JPH0673441A - High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source - Google Patents

High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source

Info

Publication number
JPH0673441A
JPH0673441A JP23057592A JP23057592A JPH0673441A JP H0673441 A JPH0673441 A JP H0673441A JP 23057592 A JP23057592 A JP 23057592A JP 23057592 A JP23057592 A JP 23057592A JP H0673441 A JPH0673441 A JP H0673441A
Authority
JP
Japan
Prior art keywords
steel sheet
less
strength
energy source
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23057592A
Other languages
Japanese (ja)
Inventor
Hiroki Nakajima
裕樹 中嶋
Yoshiro Tomioka
良郎 富岡
Yutaka Suzuki
裕 鈴木
Shinichiro Nakamura
真一郎 中村
Koichi Makii
浩一 槙井
Tetsuo Toyoda
哲夫 十代田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Toyota Motor Corp
Original Assignee
Kobe Steel Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Toyota Motor Corp filed Critical Kobe Steel Ltd
Priority to JP23057592A priority Critical patent/JPH0673441A/en
Priority to EP93113769A priority patent/EP0585843A3/en
Publication of JPH0673441A publication Critical patent/JPH0673441A/en
Priority to US08/308,611 priority patent/US5529646A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To obtain a steel sheet having excellent treating characteristic by specifying alloy components and constitution structure in the steel sheet under a fixed irradiating condition. CONSTITUTION:This steel sheet is the high workability steel sheet used after high strengthening by irradiating the surface of the steel sheet with a high density energy source to form the solidified zone penetrating the sheet thickness. This steel sheet contains, by weight 0.05-0.25% C, <=3.0% Si, 1.1-3.0% Mn and the balance Fe and has the structure containing ferrite and retained austenite and besides, either one or more of martensite and/or bainite. Particularly, the steel sheet having K, >=0.35, in K1 (Mn% + 0.25Si%) X C% is desirable. This steel sheet displays the excellent workability at the time of working and the excellent high by strengthening characteristic by the irradiation treatment with the high density energy source.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加工時には優れた加工
特性を有し、なおかつ高密度エネルギー源からの照射に
よって高強度化して使用することができるような鋼板に
関するものである。なお以下の説明においては、自動車
用部材のひとつであるメンバー類を代表的に取り上げて
説明するが、本発明鋼板の適用対象はこれによって制限
されるものではなく、上記両特性の要求される分野に対
しては広く利用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel sheet which has excellent working characteristics during working and which can be used after being strengthened by irradiation from a high-density energy source. In the following description, the members, which are one of the members for automobiles, will be described as a representative example, but the application target of the steel sheet of the present invention is not limited by this, and is a field in which both the above characteristics are required. Can be widely used for.

【0002】[0002]

【従来の技術】自動車用部材、特にメンバー類等は加工
性と強度の2つの相反する特性が要求されている。即ち
メンバー類を自動車ボディの滑らかな曲線に添わせるよ
うに配置するためには優れた加工性を有していることが
必要であり、一方いったん装着した後は、走行中の衝突
事故に対して優れた防護作用を発揮するという立場から
所定の部分が希望強度まで高強度化されておらなければ
ならない。そこで加工性に富んだ軟鋼板をプレス成形し
た後で高密度エネルギー源による照射を行い、該プレス
成形部品の所定部分を高強度化するという技術が提案さ
れている(特開昭61−99629)。しかしながら前
記特許公開公報に記載された照射条件によれば、高強度
エネルギー源から例えばレーザ照射を行うと、板厚方向
における熱影響の度合いが不均一となって形状に歪みを
生じ、レーザ処理後の形状修正が必要になること、並び
にレーザ処理の必要照射本数が非常に多くなり、全処理
時間が長くなってしまうという点で実用化が妨げられて
いた。
2. Description of the Related Art Automotive members, especially members and the like, are required to have two contradictory characteristics, that is, workability and strength. In other words, it is necessary to have excellent workability in order to arrange the members so that they follow the smooth curve of the car body. From the standpoint of exerting an excellent protective action, it is necessary that the prescribed part be strengthened to the desired strength. Therefore, a technique has been proposed in which a mild steel sheet having high workability is press-formed and then irradiated with a high-density energy source to increase the strength of a predetermined portion of the press-formed part (Japanese Patent Laid-Open No. 61-99629). . However, according to the irradiation conditions described in the above-mentioned patent publication, for example, when laser irradiation is performed from a high intensity energy source, the degree of thermal influence in the plate thickness direction becomes uneven and distortion occurs in the shape, and after laser processing Practical use has been hindered in that the shape correction of No. 1 is required and the number of irradiations required for laser processing is very large, and the total processing time becomes long.

【0003】このようなプレス成形及びその後のレーザ
硬化処理を基本構成とする本技術はプレスラインにおい
て部品をプレス加工した後に高密度エネルギー源による
照射を施す点に特徴があるが、これまで検討されてきた
範囲では、高密度エネルギー源による照射条件と対象鋼
組織との組み合わせをどのように工夫すれば、歪みを少
なくすることができ、しかも十分な強度の上昇を得るこ
とができるか等について、全く知見が得られていない。
そのため、高密度エネルギー源による処理条件と鋼組織
との好ましい組み合わせに関する知見を確立することが
切望されていた。換言すれば、プレス成形時には十分な
加工性を有し、加工後は高密度エネルギー源による処理
によって強度が大幅に上昇し得る様な素材鋼板の開発が
望まれていた。
The present technology, which is basically composed of such press molding and subsequent laser hardening treatment, is characterized in that after the parts are pressed in the press line, irradiation with a high-density energy source is performed, but they have been studied so far. In the range that has been set, how to devise the combination of the irradiation condition by the high-density energy source and the target steel structure can reduce the strain and obtain a sufficient increase in strength. No knowledge has been obtained.
Therefore, it has been earnestly desired to establish a knowledge about a preferable combination of a treatment condition with a high-density energy source and a steel structure. In other words, it has been desired to develop a material steel sheet that has sufficient workability during press forming, and whose strength can be significantly increased by processing with a high-density energy source after working.

