JPH0673440A - High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source - Google Patents

High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source

Info

Publication number
JPH0673440A
JPH0673440A JP23057492A JP23057492A JPH0673440A JP H0673440 A JPH0673440 A JP H0673440A JP 23057492 A JP23057492 A JP 23057492A JP 23057492 A JP23057492 A JP 23057492A JP H0673440 A JPH0673440 A JP H0673440A
Authority
JP
Japan
Prior art keywords
steel sheet
less
strength
steel
energy source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23057492A
Other languages
Japanese (ja)
Inventor
Hiroki Nakajima
裕樹 中嶋
Yoshiro Tomioka
良郎 富岡
Yutaka Suzuki
裕 鈴木
Shinichiro Nakamura
真一郎 中村
Koichi Makii
浩一 槙井
Tetsuo Toyoda
哲夫 十代田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Toyota Motor Corp
Original Assignee
Kobe Steel Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Toyota Motor Corp filed Critical Kobe Steel Ltd
Priority to JP23057492A priority Critical patent/JPH0673440A/en
Priority to EP93113769A priority patent/EP0585843A3/en
Publication of JPH0673440A publication Critical patent/JPH0673440A/en
Priority to US08/308,611 priority patent/US5529646A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To develop a steel sheet having workability and excellent strength by irradiating a low carbon steel sheet having excellent workability and the specific composition with a high density energy source and forming the solidified zone after its melt-penetration of the steel sheet. CONSTITUTION:By applying a high energy laser beam irradiation, etc., to the cold rolled steel sheet containing, by weight, 0.02-0.3% C, <1.5% Si, <2.5% Mn and >=0.01 K1 value expressed by (Mn% + 0.25Si%) X C% and having mainly ferrite structure coexisted with pearite and cementite structures or containing <2.5% Cr, <1.0% Mo, <50 ppm B and >= 0.05 K2 value expressed by (Mn% + Cr% + Mo% + 250B% + 0.25Si%) X C%, and further, containing one or more kinds of the specific quantities of Cu, Ni, P, Nb, Ti, Zr, V and W as the alloy metal elements in both of them, the melt-penetrated and solidified zone is formed to the steel sheet to produce the steel sheet having excellent workability and strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加工時には優れた加工
特性を有し、なおかつ高密度エネルギー源からの照射に
よって高強度化して使用することができるような鋼板に
関するものである。なお以下の説明においては、自動車
用部材のひとつであるメンバー類を代表的に取り上げて
説明するが、本発明鋼板の適用対象はこれによって制限
されるものではなく、上記両特性の要求される分野に対
しては広く利用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel sheet which has excellent working characteristics during working and which can be used after being strengthened by irradiation from a high-density energy source. In the following description, the members, which are one of the members for automobiles, will be described as a representative example, but the application target of the steel sheet of the present invention is not limited by this, and is a field in which both the above characteristics are required. Can be widely used for.

【0002】[0002]

【従来の技術】自動車用部材、特にメンバー類等は加工
性と強度の2つの相反する特性が要求されている。即ち
メンバー類を自動車ボディの滑らかな曲線に添わせるよ
うに配置するためには優れた加工性を有していることが
必要であり、一方いったん装着した後は、走行中の衝突
事故に対して優れた防護作用を発揮するという立場から
所定の部分が希望強度まで高強度化されておらなければ
ならない。そこで加工性に富んだ軟鋼板をプレス成形し
た後で高密度エネルギー源による照射を行い、該プレス
成形部品の所定部分を高強度化するという技術が提案さ
れている(特開昭61−99629)。しかしながら前
記特許公開公報に記載された照射条件によれば、高強度
エネルギー源から例えばレーザ照射を行うと、板厚方向
における熱影響の度合いが不均一となって形状に歪みを
生じ、レーザ処理後の形状修正が必要になること、並び
にレーザ処理の必要照射本数が非常に多くなり、全処理
時間が長くなってしまうという点で実用化が妨げられて
いた。
2. Description of the Related Art Automotive members, especially members and the like, are required to have two contradictory characteristics, that is, workability and strength. In other words, it is necessary to have excellent workability in order to arrange the members so that they follow the smooth curve of the car body. From the standpoint of exerting an excellent protective action, it is necessary that the prescribed part be strengthened to the desired strength. Therefore, a technique has been proposed in which a mild steel sheet having high workability is press-formed and then irradiated with a high-density energy source to increase the strength of a predetermined portion of the press-formed part (Japanese Patent Laid-Open No. 61-99629). . However, according to the irradiation conditions described in the above-mentioned patent publication, for example, when laser irradiation is performed from a high intensity energy source, the degree of thermal influence in the plate thickness direction becomes uneven and distortion occurs in the shape, and after laser processing Practical use has been hindered in that the shape correction of No. 1 is required and the number of irradiations required for laser processing is very large, and the total processing time becomes long.

【0003】このようなプレス成形及びその後のレーザ
硬化処理を基本構成とする本技術はプレスラインにおい
て部品をプレス加工した後に高密度エネルギー源による
照射を施す点に特徴があるが、これまで検討されてきた
範囲では、高密度エネルギー源による照射条件と対象鋼
組織との組み合わせをどのように工夫すれば、歪みを少
なくすることができ、しかも十分な強度の上昇を得るこ
とができるか等について、全く知見が得られていない。
そのため、高密度エネルギー源による処理条件と鋼組織
との好ましい組み合わせに関する知見を確立することが
切望されていた。換言すれば、プレス成形時には十分な
加工性を有し、加工後は高密度エネルギー源による処理
によって強度が大幅に上昇し得る様な素材鋼板の開発が
望まれていた。
The present technology, which is basically composed of such press molding and subsequent laser hardening treatment, is characterized in that after the parts are pressed in the press line, irradiation with a high-density energy source is performed, but they have been studied so far. In the range that has been set, how to devise the combination of the irradiation condition by the high-density energy source and the target steel structure can reduce the strain and obtain a sufficient increase in strength. No knowledge has been obtained.
Therefore, it has been earnestly desired to establish a knowledge about a preferable combination of a treatment condition with a high-density energy source and a steel structure. In other words, it has been desired to develop a material steel sheet that has sufficient workability during press forming, and whose strength can be significantly increased by processing with a high-density energy source after working.

