producing Said Steel Material
JP2000297350A (en) High tensile strength hot rolled steel plate excellent in baking hardenability, fatigue resistance, impact resistance and ordinary temperature aging resistance and its production
EP3533891A1 (en) Steel for high heat input welding
KR102280093B1 (en) STEEL SHEET PLATED WITH Al-Fe FOR HOT PRESS FORMING HAVING EXCELLENT CORROSION RESISTANCE AND SPOT WELDABILITY, AND MANUFACTURING METHOD THEREOF
JP2003231941A (en) HOT-ROLLED STEEL SHEET SUPERIOR IN FORMABILITY AFTER WELDING, WITH HIGH STRENGTH HAVING TENSILE STRENGTH OF 780 MPa OR HIGHER, OF MAKING HEAT AFFECTED ZONE HARDLY BE SOFTENED, COLD-ROLLED STEEL SHEET WITH HIGH STRENGTH, AND SURFACE-TREATED STEEL SHEET WITH HIGH STRENGTH
JPH07305111A (en) High workability steel sheet and method for increasing its strength by irradiation of high density energy
JP4022019B2 (en) High-strength cold-rolled steel sheet with excellent formability after welding and difficult to soften weld heat-affected zone
KR102280091B1 (en) STEEL SHEET PLATED WITH Al FOR HOT PRESS FORMING HAVING IMPROVED RESISTANCE AGAINST HYDROGEN DELAYED FRACTURE AND SPOT WELDABILITY, AND MANUFACTURING METHOD THEREOF
JP4119832B2 (en) High strength steel plate for automobile fuel tank with excellent press formability, corrosion resistance and secondary workability, and method for producing the same
RU2135622C1 (en) Steel featuring high impact strength in heat-affected zone in welding
JP4192576B2 (en) Martensitic stainless steel sheet
JP3943754B2 (en) High-strength cold-rolled steel sheet and high-strength surface-treated steel sheet that have excellent fatigue properties of the base metal and formability after welding, and are difficult to soften the heat affected zone.
JPH0673440A (en) High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source
KR102422579B1 (en) Method of manufacturing tailor weleded blanks for hot stamping
JPH0673439A (en) High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020305