【0004】特開平4−72010にも、プレス成形品
にレーザ照射を行い強度上昇をはかる技術が開示されて
いる。この特許公開公報においては炭素鋼板を用いてレ
ーザ処理を行ったものでは、強度上昇が得られる旨示さ
れている。しかしながらこの特許公開公報においては、
鋼板組成に関しては炭素量に言及しているのみで、炭素
以外の合金成分や鋼板の組織については全く言及してお
らず、したがって合金成分および組織とレーザ処理条件
についての関係、さらにはそれらと強度上昇量の関係に
ついては全く知見が得られていない。本発明者等の研究
によれば、レーザ処理時の強度上昇は、レーザ処理条件
だけではなく、合金成分や組織にも大きく依存している
ことが明らかになった。従ってレーザ処理によって大幅
な強度上昇を得るためには、この関係を明確にすること
が必要であった。
Japanese Unexamined Patent Publication (Kokai) No. 4-72010 also discloses a technique for increasing the strength by irradiating a press-formed product with a laser. In this patent publication, it is shown that the increase in strength can be obtained by performing the laser treatment using a carbon steel sheet. However, in this patent publication,
Regarding the steel sheet composition, it only refers to the amount of carbon, and does not refer to the alloy components other than carbon or the microstructure of the steel sheet at all, and therefore the relationship between the alloy components and microstructure and the laser processing conditions, as well as their strength. No knowledge has been obtained regarding the relationship between the amount of increase. The research conducted by the present inventors has revealed that the increase in strength during laser processing largely depends not only on the laser processing conditions but also on the alloy composition and structure. Therefore, it was necessary to clarify this relationship in order to obtain a large increase in strength by laser processing.

【0005】なお、特開昭61−261462には加工
性に優れたレーザ加工用鋼板に関する知見が示されてい
るが、ここではレーザ切断を行った後にプレス成形等の
加工を行う場合の加工性が問題とされている。これに対
し本発明はレーザ照射による硬化処理を目的とするもの
であり、同じレーザ照射とは言っても上記公開公報のよ
うな切断加工を目的とするものではない点で、技術分野
も技術内容も全く異なるものである。
Incidentally, Japanese Patent Laid-Open No. 61-261462 discloses the knowledge of a steel plate for laser processing which is excellent in workability. Here, the workability in the case of performing processing such as press forming after performing laser cutting. Is a problem. On the other hand, the present invention is intended for the curing treatment by laser irradiation, and the same laser irradiation is not intended for the cutting process as in the above-mentioned publication, and the technical field is also technical content. Is also completely different.

【0006】更に特開平1−259118には、プレス
用素材の強化必要部位に対して急速再溶融−急速再凝固
処理を行って結晶粒の微細化を図り高強度化する技術が
開示されている。しかしこの公開公報発明は、使用時に
裏面となる部位のみを溶融させるものであり、後に詳述
するような本発明の貫通溶融法とは異なって大きな残留
歪みが生じ、なおかつ十分な強度上昇効果が得られな
い。また上記公開公報発明は強化のメカニズムが結晶粒
の微細化にあり、焼入組織を得るものではない。この点
においても焼入組織の形成をメカニズムとする本発明と
は区別される。このように従来知られている方法は、本
発明で採用する様な後述の方法と比べて本質的に異なっ
た方法と言わなければならない。
Further, Japanese Patent Application Laid-Open No. 1-259118 discloses a technique for performing a rapid remelting-rapid resolidifying treatment on a portion of a press material to be strengthened so as to make crystal grains finer and to have higher strength. . However, the invention disclosed in this publication only melts a portion which becomes the back surface at the time of use, and unlike the through-melting method of the present invention which will be described in detail later, a large residual strain occurs, and a sufficient strength increasing effect is obtained. I can't get it. Further, in the above-mentioned Japanese Laid-Open Patent Publication, the strengthening mechanism lies in the refinement of crystal grains, and a quenched structure is not obtained. This point is also distinguished from the present invention in which the formation of a quenched structure is a mechanism. As described above, it should be said that the conventionally known method is essentially different from the method described below as employed in the present invention.

【0007】[0007]

【発明が解決しようとする課題】本発明者らは、高密度
エネルギー源による処理性におよぼす合金元素の種類や
組織の影響を鋭意研究した結果、ある一定の照射条件の
もとにおいては、鋼板の合金成分を特定の範囲とし、か
つ構成組織を規定することによって、従来の鋼板におい
ては得られなかった様な優れた処理特性が得られること
を見い出して本発明を完成するに至った。
DISCLOSURE OF THE INVENTION The inventors of the present invention have earnestly studied the influence of the type and structure of alloying elements on the processability by a high-density energy source, and as a result, under certain irradiation conditions, steel sheets were produced. The present invention has been completed by finding out that by setting the alloy component of (1) to a specific range and defining the constitutional structure, it is possible to obtain excellent processing characteristics that cannot be obtained in the conventional steel sheet.

【0008】[0008]

【課題を解決するための手段】本発明によって提供され
る鋼板は、加工時には優れた加工性を示しながら、レー
ザ照射等の様な高密度エネルギー源からの照射を行って
板厚を貫通する様な凝固域を形成した場合には、十分な
高強度化を発揮し、そのことにより広範囲の用途に使用
することができるものであって、高強度化特性に優れた
高加工性鋼板である。
The steel sheet provided by the present invention has excellent workability during processing and is capable of irradiating from a high-density energy source such as laser irradiation to penetrate the plate thickness. When it forms a large solidification region, it exhibits a sufficiently high strength, which allows it to be used in a wide range of applications, and is a high workability steel sheet excellent in high strength characteristics.