【0004】特開平4−72010にも、プレス成形品
にレーザ照射を行い強度上昇をはかる技術が開示されて
いる。この特許公開公報においては炭素鋼板を用いてレ
ーザ処理を行ったものでは、強度上昇が得られる旨示さ
れている。しかしながらこの特許公開公報においては、
鋼板組成に関しては炭素量に言及しているのみで、炭素
以外の合金成分や鋼板の組織については全く言及してお
らず、したがって合金成分および組織とレーザ処理条件
についての関係、さらにはそれらと強度上昇量の関係に
ついては全く知見が得られていない。本発明者等の研究
によれば、レーザ処理時の強度上昇は、レーザ処理条件
だけではなく、合金成分や組織にも大きく依存している
ことが明らかになった。従ってレーザ処理によって大幅
な強度上昇を得るためには、この関係を明確にすること
が必要であった。
Japanese Unexamined Patent Publication (Kokai) No. 4-72010 also discloses a technique for increasing the strength by irradiating a press-formed product with a laser. In this patent publication, it is shown that the increase in strength can be obtained by performing the laser treatment using a carbon steel sheet. However, in this patent publication,
Regarding the steel sheet composition, it only refers to the amount of carbon, and does not refer to the alloy components other than carbon or the microstructure of the steel sheet at all, and therefore the relationship between the alloy components and microstructure and the laser processing conditions, as well as their strength. No knowledge has been obtained regarding the relationship between the amount of increase. The research conducted by the present inventors has revealed that the increase in strength during laser processing largely depends not only on the laser processing conditions but also on the alloy composition and structure. Therefore, it was necessary to clarify this relationship in order to obtain a large increase in strength by laser processing.

【0005】なお、特開昭61−261462には加工
性に優れたレーザ加工用鋼板に関する知見が示されてい
るが、ここではレーザ切断を行った後にプレス成形等の
加工を行う場合の加工性が問題とされている。これに対
し本発明はレーザ照射による硬化処理を目的とするもの
であり、同じレーザ照射とは言っても上記公開公報のよ
うな切断加工を目的とするものではない点で、技術分野
も技術内容も全く異なるものである。
Incidentally, Japanese Patent Laid-Open No. 61-261462 discloses the knowledge of a steel plate for laser processing which is excellent in workability. Here, the workability in the case of performing processing such as press forming after performing laser cutting. Is a problem. On the other hand, the present invention is intended for the curing treatment by laser irradiation, and the same laser irradiation is not intended for the cutting process as in the above-mentioned publication, and the technical field is also technical content. Is also completely different.

【0006】更に特開平1−259118には、プレス
用素材の強化必要部位に対して急速再溶融−急速再凝固
処理を行って結晶粒の微細化を図り高強度化する技術が
開示されている。しかしこの公開公報発明は、使用時に
裏面となる部位のみを溶融させるものであり、後に詳述
するような本発明の貫通溶融法とは異なって大きな残留
歪みが生じ、なおかつ十分な強度上昇効果が得られな
い。また上記公開公報発明は強化のメカニズムが結晶粒
の微細化にあり、焼入組織を得るものではない。この点
においても焼入組織の形成をメカニズムとする本発明と
は区別される。このように従来知られている方法は、本
発明で採用する様な後述の方法と比べて本質的に異なっ
た方法と言わなければならない。
Further, Japanese Patent Application Laid-Open No. 1-259118 discloses a technique for performing a rapid remelting-rapid resolidifying treatment on a portion of a press material to be strengthened so as to make crystal grains finer and to have higher strength. . However, the invention disclosed in this publication only melts a portion which becomes the back surface at the time of use, and unlike the through-melting method of the present invention which will be described in detail later, a large residual strain occurs, and a sufficient strength increasing effect is obtained. I can't get it. Further, in the above-mentioned Japanese Laid-Open Patent Publication, the strengthening mechanism lies in the refinement of crystal grains, and a quenched structure is not obtained. This point is also distinguished from the present invention in which the formation of a quenched structure is a mechanism. As described above, it should be said that the conventionally known method is essentially different from the method described below as employed in the present invention.

【0007】[0007]

【発明が解決しようとする課題】本発明者らは、高密度
エネルギー源による処理性におよぼす合金元素の種類や
組織の影響を鋭意研究した結果、ある一定の照射条件の
もとにおいては、鋼板の合金成分を特定の範囲とし、か
つ構成組織を規定することによって、従来の鋼板におい
ては得られなかった様な優れた処理特性が得られること
を見い出して本発明を完成するに至った。
DISCLOSURE OF THE INVENTION The inventors of the present invention have earnestly studied the influence of the type and structure of alloying elements on the processability by a high-density energy source, and as a result, under certain irradiation conditions, steel sheets were produced. The present invention has been completed by finding out that by setting the alloy component of (1) to a specific range and defining the constitutional structure, it is possible to obtain excellent processing characteristics that cannot be obtained in the conventional steel sheet.

【0008】[0008]

【課題を解決するための手段】本発明によって提供され
る鋼板は、加工時には優れた加工性を示しながら、レー
ザ照射等の様な高密度エネルギー源からの照射を行って
板厚を貫通する様な凝固域を形成した場合には、十分な
高強度化を発揮し、そのことにより広範囲の用途に使用
することができるものであって、高強度化特性に優れた
高加工性鋼板である。
The steel sheet provided by the present invention has excellent workability during processing and is capable of irradiating from a high-density energy source such as laser irradiation to penetrate the plate thickness. When it forms a large solidification region, it exhibits a sufficiently high strength, which allows it to be used in a wide range of applications, and is a high workability steel sheet excellent in high strength characteristics.

【0009】本発明にかかる高加工性鋼板の合金組成
は、 C :0.02〜0.3% Si:1.5%以下 Mn:2.5%以下 を含み、残部がFe及び不可避的不純物よりなり、かつ
C,Si,Mnの含有量によって下記計算式で計算され
るK1 値が0.01以上を満足するという条件の下で
(より好ましくは0.05以上で)、 K1 =(Mn%+0.25・Si%)×C% しかも、フェライトに加えてパーライト及び/又はセメ
ンタイトが共存する組織を有することことにより、レー
ザ処理前の高加工性とレーザ処理後の高強度化において
より確実で優れた効果を発揮することが確かめられてい
る。
The alloy composition of the high workability steel sheet according to the present invention contains C: 0.02 to 0.3% Si: 1.5% or less Mn: 2.5% or less, with the balance being Fe and unavoidable impurities. And under the condition that the K 1 value calculated by the following formula according to the contents of C, Si and Mn satisfies 0.01 or more (more preferably 0.05 or more), K 1 = (Mn% + 0.25 · Si%) × C% Furthermore, by having a structure in which pearlite and / or cementite coexist in addition to ferrite, high workability before laser processing and high strength after laser processing are achieved. It has been confirmed that it exhibits more reliable and excellent effects.