【0009】本発明にかかる高加工性鋼板の合金組成
は、 C :0.05〜0.25% Si:3.0%以下 Mn:1.1〜3.0% を含み、残部がFe及び不可避的不純物よりなり、かつ
フェライト及び残留オーステナイトを含む他、マルテン
サイトとベイナイトのいずれか一種以上を含む組織を有
することを特徴とするものである。
The alloy composition of the high workability steel sheet according to the present invention contains C: 0.05 to 0.25% Si: 3.0% or less Mn: 1.1 to 3.0%, the balance being Fe and Fe. It is characterized in that it is composed of unavoidable impurities, contains ferrite and retained austenite, and has a structure containing at least one of martensite and bainite.

【0010】本発明における基本的合金組成は上記のと
おりであるが、特にC,Si,Mnの含有量によって下
記計算式で計算されるK1 値が0.35以上であるもの
は、レーザ処理前の高加工性とレーザ処理後の高強度化
においてより確実で優れた効果を発揮することが確かめ
られている。 K1 =(Mn%+0.25・Si%)×C%
The basic alloy composition in the present invention is as described above. Especially, the one having a K 1 value of 0.35 or more calculated by the following formula according to the contents of C, Si and Mn is laser treated. It has been confirmed that it exerts a more reliable and excellent effect in high workability before and high strength after laser treatment. K 1 = (Mn% + 0.25 · Si%) × C%

【0011】また本発明の高加工性鋼板は、前記C,S
i,Mnの他、 Cr:2.5%以下 Mo:1.0%以下 B :50ppm 以下 のいずれか1種以上を必須成分として含むものであって
もよい。但しこのような付加成分を含有する場合の前記
1 値を求める計算式は、次の様に変更される。そして
下記計算式で与えられるK2 値も0.35以上であるこ
とが望まれる。 K2 =(Mn%+Cr%+Mo%+250・B%+0.
25・Si%)×C%
Further, the high workability steel sheet of the present invention is the above-mentioned C, S.
In addition to i and Mn, one or more of Cr: 2.5% or less, Mo: 1.0% or less, B: 50 ppm or less may be contained as an essential component. However, the calculation formula for obtaining the K 1 value in the case of containing such an additional component is changed as follows. Further, it is desired that the K 2 value given by the following calculation formula is also 0.35 or more. K 2 = (Mn% + Cr% + Mo% + 250 · B% + 0.
25 ・ Si%) × C%

【0012】また本発明の高加工性鋼板は、前記C,S
i,Mnの他、 Cr:2.5%以下 Mo:1.0%以下 B :50ppm 以下 のいずれか1種以上および/または Cu:2.5%以下 Ni:1.5%以下 P :0.15%以下 Nb:0.2%以下 Ti:0.2%以下 Zr:0.1%以下 V :0.1%以下 W :0.1%以下 のいずれか1種以上を含むものであってもよい。
Further, the high workability steel sheet of the present invention is the above-mentioned C, S.
Other than i and Mn, Cr: 2.5% or less Mo: 1.0% or less B: 50 ppm or less and / or Cu: 2.5% or less Ni: 1.5% or less P: 0 .15% or less Nb: 0.2% or less Ti: 0.2% or less Zr: 0.1% or less V: 0.1% or less W: 0.1% or less Any one or more of these are included. May be.

【0013】[0013]

【作用】まず、高強度エネルギー源による照射条件につ
いて述べる。ここでは高密度エネルギー源としてレーザ
を用いた例を示したが、プラズマ等を用いることもでき
る。図1には、C:0.10%、Si:0.01%、M
n:0.90%、Al(脱酸性元素として添加したこと
による不純物元素):0.032%、残部Fe及び不可
避的不純物からなる鋼材を試験片(板厚1.4mm)と
し、レーザ照射条件を種々変更して強度上昇量との関係
を示したが、エネルギー密度が100J/mm2以上となる
様な照射を行うと、大幅な強度上昇が得られることが分
かる。この範囲は板厚を貫通する溶融相を形成する条件
であり、このような条件にすることによって強度の大幅
な上昇が可能となるのである。またそのような条件にす
ることによって板厚方向に生じる歪が解放されるため、
処理後の残留歪を非常に小さく抑えることができる。
First, the irradiation conditions by the high intensity energy source will be described. Although an example in which a laser is used as the high-density energy source is shown here, plasma or the like can also be used. In FIG. 1, C: 0.10%, Si: 0.01%, M
n: 0.90%, Al (impurity element added as a deoxidizing element): 0.032%, steel material consisting of balance Fe and unavoidable impurities as a test piece (plate thickness 1.4 mm), laser irradiation conditions Although various changes were made to show the relationship with the amount of increase in strength, it can be seen that a significant increase in strength can be obtained by performing irradiation so that the energy density becomes 100 J / mm 2 or more. This range is a condition for forming a molten phase that penetrates the plate thickness, and under such a condition, the strength can be significantly increased. Also, by making such conditions, the strain generated in the plate thickness direction is released,
The residual strain after the treatment can be suppressed to a very small level.

【0014】次に組織と強度上昇量の関係について述べ
る。図2にはフェライト+パーライト鋼の場合、並びに
フェライト+残留オーステナイト+(マルテンサイト及
び/又はベイナイト)鋼の場合について、それぞれ素材
特性とレーザ処理による強度上昇量の関係を示した。素
材特性としては強度と伸びの積を示し、強度としては降
伏応力を指標とした。比較鋼としてフェライト+パーラ
イト鋼を用いたのは、プレス用鋼板としてはフェライト
+パーライト鋼が最も一般的な組織であり、且つ広く使
用されているからである。この図からわかるように本発
明の組織条件を満足するフェライト+残留オーステナイ
ト+(マルテンサイト及び/又はベイナイト)鋼は、フ
ェライト+パーライト鋼に比べてはるかに優れた強度上
昇の効果を示すことが分かる。この原因について鋭意研
究を行った結果、鋼組織の他、合金成分がある条件範囲
に含まれていることが、加工性と強度上昇量のバランス
を良くする上で必須不可欠であることが分かった(後記
実施例参照)。この点を更に説明すると、本発明で定め
た複合組織においては、まずマルテンサイト相と残留オ
ーステナイト相からはレーザ加熱中に炭化物の析出を生
じるがその大きさが非常に小さいものである為容易に溶
け込んでしまい、またベーナイト相においても析出した
炭化物が十分に小さい為レーザ処理中に溶け込みが完了
してしまい、これらの溶け込みによって十分な硬化面積
が確保されるのに対し、一方フェライト相とパーライト
相では析出した炭化物の溶け込みに時間がかかり、レー
ザ処理中には十分な溶け込みを示さない為、結局全体と
しては硬化領域が狭くなってしまうのである。
Next, the relationship between the structure and the amount of increase in strength will be described. FIG. 2 shows the relationship between the material characteristics and the amount of increase in strength due to laser treatment in the case of ferrite + pearlite steel and the case of ferrite + retained austenite + (martensite and / or bainite) steel. The material property is the product of strength and elongation, and the yield stress is the index. The reason why the ferrite + pearlite steel was used as the comparative steel is that the ferrite + pearlite steel is the most general structure as a steel sheet for pressing and is widely used. As can be seen from this figure, the ferrite + retained austenite + (martensite and / or bainite) steel satisfying the structural conditions of the present invention exhibits a far superior strength increasing effect as compared with the ferrite + pearlite steel. . As a result of diligent research on this cause, it was found that it is indispensable that the alloy composition is contained in a certain condition range in addition to the steel structure in order to improve the balance between the workability and the strength increase amount. (See Examples below). Explaining this point further, in the composite structure defined in the present invention, first, carbide precipitation occurs from the martensite phase and the retained austenite phase during laser heating, but the size thereof is very small, so it is easy. In addition, since the carbides precipitated in the bainite phase are sufficiently small, the penetration is completed during the laser treatment, and a sufficient hardened area is secured by these penetrations, while the ferrite and pearlite phases are In that case, it takes a long time for the precipitated carbides to melt, and the laser does not sufficiently melt during the laser treatment, so that the hardening region is narrowed as a whole.

【0015】また図3には、前記計算式で示したK1
とK2 値に対する降伏応力上昇量の関係を示した。K
1 ,K2 のいずれを見ても、0.35以上であるときは
200MPaという大幅な降伏応力上昇量が得られてい
る。なおCr,Mo,Bの添加効果は上記したK2 値の
概念で理解することができることが分かった。
Further, FIG. 3 shows the relationship between the K 1 value and the K 2 value shown in the above formula and the increase in yield stress. K
Looking at both 1 and K 2 , when it is 0.35 or more, a large yield stress increase of 200 MPa is obtained. It was found that the effect of adding Cr, Mo, and B can be understood by the concept of the K 2 value described above.

【0016】図4は本発明条件を満足する場合と満足し
ない場合の両方について、レーザ処理部分の断面を硬さ
分布で示したものである。比較鋼はフェライト+パーラ
イト組織である為、硬化域の幅が狭くなっている。これ
は単に焼き入れ性のみで理解できるものではなく、合金
成分による変態点の違いと炭化物サイズの相違に基づく
溶け込み方の違い等が総合的に影響して硬化域の幅を狭
めたものと思われる。
FIG. 4 shows hardness distributions of cross sections of the laser-processed portions both when the conditions of the present invention are satisfied and when the conditions are not satisfied. Since the comparative steel has a ferrite + pearlite structure, the width of the hardened area is narrow. This is not something that can be understood simply by the hardenability, but it is thought that the width of the hardening zone was narrowed due to the overall influence of the difference in the transformation point due to the alloy composition and the difference in the penetration method due to the difference in the carbide size. Be done.

【0017】次に、本発明鋼板における合金成分の限定
理由について説明する。本発明鋼は、特にプレス成形等
の冷間加工用途に好適なものでなければならずこのため
にはCはその添加量が少ないほど好ましい。しかし反面
ではレーザ照射等による強度上昇が重要課題であり、特
にフェライト+残留オーステナイト+(マルテンサイト
及び/又はベイナイト)の複合組織を得るという観点か
らは0.05%以上の添加が必要である。他方Cを過多
に添加するときは鋼板の加工性、さらには溶接性を著し
く劣化させるのでCの上限は0.25%とする。
Next, the reasons for limiting the alloy components in the steel sheet of the present invention will be described. The steel of the present invention must be particularly suitable for cold working applications such as press forming. For this purpose, the smaller the amount of C added, the more preferable. On the other hand, however, the increase in strength due to laser irradiation or the like is an important issue, and particularly from the viewpoint of obtaining a composite structure of ferrite + retained austenite + (martensite and / or bainite), addition of 0.05% or more is necessary. On the other hand, if C is added excessively, the workability of the steel sheet and further the weldability are significantly deteriorated, so the upper limit of C is 0.25%.

【0018】Siもフェライト+残留オーステナイト+
(マルテンサイト及び/又はベイナイト)の複合組織を
得る上で有用な元素であるが、3.0%を超えると著し
い表面肌荒れを起こすので、上限を3.0%とした。
Si is also ferrite + retained austenite +
Although it is an element useful in obtaining a composite structure of (martensite and / or bainite), if it exceeds 3.0%, remarkable surface roughening occurs, so the upper limit was made 3.0%.