【0010】本発明における基本的合金組成は上記のと
おりであるが、また本発明の高加工性鋼板は、前記C,
Si,Mnの他、 Cr:2.5%以下 Mo:1.0%以下 B :50ppm 以下 のいずれか1種以上を必須成分として含むものであって
もよい。但しこのような付加成分を含有する場合の前記
1 値を求める計算式は、次の様に変更される。そして
下記計算式で与えられるK2 値も0.05以上であるこ
とが望まれる。 K2 =(Mn%+Cr%+Mo%+250・B%+0.
25・Si%)×C%
The basic alloy composition in the present invention is as described above, and the high workability steel sheet of the present invention is
In addition to Si and Mn, Cr: 2.5% or less, Mo: 1.0% or less, B: 50 ppm or less may be included as an essential component. However, the calculation formula for obtaining the K 1 value in the case of containing such an additional component is changed as follows. The K 2 value given by the following formula is also desired to be 0.05 or more. K 2 = (Mn% + Cr% + Mo% + 250 · B% + 0.
25 ・ Si%) × C%

【0011】また本発明の高加工性鋼板は、前記C,S
i,Mnの他、 Cr:2.5%以下 Mo:1.0%以下 B :50ppm 以下 のいずれか1種以上および/または Cu:2.5%以下 Ni:1.5%以下 P :0.15%以下 Nb:0.2%以下 Ti:0.2%以下 Zr:0.1%以下 V :0.1%以下 W :0.1%以下 のいずれか1種以上を含むものであってもよい。
Further, the high workability steel sheet of the present invention is the above-mentioned C, S.
Other than i and Mn, Cr: 2.5% or less Mo: 1.0% or less B: 50 ppm or less and / or Cu: 2.5% or less Ni: 1.5% or less P: 0 .15% or less Nb: 0.2% or less Ti: 0.2% or less Zr: 0.1% or less V: 0.1% or less W: 0.1% or less Any one or more of these are included. May be.

【0012】[0012]

【作用】まず、高強度エネルギー源による照射条件につ
いて述べる。ここでは高密度エネルギー源としてレーザ
を用いた例を示したが、プラズマ等を用いることもでき
る。図1には、C:0.10%、Si:0.01%、M
n:0.90%、Al(脱酸性元素として添加したこと
による不可避的不純物):0.032%、残部Fe及び
不可避的不純物からなる鋼材を試験片(板厚1.4mm)
とし、レーザ照射条件を種々変更して強度上昇量との関
係を示したが、エネルギー密度が100J/mm2 以上とな
る様な照射を行うと、大幅な強度上昇が得られることが
分かる。この範囲は板厚を貫通する溶融相を形成する条
件であり、このような条件にすることによって強度の大
幅な上昇が可能となるのである。またそのような条件に
することによって板厚方向に生じる歪が解放されるた
め、処理後の残留歪を非常に小さく抑えることができ
る。
First, the irradiation conditions by the high intensity energy source will be described. Although an example in which a laser is used as the high-density energy source is shown here, plasma or the like can also be used. In FIG. 1, C: 0.10%, Si: 0.01%, M
n: 0.90%, Al (unavoidable impurities due to addition as deoxidizing element): 0.032%, steel material consisting of balance Fe and unavoidable impurities as a test piece (plate thickness 1.4 mm)
Although the laser irradiation conditions were variously changed and the relationship with the intensity increase amount was shown, it can be seen that a significant intensity increase can be obtained by performing the irradiation such that the energy density is 100 J / mm 2 or more. This range is a condition for forming a molten phase that penetrates the plate thickness, and under such a condition, the strength can be significantly increased. In addition, since the strain generated in the plate thickness direction is released under such a condition, the residual strain after the treatment can be suppressed to be extremely small.

【0013】次に組織と強度上昇量の関係について述べ
る。一般に冷間加工用としては軟質の材料、例えばパー
ライトとフェライトからなる組織を有するものが使用さ
れ、より一層軟質の材料が欲しい時には粗大な球状化セ
メンタイト組織を有するものが選ばれる。
Next, the relationship between the structure and the amount of increase in strength will be described. Generally, for cold working, a soft material, for example, one having a structure composed of pearlite and ferrite is used, and when a softer material is desired, one having a coarse spheroidized cementite structure is selected.

【0014】図2にはフェライト+パーライト(及び/
又はセメンタイト:以下同様にパーライトで代表する)
鋼の場合、並びにフェライト+粗大な球状化セメンタイ
ト鋼の場合について、それぞれ強度(引張応力)とレー
ザ処理による強度上昇量の関係を示した。この図から分
かる様に、フェライト+パーライト鋼の場合は、フェラ
イト+粗大な球状化セメンタイト鋼の場合に比べて、同
一強度における強度上昇量が優れている。即ち加工性と
その後の強度上昇量とのバランスを見ると、フェライト
+パーライト鋼の方が優れていることが分かる。この原
因について鋭意研究を行った結果、炭化物サイズの他、
合金成分がある条件範囲に含まれていることが、加工性
と強度上昇量のバランスを良くする上で必須不可欠であ
ることが分かった(後記実施例参照)。
In FIG. 2, ferrite + perlite (and / or
Or cementite: Perlite is also represented below)
The relationship between the strength (tensile stress) and the amount of increase in strength by laser treatment is shown for steel and for ferrite + coarse spheroidized cementite steel. As can be seen from this figure, in the case of ferrite + pearlite steel, the amount of increase in strength at the same strength is superior to that in the case of ferrite + coarse spheroidized cementite steel. That is, from the viewpoint of the balance between the workability and the subsequent increase in strength, it can be seen that the ferrite + pearlite steel is superior. As a result of earnest research on this cause, in addition to the carbide size,
It has been found that inclusion of alloy components within a certain condition range is indispensable for improving the balance between workability and increase in strength (see Examples below).

【0015】また図3には炭化物サイズの短辺長さと強
度上昇量の関係を示した。炭化物のサイズは断面組織を
SEMにより観察し、炭化物の短辺(円形断面の場合に
は直径)を写真上で測定した。図3から明らかな様に炭
化物の短辺サイズが1μmを超えると強度上昇量が低下
してくる。つまり、パーライト組織を生成させることに
よって、炭化物サイズを微細にし、なおかつ合金成分を
規定することによってはじめて加工性保持と大幅な強度
上昇との間に優れたバランスが得られることが分かっ
た。
FIG. 3 shows the relationship between the short side length of the carbide size and the strength increase amount. Regarding the size of the carbide, the cross-sectional structure was observed by SEM, and the short side (diameter in the case of a circular cross section) of the carbide was measured on the photograph. As is clear from FIG. 3, if the size of the short side of the carbide exceeds 1 μm, the strength increase amount decreases. In other words, it was found that by forming the pearlite structure, the carbide size was made finer, and the alloy composition was specified, and then an excellent balance between the workability retention and the significant strength increase could be obtained.