【0019】Mnはレーザ加工による強度上昇に必須の
元素であり、また前記複合組織を得る上でも有用な元素
であって、少なくとも1.1%の添加が必須である。し
かしあまり多量に添加すると鋼板の冷間成形性を損なう
ので、添加量の上限は3.0%とする。
Mn is an element essential for increasing the strength by laser processing, and is also an element useful for obtaining the composite structure, and at least 1.1% must be added. However, if added in a too large amount, the cold formability of the steel sheet is impaired, so the upper limit of the added amount is 3.0%.

【0020】本発明鋼における必須的含有元素は上記の
とおりであり、残部はFe及び不可避的不純物である
が、所望によっては以下に示す様な元素を添加すること
もできる。Crはレーザ処理による強度上昇に有効であ
るが、必要以上多量に添加することは不経済であるの
で、上限を2.5%とした。
The essential contained elements in the steel of the present invention are as described above, and the balance is Fe and unavoidable impurities, but if desired, the following elements can be added. Cr is effective for increasing the strength by laser treatment, but it is uneconomical to add it in a larger amount than necessary, so the upper limit was made 2.5%.

【0021】Moはレーザ処理による強度上昇に有効で
あるが、多量の添加は経済性を損なうので上限を1.0
%とする。Bはレーザ加工による強度上昇に有効な元素
であるが、50ppm 以上添加すると母材の延性を著しく
劣化させるので、上限を50ppm とした。
Mo is effective in increasing the strength by laser treatment, but addition of a large amount impairs economic efficiency, so the upper limit is 1.0.
%. B is an element effective in increasing the strength by laser processing, but if 50 ppm or more is added, the ductility of the base material is significantly deteriorated, so the upper limit was made 50 ppm.

【0022】上記3元素は添加効果の大きいものとして
特に有意義なものであって、前記したK2 の値に重要な
影響を与えるものであるが、これらの他更に次の様な元
素を添加していくこともできる。
The above-mentioned three elements are particularly significant as those having a large addition effect and have an important influence on the above-mentioned K 2 value. In addition to these, the following elements are further added. You can also go.

【0023】Cuは時効析出によって素材強度を確保す
る機能を発揮するものであり、しかも母材の耐食性を向
上させることができるので、素材の特性向上元素として
有効である。しかしながら多量に添加する場合には鋼板
に表面疵を生じさせるので、Niとの複合添加によって
その改善をはかることが必要になる。従って本発明鋼に
おいてはCuとNiを複合添加するとともに、その添加
量はCuに関しては2.5%以下、Niに関しては経済
的制約により1.5%以下とするのが望ましい。
Cu has the function of ensuring the strength of the material by aging precipitation, and can improve the corrosion resistance of the base material, and is therefore an effective element for improving the characteristics of the material. However, when added in a large amount, surface defects are generated in the steel sheet, and therefore it is necessary to improve the effect by adding Ni together. Therefore, in the steel of the present invention, it is desirable to add Cu and Ni together, and to add Cu in an amount of 2.5% or less and in Ni, 1.5% or less due to economic constraints.

【0024】Pは含有量を少なくすることによって冷間
加工性を向上できるが、鋼の強化元素としても期待され
るので、必要に応じて添加することもある。しかし0.
15%を超えて多量に添加すると、鋼の脆化が著しくな
るので添加量は0.15%以下とする。
Although cold workability can be improved by reducing the content of P, it is expected as a strengthening element for steel, so P may be added if necessary. But 0.
If a large amount is added in excess of 15%, the embrittlement of the steel becomes remarkable, so the addition amount is made 0.15% or less.

【0025】Nb,Tiの各元素は鋼の強度上昇に有効
であるが、経済的制約により上限は0.2%とする。Z
r,V,Wの各元素は鋼の強度上昇に有効であるが、経
済的制約から上限は0.1%とする。
Each element of Nb and Ti is effective for increasing the strength of steel, but the upper limit is 0.2% due to economic constraints. Z
Each element of r, V and W is effective for increasing the strength of steel, but the upper limit is 0.1% due to economic constraints.

【0026】またREMおよびCaは鋼の介在物形態を
制御するために添加しても良いが、過多に添加すると介
在物量が増えて鋼板の冷間加工性および靭性を劣化させ
るので、上限をそれぞれ0.02%とする。Mgは水素
脆化防止効果があり、レーザ処理部の水素脆化防止効果
のために添加しても良い。但し経済的な理由から上限を
0.01%とする。
Further, REM and Ca may be added to control the morphology of inclusions in steel, but if added in excess, the amount of inclusions increases and the cold workability and toughness of the steel sheet deteriorate, so the respective upper limits are set. It is set to 0.02%. Mg has an effect of preventing hydrogen embrittlement, and may be added for the purpose of preventing hydrogen embrittlement in the laser-processed portion. However, for economic reasons, the upper limit is made 0.01%.

【0027】本発明鋼に含有されることのある不可避的
不純物としては、N,O等の他、脱酸性元素として添加
される得るAlを挙げることができる。Alは特にアル
ミキルド鋼の場合は添加元素となるが、0.1%を超え
るとc系介在物を多く生成して表面傷の原因となるの
で、その上限を0.1%と定めた。
Examples of the unavoidable impurities that may be contained in the steel of the present invention include N, O and the like, as well as Al which can be added as a deoxidizing element. Al is an additive element particularly in the case of aluminum-killed steel, but if it exceeds 0.1%, a large amount of c-based inclusions are generated and cause surface scratches, so the upper limit was set to 0.1%.

【0028】以上述べたように本発明鋼は、素材段階で
は優れた冷間加工性を示し、いったん加工した後は所望
部分をレーザ照射等によって高強度化されるので、使用
条件の下では大幅な強度上昇が可能である。
As described above, the steel of the present invention exhibits excellent cold workability at the material stage, and once processed, the desired portion is strengthened by laser irradiation or the like, so under the conditions of use it is significantly It is possible to increase the strength.

【0029】本発明におけるレーザ照射等は、上記鋼板
の強度を高めるものであるから、必要な箇所を適切に選
択して照射部を選択すべきである。従って、(1)加工
必要部と強度上昇必要部が部位的に重なっている場合等
は、材料鋼板を予め所定の形状に加工し、しかる後強度
上昇の必要な部位を狙ってレーザ照射を行うことが推奨
されるが、(2)加工必要部と強度上昇必要部が部位的
に十分区別できる場合等は、材料鋼板に対して強度上昇
の必要な部位を狙ってレーザ照射を行い、しかる後に加
工を行うようにしても良い。
Since the laser irradiation and the like in the present invention enhances the strength of the steel sheet, it is necessary to appropriately select a necessary part and select an irradiation part. Therefore, (1) When the processing required portion and the strength increasing required portion partially overlap with each other, the material steel plate is processed into a predetermined shape in advance, and then laser irradiation is performed aiming at the portion requiring strength increasing. It is recommended that (2) if the processing required part and the strength increase required part can be sufficiently distinguished in parts, laser irradiation is performed on the material steel sheet aiming at the part requiring strength increase, and after that You may make it process.

【0030】後者の例としては図5に示す場合が挙げら
れる。図5において1は素材鋼板、2は山折れ線、3は
谷折れ線、4はレーザ照射部、5は成形品(前記メンバ
ー)を夫々示し、(a)は素材鋼板の平面図、(b)は
加工部とレーザ照射部の位置分けを示す平面説明図、
(c)は成形品外観を示す斜視説明図であり、まず
(b)に示すように加工部である山折れ線2と谷折れ線
3を避けてレーザ照射を行い、しかる後(c)に示すよ
うに所定形状に加工する。なお図示した形状の場合であ
っても、素材鋼板を先に所定形状に加工し、しかる後、
必要部位にレーザ照射を行う様にしてもよいことは言う
でもない。
An example of the latter case is shown in FIG. In FIG. 5, 1 is a material steel plate, 2 is a mountain crease line, 3 is a valley crease line, 4 is a laser irradiation part, 5 is a molded product (the member), (a) is a plan view of the material steel plate, (b) is Plane explanatory view showing the positioning of the processing unit and the laser irradiation unit,
(C) is a perspective explanatory view showing the external appearance of the molded product. First, as shown in (b), laser irradiation is performed while avoiding the mountain fold line 2 and the valley fold line 3 which are the processed parts, and then as shown in (c). It is processed into a predetermined shape. Even in the case of the illustrated shape, the material steel plate is first processed into a predetermined shape, and thereafter,
It goes without saying that the laser irradiation may be performed on a necessary portion.

【0031】なお、本発明の鋼板は熱延ミル、冷延ミル
のいずれの方法によっても製造することができ、また本
発明の鋼板は各種の表面処理、例えば亜鉛めっき等のめ
っきを施したものとして提供することもできる。
The steel sheet of the present invention can be manufactured by either a hot rolling mill or a cold rolling mill, and the steel sheet of the present invention is subjected to various surface treatments such as galvanizing. Can also be provided as.

【0032】[0032]

【発明の効果】本発明鋼にレーザ照射を行い板厚を貫通
した凝固域を形成すると、ビード部のみならず、ビード
の隣接領域においても焼入硬化部が形成される。一方レ
ーザ照射のように急速加熱でしかも高温保持が行われな
い場合には、通常炭化物の溶け込みと合金成分の均一化
を達成する時間が不十分となる。そこで本発明において
は、素材である鋼の組織や合金組成を、溶け込みや均一
化に有効な成分および組織としたのである。特に上記レ
ーザ処理条件に対応した成分、組織としたことは非常に
重要な意味を有するのである。こうすることによって炭
素量や合金量を不必要に増やす必要がなくなり、素材の
加工性を合わせて確保することが可能になる。本発明鋼
の場合には上記効果が発揮されるため、硬化する領域を
広くでき、従って強度が大幅に上昇する。このため、例
えばプレス成形したメンバー等の部品に対し、その必要
な部分のみをレーザ処理することによって強度を維持し
つつメンバーに加工する時点では加工性の維持に必要な
変形能を併せ持つことができる。
EFFECTS OF THE INVENTION When the steel of the present invention is irradiated with a laser to form a solidified region penetrating the plate thickness, a quench-hardened portion is formed not only in the bead portion but also in the adjacent region of the bead. On the other hand, in the case where rapid heating and high temperature holding are not performed as in laser irradiation, the time for achieving the penetration of carbides and the homogenization of alloy components is usually insufficient. Therefore, in the present invention, the structure and alloy composition of steel, which is a raw material, are made to be a composition and structure effective for penetration and homogenization. In particular, it is very important to have a composition and structure corresponding to the above laser processing conditions. By doing so, it is not necessary to unnecessarily increase the amount of carbon or the amount of alloy, and it becomes possible to secure the workability of the material as well. In the case of the steel of the present invention, since the above-mentioned effect is exhibited, the area to be hardened can be widened, and therefore the strength is significantly increased. Therefore, for example, when a member such as a press-molded member is laser-processed only in a necessary portion, the deformability required for maintaining the workability can be provided at the time of processing the member while maintaining the strength. .