【0016】この原因としては以下の様に考えることが
できる。1つは、レーザ照射によって形成される硬化相
の面積が、上記の条件を満足する場合には大面積になる
ことが挙げられる。即ちレーザ処理実験において板厚を
貫通する様な凝固相を形成したものについて、レーザ処
理後の断面組織を見たところ、フェライト+パーライト
組織であり、且つ上記条件を満足していたもの(図10
の(a)参照)では硬化相の面積が大きくなっていた
が、フェライト+パーライト組織であっても粗大に球状
化したもの(図10の(b)参照)では、上記条件を満
足していないため硬化相の面積が小さかった。つまり炭
化物の短辺サイズが1μm以下で,なおかつ合金成分が
ある範囲に含まれているものでは、炭化物の溶け込み等
に違いができ、その結果として硬化面積が大きくなった
ものと考えられる。
The cause can be considered as follows. One is that the area of the cured phase formed by laser irradiation becomes large when the above conditions are satisfied. That is, when a cross-sectional structure after laser processing was observed for a solidified phase that penetrated the plate thickness in the laser processing experiment, it was a ferrite + pearlite structure and satisfied the above conditions (FIG. 10).
(See (a)), the area of the hardened phase was large, but even if the ferrite + pearlite structure was coarsely spheroidized (see FIG. 10 (b)), the above conditions were not satisfied. Therefore, the area of the curing phase was small. That is, it is considered that when the short side size of the carbide is 1 μm or less and the alloy component is included in a certain range, difference in the penetration of the carbide or the like is caused, and as a result, the hardened area is increased.

【0017】またフェライト+パーライト組織の鋼板の
データについて、 K1 =(Mn%+0.25・Si%)×C% の計算式で得られる値と強化量の関係をまとめ、その結
果を図4に示した。図4において(b)は(a)の要部
拡大図である。図4から明らかである様に、K1値を
0.01以上にしたものでは大きな強度上昇が得られて
いる。レーザ照射による強化量としては50MPa以上
の上昇が得られない限り実用上有効との評価は得られな
いが、ここで50MPa未満の強化量上昇しか得られて
いないのは、炭素量が0.02%未満のもの、およびM
n量が0.3%未満のものである。結局これらの図から
分かるようにK1 値が0.01以上、好ましくは0.0
5以上とすることが有効であることが分かる。
Further, regarding the data of the steel sheet of ferrite + pearlite structure, the relation between the value obtained by the calculation formula of K 1 = (Mn% + 0.25 · Si%) × C% and the strengthening amount is summarized, and the result is shown in FIG. It was shown to. In FIG. 4, (b) is an enlarged view of a main part of (a). As is clear from FIG. 4, when the K 1 value is 0.01 or more, a large increase in strength is obtained. As long as the amount of strengthening by laser irradiation does not increase by 50 MPa or more, it cannot be evaluated as practically effective. However, the only increase in the amount of strengthening by less than 50 MPa is that the amount of carbon is 0.02. Less than%, and M
The amount of n is less than 0.3%. After all, as can be seen from these figures, the K 1 value is 0.01 or more, preferably 0.0
It can be seen that setting the number to 5 or more is effective.

【0018】本発明の必須的添加元素は上記したC,S
i,Mnであるが、後述する様に、これら必須元素以外
にCr,Mo,Bの3元素を同効元素として添加するこ
ともでき、これらの諸元素を添加した場合における各添
加合金元素の作用効果は、図5の様に示すことができ
る。即ち図5は各元素の添加による効果を、 K2 =(Mn%+Cr%+Mo%+250・B%+0.
25・Si%)×C% と強化量の関係で整理して示したものであり、Cr,M
o,Bの添加効果はK2の値で整理することができる。
2 の値も0.05以上になると大幅な強度上昇が可能
であることが分かる。
The essential additional elements of the present invention are C and S described above.
Although i and Mn, as will be described later, in addition to these essential elements, three elements of Cr, Mo, and B can be added as the same-effect elements. The action and effect can be shown as in FIG. That is, FIG. 5 shows the effect of addition of each element as follows: K 2 = (Mn% + Cr% + Mo% + 250 · B% + 0.
25 · Si%) × C% and the relationship between the amount of strengthening and Cr, M
The effect of adding o and B can be summarized by the value of K 2 .
It can be seen that when the value of K 2 is 0.05 or more, a large increase in strength is possible.

【0019】また図6,7には、本発明の合金成分条件
を満足する場合(発明鋼)と、満足していない場合(比
較鋼)の夫々について、レーザ照射部における断面の硬
さ分布を示した。図6中の比較鋼(No.4)はK1
が0.01以下であり、鋼組織をフェライト+パーライ
トとして仕上げているにもかかわらず、焼入れ性が不足
しているため十分な硬さが得られていない。また図7中
の比較鋼(No.22)の場合は、合金成分条件的には
本発明を満足しているため最高硬さは十分に得られてい
るが、フェライト+粗大な球状化セメンタイト組織であ
ったため、硬化域の幅が小さい。これは単に焼入れ性だ
けで理解できる現象ではなく、合金成分による変態点の
違いと、炭化物サイズの違いによる溶け込み方の違いに
よって硬化域の幅が小さくなったものと考えられる。
Further, FIGS. 6 and 7 show hardness distributions of the cross section in the laser irradiation portion when the alloy composition conditions of the present invention are satisfied (invention steel) and when they are not satisfied (comparative steel). Indicated. The comparative steel (No. 4) in FIG. 6 has a K 1 value of 0.01 or less, and although the steel structure is finished with ferrite + pearlite, it has insufficient hardenability and therefore has a sufficient hardness. Has not been obtained. Further, in the case of the comparative steel (No. 22) in FIG. 7, the maximum hardness is sufficiently obtained because the present invention is satisfied in terms of alloy composition conditions, but ferrite + coarse spheroidized cementite structure Therefore, the width of the cured area is small. This is not a phenomenon that can be understood simply from the hardenability, but it is considered that the width of the hardened zone has become smaller due to the difference in the transformation point due to the alloy components and the difference in the penetration method due to the difference in the carbide size.

【0020】図8には炭素含有量とレーザ処理による強
度上昇量との関係を示したが、同一炭素量でも強度上昇
量にバラツキの存在することが分かる。この理由は炭素
量の違いだけでなく、他の諸元素による影響をも総合的
に判断しなければならないことによって説明される。
FIG. 8 shows the relationship between the carbon content and the amount of increase in strength by laser treatment. It can be seen that there is variation in the amount of increase in strength even with the same amount of carbon. The reason for this is explained by the fact that not only the difference in carbon content but also the influence of other elements must be comprehensively judged.

【0021】次に、本発明鋼板における合金成分の限定
理由について説明する。本発明鋼は、特にプレス成形等
の冷間加工用途に好適なものでなければならずこのため
にはCはその添加量が少ないほど好ましい。しかし反面
ではレーザ照射等による強度上昇が重要課題であるた
め、この課題を達成するためには、少なくとも0.02
%の添加が必要である。例えば0.01%程度のC添加
量の場合には、後述するようにレーザ照射による強度改
善効果はあまり得られない。他方Cを過多に添加すると
きは鋼板の加工性、さらには溶接性を著しく劣化させる
のでCの上限は0.30%とする。
Next, the reasons for limiting the alloy components in the steel sheet of the present invention will be described. The steel of the present invention must be particularly suitable for cold working applications such as press forming. For this purpose, the smaller the amount of C added, the more preferable. However, on the other hand, the increase in strength due to laser irradiation or the like is an important issue.
% Addition is required. For example, when the amount of C added is about 0.01%, the effect of improving the strength by laser irradiation cannot be obtained so much as described later. On the other hand, if too much C is added, the workability of the steel sheet and further the weldability are significantly deteriorated, so the upper limit of C is made 0.30%.

【0022】Siはレーザ処理性改善のために添加する
が、1.5%を超えると表面肌荒れを起こすので、上限
を1.5%とした。Mnはレーザ加工による強度上昇に
必須の元素であり、その添加量に応じて強度上昇に寄与
するが、あまり多量に添加すると鋼板の冷間成形性を損
なうので、添加量の上限は2.5%と定めた。尚Mnの
添加効果を有効に発揮させる為には0.3%以上の添加
が推奨される。
Si is added to improve the laser processability, but if it exceeds 1.5%, the surface will be roughened, so the upper limit was made 1.5%. Mn is an element essential for increasing the strength by laser processing, and contributes to the strength increase depending on the addition amount thereof, but if added in too much amount, the cold formability of the steel sheet is impaired, so the upper limit of the addition amount is 2.5. Defined as%. In order to effectively bring out the effect of adding Mn, it is recommended to add 0.3% or more.

【0023】本発明鋼における必須的含有元素は上記の
とおりであり、残部はFe及び不可避的不純物である
が、所望によっては以下に示す様な元素を添加すること
もできる。Crはレーザ処理による強度上昇に有効であ
るが、必要以上多量に添加することは不経済であるの
で、上限を2.5%とした。
The essential contained elements in the steel of the present invention are as described above, and the balance is Fe and inevitable impurities, but if desired, the following elements can be added. Cr is effective for increasing the strength by laser treatment, but it is uneconomical to add it in a larger amount than necessary, so the upper limit was made 2.5%.

【0024】Moはレーザ処理による強度上昇に有効で
あるが、多量の添加は経済性を損なうので上限を1.0
%とする。Bはレーザ加工による強度上昇に有効な元素
であるが、50ppm 以上添加すると母材の延性を著しく
劣化させるので、上限を50ppm とした。
Mo is effective in increasing the strength by laser treatment, but addition of a large amount impairs economic efficiency, so the upper limit is 1.0.
%. B is an element effective in increasing the strength by laser processing, but if 50 ppm or more is added, the ductility of the base material is significantly deteriorated, so the upper limit was made 50 ppm.

【0025】上記3元素は添加効果の大きいものとして
特に有意義なものであって、前記したK2 の値に重要な
影響を与えるものであるが、これらの他更に次の様な元
素を添加していくこともできる。
The above-mentioned three elements are particularly significant as those having a large addition effect and have an important influence on the above-mentioned K 2 value. In addition to these, the following elements are further added. You can also go.

【0026】Cuは時効析出によって素材強度を確保す
る機能を発揮するものであり、しかも母材の耐食性を向
上させることができるので、素材の特性向上元素として
有効である。しかしながら多量に添加する場合には鋼板
に表面疵を生じさせるので、Niとの複合添加によって
その改善をはかることが必要になる。従って本発明鋼に
おいてはCuとNiを複合添加するとともに、その添加
量はCuに関しては2.5%以下、Niに関してはその
コストを考慮して1.5%以下とするのが望ましい。
Cu has the function of ensuring the strength of the material by aging precipitation, and can improve the corrosion resistance of the base material, and is therefore an effective element for improving the characteristics of the material. However, when added in a large amount, surface defects are generated in the steel sheet, and therefore it is necessary to improve the effect by adding Ni together. Therefore, in the steel of the present invention, it is desirable to add Cu and Ni in combination, and to add Cu in an amount of 2.5% or less and Ni in an amount of 1.5% or less in consideration of the cost.

【0027】Pは含有量を少なくすることによって冷間
加工性を向上できるが、鋼の強化元素としても期待され
るので、必要に応じて添加することもある。しかし0.
15%を超えて多量に添加すると、鋼の脆化が著しくな
るので添加量は0.15%以下とする。
Although cold workability can be improved by reducing the content of P, it is expected as a strengthening element for steel, so P may be added if necessary. But 0.
If a large amount is added in excess of 15%, the embrittlement of the steel becomes remarkable, so the addition amount is made 0.15% or less.

【0028】Nb,Tiの各元素は鋼の強度上昇に有効
であるが、経済的制約から上限を0.2%とする。Z
r,V,Wの各元素は同様に鋼の強度上昇に有効である
が、経済的制約から上限は0.1%とする。
Each element of Nb and Ti is effective for increasing the strength of steel, but the upper limit is 0.2% due to economic constraints. Z
Each element of r, V, and W is similarly effective in increasing the strength of steel, but the upper limit is 0.1% due to economic constraints.

【0029】またREMおよびCaは鋼の介在物形態を
制御するために添加しても良いが、過多に添加すると介
在物量が増えて鋼板の冷間加工性および靭性を劣化させ
るので、上限をそれぞれ0.02%とする。Mgは水素
脆化防止効果があり、レーザ処理部の水素脆化防止効果
のために添加しても良い。但し経済的な理由から上限を
0.01%とする。
REM and Ca may be added in order to control the morphology of inclusions in the steel, but if added in excess, the amount of inclusions increases and the cold workability and toughness of the steel sheet deteriorate. It is set to 0.02%. Mg has an effect of preventing hydrogen embrittlement, and may be added for the purpose of preventing hydrogen embrittlement in the laser-processed portion. However, for economic reasons, the upper limit is made 0.01%.