【0033】また成形品の種類によってはプレス成形に
影響を及ばさない部分のみをレーザ照射等によって高強
度化することもあり、そのような場合には、プレス成形
する前にレーザ等の照射を行う方が、平板状態での処理
が可能であるため照射処理性が良好であり、且つ処理材
の特性の信頼性の確保も容易であるから、プレス成形す
る前にレーザ等によって高強度化しても、製品の強度と
プレス成形時の加工性を合わせ持たせることが可能であ
る。
Depending on the type of the molded product, only the portion which does not affect the press molding may be strengthened by laser irradiation or the like. In such a case, irradiation of the laser or the like is performed before press molding. Since it is possible to perform the treatment in the flat plate state, it is possible to perform the irradiation treatment, and it is easy to ensure the reliability of the characteristics of the treated material. It is also possible to combine the strength of the product with the workability during press molding.

【0034】[0034]

【実施例】表1に示した成分の材料を溶製し、圧延によ
って1.4mm厚さの板とし、組織調整を行った。特性の
評価はレーザ照射をしていないサンプルと、レーザ照射
をしたサンプルの2種類について行った。特に成形性の
評価は素材の成形性を問題としている為、レーザ照射前
のサンプルについて行った。レーザ照射は直線状に行
い、5mm間隔に3本の照射を行った。なおそのときのレ
ーザ出力は3kw、走査速度は3m/min とし、レーザの
焦点位置を板内として、溶融相が板厚を貫通する状態で
走査した。レーザ照射線が試験片の中央部に位置するよ
うにJIS5号引張試験片を加工して引張試験を行っ
た。
[Examples] The materials having the components shown in Table 1 were melted and rolled into a plate having a thickness of 1.4 mm, and the structure was adjusted. The evaluation of the characteristics was performed on two types of samples, a sample not irradiated with laser and a sample irradiated with laser. In particular, since the evaluation of the formability is concerned with the formability of the material, the sample before laser irradiation was performed. Laser irradiation was performed linearly and three irradiations were performed at 5 mm intervals. The laser output at that time was 3 kW, the scanning speed was 3 m / min, the focal position of the laser was within the plate, and scanning was performed with the molten phase penetrating the plate thickness. A JIS No. 5 tensile test piece was processed so that the laser irradiation line was located at the center of the test piece, and a tensile test was performed.

【0035】表2はその試験結果を示すものである。表
2において照射前として示した値はレーザ照射を行わな
い試験片における引張試験の結果であり、また加工性の
指標(r値)はレーザ照射を行わない試験片における試
験結果を示すものである。
Table 2 shows the test results. The values shown as “before irradiation” in Table 2 are the results of the tensile test on the test piece not subjected to the laser irradiation, and the workability index (r value) shows the test result on the test piece not subjected to the laser irradiation. .

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】比較鋼1〜5は組織がフェライト+パーラ
イトであるために十分な強度向上が得られていないが、
他の鋼は本発明条件を満たしており、優れた強度上昇率
が得られた。
Since Comparative Steels 1 to 5 have a structure of ferrite + pearlite, a sufficient improvement in strength cannot be obtained.
The other steels satisfied the conditions of the present invention, and excellent strength increase rates were obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】レーザ照射条件と強度上昇率の関係。FIG. 1 shows the relationship between laser irradiation conditions and intensity increase rate.

【図2】フェライト+パーライト鋼の場合、並びにフェ
ライト+残留オーステナイト+(マルテンサイト及び/
又はベイナイト)の場合について、それぞれ素材特性と
レーザ処理による降伏応力上昇量の関係を示した図。
[Fig. 2] In the case of ferrite + pearlite steel, as well as ferrite + retained austenite + (martensite and /
(Or bainite), the relationship between the material characteristics and the yield stress increase due to laser treatment.

【図3】K1 値またはK2 値と降伏応力の上昇量との関
係を示す図。
FIG. 3 is a diagram showing a relationship between a K 1 value or a K 2 value and an increase amount of yield stress.

【図4】レーザ照射部の硬さ(Hv)分布を示す図。FIG. 4 is a diagram showing a hardness (Hv) distribution of a laser irradiation part.