【0030】本発明鋼中に含まれ得る不純元素としては
N,O等の他、脱酸性元素として添加することのあるA
lを挙げることもできる。特にアルミキルド鋼の場合は
不可避的に混入してくるが、0.1%を超えるとc系介
在物を多く生成して表面傷の原因となるので、その上限
は0.1%と定める。
Impurity elements that can be contained in the steel of the present invention include N, O, etc., and A which may be added as a deoxidizing element.
One can also mention l. Particularly in the case of aluminum killed steel, it is inevitably mixed, but if it exceeds 0.1%, a large amount of c-type inclusions are generated and cause surface scratches, so the upper limit is set to 0.1%.

【0031】以上述べたように本発明鋼は、素材段階で
は優れた冷間加工性を示し、いったん加工した後は所望
部分をレーザ照射等によって高強度化されるので、使用
条件の下では大幅な強度上昇が可能である。
As described above, the steel of the present invention exhibits excellent cold workability in the material stage, and once processed, the desired portion is strengthened by laser irradiation and the like, so under the conditions of use, it is significantly increased. It is possible to increase the strength.

【0032】本発明におけるレーザ照射等は、上記鋼板
の強度を高めるものであるから、必要な箇所を適切に選
択して照射部を選択すべきである。従って、(1)加工
必要部と強度上昇必要部が部位的に重なっている場合等
は、材料鋼板を予め所定の形状に加工し、しかる後強度
上昇の必要な部位を狙ってレーザ照射を行うことが推奨
されるが、(2)加工必要部と強度上昇必要部が部位的
に十分区別できる場合等は、材料鋼板に対して強度上昇
の必要な部位を狙ってレーザ照射を行い、しかる後に加
工を行うようにしても良い。
Since the laser irradiation and the like in the present invention enhances the strength of the steel sheet, it is necessary to appropriately select the necessary part and select the irradiation part. Therefore, (1) When the processing required portion and the strength increasing required portion partially overlap with each other, the material steel plate is processed into a predetermined shape in advance, and then laser irradiation is performed aiming at the portion requiring strength increasing. It is recommended that (2) if the processing required part and the strength increase required part can be sufficiently distinguished in parts, laser irradiation is performed on the material steel sheet aiming at the part requiring strength increase, and after that You may make it process.

【0033】後者の例としては図9に示す場合が挙げら
れる。図9において1は素材鋼板、2は山折れ線、3は
谷折れ線、4はレーザ照射部、5は成形品(前記メンバ
ー)を夫々示し、(a)は素材鋼板の平面図、(b)は
加工部とレーザ照射部の位置分けを示す平面説明図、
(c)は成形品外観を示す斜視説明図であり、まず
(b)に示すように加工部である山折れ線2と谷折れ線
3を避けてレーザ照射を行い、しかる後(c)に示すよ
うに所定形状に加工する。なお図示した形状の場合であ
っても、素材鋼板を先に所定形状に加工し、しかる後、
必要部位にレーザ照射を行う様にしてもよいことは言う
でもない。
An example of the latter case is shown in FIG. In FIG. 9, 1 is a material steel plate, 2 is a mountain crease line, 3 is a valley crease line, 4 is a laser irradiation part, 5 is a molded product (the member), (a) is a plan view of the material steel plate, and (b) is Plane explanatory view showing the positioning of the processing unit and the laser irradiation unit,
(C) is a perspective explanatory view showing the external appearance of the molded product. First, as shown in (b), laser irradiation is performed while avoiding the mountain fold line 2 and the valley fold line 3 which are the processed parts, and then as shown in (c). It is processed into a predetermined shape. Even in the case of the illustrated shape, the material steel plate is first processed into a predetermined shape, and thereafter,
It goes without saying that the laser irradiation may be performed on a necessary portion.

【0034】なお、本発明の鋼板は熱延ミル、冷延ミル
のいずれの方法によっても製造することができ、また本
発明の鋼板は各種の表面処理、例えば亜鉛めっき等のめ
っきを施したものとして提供することもできる。
The steel sheet of the present invention can be manufactured by either a hot rolling mill or a cold rolling mill, and the steel sheet of the present invention is subjected to various surface treatments such as galvanizing. Can also be provided as.

【0035】[0035]

【発明の効果】本発明鋼にレーザ照射を行い板厚を貫通
した凝固域を形成すると、ビード部のみならず、ビード
の隣接領域においても焼入硬化部が形成される。一方レ
ーザ照射のように急速加熱でしかも高温保持が行われな
い場合には、通常炭化物の溶け込みと合金成分の均一化
を達成する時間が不十分となる。そこで本発明において
は、素材である鋼の組織や合金組成を、溶け込みや均一
化に有効な成分および組織としたのである。特に上記レ
ーザ処理条件に対応した成分、組織としたことは非常に
重要な意味を有するのである。こうすることによって炭
素量や合金量を不必要に増やす必要がなくなり、素材の
加工性を合わせて確保することが可能になる。本発明鋼
の場合には上記効果が発揮されるため、硬化する領域を
広くでき、従って強度が大幅に上昇する。このため、例
えばプレス成形したメンバー等の部品に対し、その必要
な部分のみをレーザ処理することによって強度を維持し
つつメンバーに加工する時点では加工性の維持に必要な
変形能を併せ持つことができる。
EFFECTS OF THE INVENTION When the steel of the present invention is irradiated with a laser to form a solidified region penetrating the plate thickness, a quench-hardened portion is formed not only in the bead portion but also in the adjacent region of the bead. On the other hand, in the case where rapid heating and high temperature holding are not performed as in laser irradiation, the time for achieving the penetration of carbides and the homogenization of alloy components is usually insufficient. Therefore, in the present invention, the structure and alloy composition of steel, which is a raw material, are made to be a composition and structure effective for penetration and homogenization. In particular, it is very important to have a composition and structure corresponding to the above laser processing conditions. By doing so, it is not necessary to unnecessarily increase the amount of carbon or the amount of alloy, and it becomes possible to secure the workability of the material as well. In the case of the steel of the present invention, since the above-mentioned effect is exhibited, the area to be hardened can be widened, and therefore the strength is significantly increased. Therefore, for example, when a member such as a press-molded member is laser-processed only in a necessary portion, the deformability required for maintaining the workability can be provided at the time of processing the member while maintaining the strength. .

【0036】また成形品の種類によってはプレス成形に
影響を及ばさない部分のみをレーザ照射等によって高強
度化することもあり、そのような場合には、プレス成形
する前にレーザ等の照射を行う方が、平板状態での処理
が可能であるため照射処理性が良好であり、且つ処理材
の特性の信頼性の確保も容易であるから、プレス成形す
る前にレーザ等によって高強度化しても、製品の強度と
プレス成形時の加工性を合わせ持たせることが可能であ
る。
Depending on the type of the molded product, only the portion that does not affect the press molding may be strengthened by laser irradiation or the like. In such a case, irradiation of the laser or the like may be performed before press molding. Since it is possible to perform the treatment in the flat plate state, it is possible to perform the irradiation treatment, and it is easy to ensure the reliability of the characteristics of the treated material. It is also possible to combine the strength of the product with the workability during press molding.

【0037】[0037]

【実施例】表1に示した成分の材料を溶製し、圧延によ
って1.4mm厚さの板とし、組織調整を行った。特性の
評価はレーザ照射をしていないサンプルと、レーザ照射
をしたサンプルの2種類について行った。特に成形性の
評価は素材の成形性を問題としている為、レーザ照射前
のサンプルについて行った。レーザ照射は直線状に行
い、5mm間隔に3本の照射を行った。なおそのときのレ
ーザ出力は3kw、走査速度は3m/min とし、レーザの
焦点位置を板内として、溶融相が板厚を貫通する状態で
走査した。レーザ照射線が試験片の中央部に位置するよ
うにJIS5号引張試験片を加工して引張試験を行っ
た。
[Examples] The materials having the components shown in Table 1 were melted and rolled into a plate having a thickness of 1.4 mm, and the structure was adjusted. The evaluation of the characteristics was performed on two types of samples, a sample not irradiated with laser and a sample irradiated with laser. In particular, since the evaluation of the formability is concerned with the formability of the material, the sample before laser irradiation was performed. Laser irradiation was performed linearly and three irradiations were performed at 5 mm intervals. The laser output at that time was 3 kW, the scanning speed was 3 m / min, the focal position of the laser was within the plate, and scanning was performed with the molten phase penetrating the plate thickness. A JIS No. 5 tensile test piece was processed so that the laser irradiation line was located at the center of the test piece, and a tensile test was performed.

【0038】表2はその結果を示す。表2において照射
前として示した値はレーザ照射を行わない試験片におけ
る引張試験の結果であり、また加工性の指標(r値)は
レーザ照射を行わない試験片における試験結果を示すも
のである。
Table 2 shows the results. The values shown as “before irradiation” in Table 2 are the results of the tensile test on the test piece not subjected to the laser irradiation, and the workability index (r value) shows the test result on the test piece not subjected to the laser irradiation. .

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】鋼1〜7はK1 値が0.01より低い為十
分な強度上昇が得られていない。鋼22はK1 は大きい
が組織が球状化組織となっている為十分な強度上昇が得
られていない。鋼26は組織がフェライト+パーライト
となっているにもかかわらず、K1 値が0.002と小
さい為、強度上昇が十分には得られていない。鋼8,9
はNb或はP,Cu,Ni添加によって素材強度の改善
が見られ、且つK1 値が0.01以上であり、強度上昇
量も十分である。
Steels 1 to 7 have a K 1 value lower than 0.01, so that a sufficient increase in strength is not obtained. Steel 22 has a large K 1, but the structure has a spheroidized structure, so that sufficient strength increase is not obtained. Although the structure of Steel 26 is ferrite + pearlite, the K 1 value is as small as 0.002, so that the strength increase is not sufficiently obtained. Steel 8, 9
The material strength is improved by adding Nb or P, Cu, Ni, and the K 1 value is 0.01 or more, so that the amount of strength increase is sufficient.

【図面の簡単な説明】[Brief description of drawings]

【図1】レーザ照射条件と強度上昇率の関係。FIG. 1 shows the relationship between laser irradiation conditions and intensity increase rate.

【図2】フェライト+パーライト鋼(球状化しているも
のを含む)のレーザ処理特性の比較を示す図。
FIG. 2 is a diagram showing a comparison of laser processing characteristics of ferrite + pearlite steel (including spheroidized steel).

【図3】炭化物粒径(短辺サイズ)とレーザ照射時の強
度上昇率の関係を示す図。
FIG. 3 is a diagram showing a relationship between a carbide grain size (short side size) and a strength increase rate during laser irradiation.

【図4】K1 値と引張応力の上昇量との関係を示す図。FIG. 4 is a diagram showing the relationship between the K 1 value and the amount of increase in tensile stress.

【図5】K2 値と引張応力の上昇量との関係を示す図。FIG. 5 is a diagram showing the relationship between the K 2 value and the amount of increase in tensile stress.

【図6】レーザ照射部の硬さ(Hv)分布を示す図。FIG. 6 is a diagram showing a hardness (Hv) distribution of a laser irradiation part.

【図7】レーザ照射部の硬さ(Hv)分布を示す図。FIG. 7 is a diagram showing a hardness (Hv) distribution of a laser irradiation part.

【図8】炭素含有量とレーザ処理による強度上昇量との
関係を示す図。
FIG. 8 is a diagram showing the relationship between the carbon content and the amount of increase in strength due to laser processing.

【図9】実施例における加工とレーザ処理を示す図。FIG. 9 is a diagram showing processing and laser processing in an example.