【図5】実施例における加工とレーザ処理を示す図。FIG. 5 is a diagram showing processing and laser processing in an example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 裕 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 中村 真一郎 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 槙井 浩一 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 十代田 哲夫 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Suzuki, 1 Toyota Town, Toyota City, Aichi Prefecture, Toyota Motor Co., Ltd. (72) Inventor: Shinichiro Nakamura, 1 Toyota Town, Toyota City, Aichi Prefecture, Toyota Motor Corporation ( 72) Inventor Koichi Makii 1 Kanazawa-machi, Kakogawa-shi, Hyogo Prefecture Kadoto Steel Works Kakogawa Steel Works (72) Inventor Tetsuo Tatsuda 1-Kanazawa-machi, Kakogawa City Hyogo Prefecture Kakogawa Steel Works Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高密度エネルギー源を鋼板表面に照射し
板厚を貫通した凝固域を形成することにより高強度化し
て使用する、高強度化特性に優れた高加工性鋼板であっ
て、 C :0.05〜0.25%(重量%の意味、以下同
じ) Si:3.0%以下 Mn:1.1〜3.0% を含み、残部がFe及び不可避的不純物よりなり、かつ
フェライト及び残留オーステナイトを含む他、マルテン
サイトとベイナイトのいずれか一種以上を含む組織を有
することを特徴とする、高密度エネルギー源照射処理に
より優れた高強度化特性を発揮することを特徴とする高
加工性鋼板。
1. A high workability steel sheet having excellent strength-enhancing properties, which is used by increasing the strength by irradiating the surface of the steel sheet with a high-density energy source to form a solidified region penetrating the thickness of the steel sheet. : 0.05 to 0.25% (meaning% by weight; the same applies hereinafter) Si: 3.0% or less Mn: 1.1 to 3.0% with the balance Fe and unavoidable impurities and ferrite In addition to containing retained austenite and having a structure containing one or more of martensite and bainite, high processing characterized by exhibiting excellent strength-enhancing properties by high-density energy source irradiation treatment Steel sheet.
【請求項2】 K1 =(Mn%+0.25・Si%)×
C%の計算式で与えられるK1 値が0.35以上である
請求項1に記載の高加工性鋼板。
2. K 1 = (Mn% + 0.25 · Si%) ×
The high workability steel sheet according to claim 1, wherein the K 1 value given by the calculation formula of C% is 0.35 or more.
【請求項3】 合金元素として、更に、 Cr:2.5%以下 Mo:1.0%以下 B :50ppm 以下 のいずれか1種以上を含み、 K2 =(Mn%+Cr%+Mo%+250・B%+0.
25・Si%)×C% の計算式で与えられるK2 値が0.35以上である請求
項1または2に記載の高加工性鋼板。
3. The alloying element further contains any one or more of Cr: 2.5% or less, Mo: 1.0% or less, B: 50 ppm or less, and K 2 = (Mn% + Cr% + Mo% + 250. B% + 0.
The high workability steel sheet according to claim 1 or 2, wherein a K 2 value given by a calculation formula of 25 · Si%) × C% is 0.35 or more.
【請求項4】 合金元素として、更に、 Cu:2.5%以下 Ni:1.5%以下 P :0.15%以下 Nb:0.2%以下 Ti:0.2%以下 Zr:0.1%以下 V :0.1%以下 W :0.1%以下 のいずれか1種以上を含むものである請求項1〜3のい
ずれかに記載の高加工性鋼板。
4. As an alloying element, further Cu: 2.5% or less Ni: 1.5% or less P: 0.15% or less Nb: 0.2% or less Ti: 0.2% or less Zr: 0. 1% or less V: 0.1% or less W: 0.1% or less Any one or more types of high workability steel plate in any one of Claims 1-3.
JP23057592A 1992-08-28 1992-08-28 High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source Pending JPH0673441A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP23057592A JPH0673441A (en) 1992-08-28 1992-08-28 High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source
EP93113769A EP0585843A3 (en) 1992-08-28 1993-08-27 High-formability steel plate with a great potential for strength enhancement by high-density energy treatment
US08/308,611 US5529646A (en) 1992-08-28 1994-09-19 Process of Producing high-formability steel plate with a great potential for strength enhancement by high-density energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23057592A JPH0673441A (en) 1992-08-28 1992-08-28 High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source

Publications (1)

Publication Number Publication Date
JPH0673441A true JPH0673441A (en) 1994-03-15

Family

ID=16909898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23057592A Pending JPH0673441A (en) 1992-08-28 1992-08-28 High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source

Country Status (1)

Country Link
JP (1) JPH0673441A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9618041B2 (en) 2012-10-05 2017-04-11 Ntn Corporation Needle roller and cage assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9618041B2 (en) 2012-10-05 2017-04-11 Ntn Corporation Needle roller and cage assembly

Similar Documents

Publication Publication Date Title
EP1559797B1 (en) Method for manufacturing a high strength steel sheet
CN113242912B (en) Cold-rolled steel sheet and hot-dip galvanized steel sheet having excellent workability, and method for producing same
EP3395993B1 (en) High yield ratio type high-strength cold-rolled steel sheet and manufacturing method thereof
JP3219820B2 (en) Low yield ratio high strength hot rolled steel sheet and method for producing the same
CN111918748B (en) Welding method of coated steel plate
KR20210091755A (en) Hot rolled steel strip and manufacturing method thereof
JP2004232022A (en) Dual phase type high tensile strength steel sheet having excellent elongation and stretch flanging property, and production method therefor
JP3370875B2 (en) High strength steel sheet excellent in impact resistance and method for producing the same
KR102020407B1 (en) High-strength steel sheet having high yield ratio and method for manufacturing thereof
JP2003231941A (en) HOT-ROLLED STEEL SHEET SUPERIOR IN FORMABILITY AFTER WELDING, WITH HIGH STRENGTH HAVING TENSILE STRENGTH OF 780 MPa OR HIGHER, OF MAKING HEAT AFFECTED ZONE HARDLY BE SOFTENED, COLD-ROLLED STEEL SHEET WITH HIGH STRENGTH, AND SURFACE-TREATED STEEL SHEET WITH HIGH STRENGTH
JP4427110B2 (en) Press forming method of thin steel sheet for processing
JP3993703B2 (en) Manufacturing method of thin steel sheet for processing
KR102490312B1 (en) High-strength hot-dip galvanized steel sheet with high ductility and excellent formability
JP4277660B2 (en) High strength thin steel sheet for welded joints excellent in press formability and welded joint using the same
CN116547400A (en) Ultrahigh-strength cold-rolled steel sheet excellent in bendability and method for producing same
KR102075216B1 (en) High strength steel sheet having high yield ratio and method for manufacturing the same
JPH0673440A (en) High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source
JPH0673441A (en) High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source
JPH0673438A (en) High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source
JPH0673443A (en) High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source
JPH0673439A (en) High workability steel sheet excellent in high strengthening characteristic by irradiation with high density energy source
JPH09111396A (en) High tensile strength hot rolled steel plate and high tensile strength cold rolled steel sheet for automobile use, excellent in impact resistance, and their production
JP3943754B2 (en) High-strength cold-rolled steel sheet and high-strength surface-treated steel sheet that have excellent fatigue properties of the base metal and formability after welding, and are difficult to soften the heat affected zone.
JP4277659B2 (en) High strength thin steel sheet for welded joints excellent in press formability and welded joint using the same
JPH0673442A (en) High workability sheet excellent in high strengthening characteristic by irradiation with high density energy source

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020205