【図10】レーザ照射部の金属組織を示す図面代用写
真。
FIG. 10 is a drawing-substitute photograph showing a metallographic structure of a laser irradiation portion.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 裕 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 中村 真一郎 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 槙井 浩一 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 十代田 哲夫 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Suzuki, 1 Toyota Town, Toyota City, Aichi Prefecture, Toyota Motor Co., Ltd. (72) Inventor: Shinichiro Nakamura, 1 Toyota Town, Toyota City, Aichi Prefecture, Toyota Motor Corporation ( 72) Inventor Koichi Makii 1 Kanazawa-machi, Kakogawa-shi, Hyogo Prefecture Kadoto Steel Works Kakogawa Steel Works (72) Inventor Tetsuo Tatsuda 1-Kanazawa-machi, Kakogawa City Hyogo Prefecture Kakogawa Steel Works Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高密度エネルギー源を鋼板表面に照射し
板厚を貫通した凝固域を形成することにより高強度化し
て使用する、高強度化特性に優れた高加工性鋼板であっ
て、 C :0.02〜0.3%(重量%の意味、以下同じ) Si:1.5%以下 Mn:2.5%以下 を含み、残部がFe及び不可避的不純物よりなり、かつ
1 =(Mn%+0.25・Si%)×C%の計算式で
与えられるK1 値が0.01以上であリ、しかもフェラ
イトに加えてパーライト及び/又はセメンタイトが共存
する組織を有することを特徴とする、高密度エネルギー
源照射処理により優れた高強度化特性を発揮することを
特徴とする高加工性鋼板。
1. A high workability steel sheet having excellent strength-enhancing properties, which is used by increasing the strength by irradiating the surface of the steel sheet with a high-density energy source to form a solidified region penetrating the thickness of the steel sheet. : 0.02 to 0.3% (meaning% by weight, the same applies hereinafter) Si: 1.5% or less Mn: 2.5% or less, the balance consisting of Fe and inevitable impurities, and K 1 = ( Mn% + 0.25 · Si%) × C% given a K 1 value of 0.01 or more and having a structure in which pearlite and / or cementite coexist in addition to ferrite. A high workability steel sheet characterized by exhibiting excellent strength-enhancing properties by irradiation treatment with a high-density energy source.
【請求項2】 K1 =(Mn%+0.25・Si%)×
C%の計算式で与えられるK1 値が0.05以上である
請求項1に記載の高加工性鋼板。
2. K 1 = (Mn% + 0.25 · Si%) ×
The high workability steel sheet according to claim 1, wherein the K 1 value given by the C% calculation formula is 0.05 or more.
【請求項3】 合金元素として、更に、 Cr:2.5%以下 Mo:1.0%以下 B :50ppm 以下 のいずれか1種以上を含み、 K2 =(Mn%+Cr%+Mo%+250・B%+0.
25・Si%)×C% の計算式で与えられるK2 値が0.05以上である請求
項1または2に記載の高加工性鋼板。
3. The alloying element further contains any one or more of Cr: 2.5% or less, Mo: 1.0% or less, B: 50 ppm or less, and K 2 = (Mn% + Cr% + Mo% + 250. B% + 0.
The high workability steel sheet according to claim 1 or 2, wherein a K 2 value given by a calculation formula of 25 · Si%) × C% is 0.05 or more.
【請求項4】 合金元素として、更に、 Cu:2.5%以下 Ni:1.5%以下 P :0.15%以下 Nb:0.2%以下 Ti:0.2%以下 Zr:0.1%以下 V :0.1%以下 W :0.1%以下 のいずれか1種以上を含むものである請求項1〜3のい
ずれかに記載の高加工性鋼板。
4. As an alloying element, further Cu: 2.5% or less Ni: 1.5% or less P: 0.15% or less Nb: 0.2% or less Ti: 0.2% or less Zr: 0. 1% or less V: 0.1% or less W: 0.1% or less Any one or more types of high workability steel plate in any one of Claims 1-3.
JP23057492A 1992-08-28 1992-08-28 High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source Pending JPH0673440A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP23057492A JPH0673440A (en) 1992-08-28 1992-08-28 High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source
EP93113769A EP0585843A3 (en) 1992-08-28 1993-08-27 High-formability steel plate with a great potential for strength enhancement by high-density energy treatment
US08/308,611 US5529646A (en) 1992-08-28 1994-09-19 Process of Producing high-formability steel plate with a great potential for strength enhancement by high-density energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23057492A JPH0673440A (en) 1992-08-28 1992-08-28 High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source

Publications (1)

Publication Number Publication Date
JPH0673440A true JPH0673440A (en) 1994-03-15

Family

ID=16909885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23057492A Pending JPH0673440A (en) 1992-08-28 1992-08-28 High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source

Country Status (1)

Country Link
JP (1) JPH0673440A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5852947A (en) * 1996-02-28 1998-12-29 Ntn Corporation Main shaft gear mechanism in a transmission for a vehicle
KR20020031709A (en) * 2000-10-23 2002-05-03 이계안 A composition for manufacturing steel sheets having ultra high strength by local hardening
KR100467487B1 (en) * 2001-10-26 2005-01-24 현대자동차주식회사 Method for strengthening of Steel Sheets for Automobile and thereof Products

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5852947A (en) * 1996-02-28 1998-12-29 Ntn Corporation Main shaft gear mechanism in a transmission for a vehicle
KR20020031709A (en) * 2000-10-23 2002-05-03 이계안 A composition for manufacturing steel sheets having ultra high strength by local hardening
KR100467487B1 (en) * 2001-10-26 2005-01-24 현대자동차주식회사 Method for strengthening of Steel Sheets for Automobile and thereof Products

Similar Documents

Publication Publication Date Title
EP1559797B1 (en) Method for manufacturing a high strength steel sheet
JP3990726B2 (en) High strength duplex steel sheet with excellent toughness and weldability
AU716203B2 (en) High strength steels having excellent formability and high impact energy absorption properties, and a method for production the same
KR100318213B1 (en) High-strength steel plate having high dynamic deformation resistance and method of manufacturing the same
JP3219820B2 (en) Low yield ratio high strength hot rolled steel sheet and method for producing the same
KR20070061859A (en) High strength thin steel plate excellent in elongation and bore expanding characteristics and method for production thereof
KR102020407B1 (en) High-strength steel sheet having high yield ratio and method for manufacturing thereof
JP3370875B2 (en) High strength steel sheet excellent in impact resistance and method for producing the same
JP3417878B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue properties and its manufacturing method
JP4427110B2 (en) Press forming method of thin steel sheet for processing
JP3993703B2 (en) Manufacturing method of thin steel sheet for processing
JPH0673440A (en) High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source
CN116547400A (en) Ultrahigh-strength cold-rolled steel sheet excellent in bendability and method for producing same
JP2004084074A (en) Hot rolled sheet steel having excellent impact resistance
EP3730651B1 (en) High yield ratio-type high-strength steel sheet and method for manufacturing same
JP3582182B2 (en) Cold rolled steel sheet excellent in impact resistance and method for producing the same
JPH0673438A (en) High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source
JP2005154809A (en) High strength thin steel sheet for welded joint having excellent press formability, and welded joint obtained by using the same
JPH0673439A (en) High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source
KR101657835B1 (en) High strength hot-rolled steel sheet having excellent press formability and method for manufacturing the same
JPH0673441A (en) High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source
JPH0673443A (en) High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source
JPH0673442A (en) High workability sheet excellent in high strengthening characteristic by irradiation with high density energy source
EP4186991A1 (en) Steel sheet having excellent formability and strain hardening rate
JPH07126807A (en) Steel sheet excellent in formability and hardenability by high energy density beam irradiation and its production

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020205