JPH07302587A - Nonaqueous electrolyte lithium secondary battery - Google Patents

Nonaqueous electrolyte lithium secondary battery

Info

Publication number
JPH07302587A
JPH07302587A JP6094198A JP9419894A JPH07302587A JP H07302587 A JPH07302587 A JP H07302587A JP 6094198 A JP6094198 A JP 6094198A JP 9419894 A JP9419894 A JP 9419894A JP H07302587 A JPH07302587 A JP H07302587A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
mixture
battery
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6094198A
Other languages
Japanese (ja)
Other versions
JP3077508B2 (en
Inventor
Tatsuo Mori
辰男 森
Emi Asaka
えみ 浅香
Koichi Chikayama
浩一 近山
Nobuharu Koshiba
信晴 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP06094198A priority Critical patent/JP3077508B2/en
Publication of JPH07302587A publication Critical patent/JPH07302587A/en
Application granted granted Critical
Publication of JP3077508B2 publication Critical patent/JP3077508B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve discharge performance in a discharge final stage by using a transition metal oxide alone or its mixture in a negative electrode. CONSTITUTION:A negative mix obtained by mixing anatase type titanium dioxide with lithium hydroxide, heating the mixture, then further mixing with WO3, a conductive material, and a binder is press-molded, then dried to form a negative electrode 5. Li2MNO3 is obtained by mixing manganese dioxide with lithium hydroxide, then drying the mixture is mixed with a conductive material and a binder to obtain a positive mix, and the positive mix is press-molded, then dried to form a positive electrode 4. A lithium metal sheet is pressed against a negative case 2, the negative electrode 5 is brought into contact with the lithium sheet, an electrolyte is poured, and lithium is reacted with the negative electrode 5 to store lithium in the negative electrode 5. Voltage decrease is slow until the voltage enters a lithium ion releasing potential region. Charge/ discharge cycles are stable up to 100 cycles and reversibility loss caused by using the mixture of the active material in the negative electrode 5 is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、正負極のいずれも遷移
金属酸化物を用いる非水電解液リチウム二次電池に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte lithium secondary battery using a transition metal oxide for both positive and negative electrodes.

【0002】[0002]

【従来の技術】非水電解液リチウム二次電池の正極活物
質として五酸化バナジウムやマンガン酸化物、スピネル
型マンガン酸化物、コバルト酸リチウム、ニッケル酸リ
チウムなど数多くの物質が検討され、適当な充放電サイ
クル寿命、電圧、容量が得られており、既に実用段階に
入ってるものもある。一方、負極として、リチウム金属
やリチウム合金が検討されている。しかしながら、これ
らの金属は必ずしも充放電サイクル特性が十分ではな
く、負極にリチウムのデンドライドが析出したり、微細
化することによって、電池の寿命が著しく短縮される傾
向にあった。この問題を解決するために、リチウムを吸
蔵・放出することができるカーボン負極が開発され、電
池の充放電サイクル特性が大幅に向上している。また、
特開昭63−114064号公報には、負極に遷移金属
酸化物を用いることにより電池の充放電サイクル特性が
長期にわたって安定化することが示されている。さら
に、この試みの一つとして負極活物質としてスピネル型
リチウム−チタン酸化物を用いた電池が報告されてい
る。スピネル型リチウム−チタン酸化物は、リチウム放
出時にリチウム基準で1.5V前後の非常に平坦な電位
を示すことから、正極として五酸化バナジウム、マンガ
ン酸化物、スピネル型マンガン酸化物、コバルト酸リチ
ウム、ニッケル酸リチウムのいずれかと組み合わせるこ
とにより、1.5Vあるいは2.0V前後の電圧を有す
るリチウム二次電池を得ることができる。
2. Description of the Related Art Numerous substances such as vanadium pentoxide, manganese oxide, spinel-type manganese oxide, lithium cobalt oxide, and lithium nickel oxide have been investigated and used as suitable positive electrode active materials for non-aqueous electrolyte lithium secondary batteries. The discharge cycle life, voltage, and capacity have been obtained, and some have already entered the practical stage. On the other hand, as a negative electrode, lithium metal or lithium alloy is being studied. However, these metals do not always have sufficient charge / discharge cycle characteristics, and there is a tendency that the battery life is significantly shortened by the deposition of lithium dendride on the negative electrode or by the miniaturization. In order to solve this problem, a carbon negative electrode capable of inserting and extracting lithium has been developed, and the charge / discharge cycle characteristics of the battery have been significantly improved. Also,
Japanese Patent Laid-Open No. 63-114064 discloses that the charge / discharge cycle characteristics of a battery are stabilized for a long period of time by using a transition metal oxide for the negative electrode. Further, as one of the attempts, a battery using a spinel type lithium-titanium oxide as a negative electrode active material has been reported. Since spinel-type lithium-titanium oxide shows a very flat potential of about 1.5 V with respect to lithium when lithium is released, vanadium pentoxide, manganese oxide, spinel-type manganese oxide, lithium cobalt oxide, and A lithium secondary battery having a voltage of about 1.5 V or 2.0 V can be obtained by combining with any one of lithium nickel oxides.

【0003】一方、小型二次電池を用いる最近の電子機
器は電源電池の放電末期における残存容量を表示するア
ラーム機能をもっているタイプがあるが、これらのほと
んどは電池電圧を検出することにより容量を測定してい
る。
On the other hand, recent electronic devices using a small secondary battery have a type having an alarm function for displaying the remaining capacity of the power battery at the end of discharge, but most of them measure the capacity by detecting the battery voltage. is doing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、スピネ
ル型リチウム−チタン酸化物はリチウムの放出時の末期
において急激な電位変化を示す特性があり、これを負極
に用いたリチウム二次電池は、放電末期において急激な
電圧降下を示していた。このため、電源電池の残存容量
を電池電圧を検出することによって測定する電子機器
に、前記リチウム二次電池を用いた場合には電池放電末
期に急激な電圧降下を示すため、電池の残存容量の検出
が困難になっていた。
However, the spinel type lithium-titanium oxide has the characteristic of showing a rapid potential change at the end of the lithium discharge, and the lithium secondary battery using this as a negative electrode is Showed a sharp voltage drop. For this reason, when the lithium secondary battery is used in an electronic device that measures the remaining capacity of the power supply battery by detecting the battery voltage, a rapid voltage drop occurs at the end of battery discharge. It was difficult to detect.

【0005】本発明はこのような課題を解決するもので
あり、スピネル型リチウム−チタン酸化物を負極に用い
たリチウム二次電池の放電カーブの平坦性を良好にして
放電末期の放電特性を改良し、電子機器の電池残存容量
の検出を容易にするとともに充放電サイクル特性に優れ
たリチウム二次電池を提供するものである。
The present invention is intended to solve such a problem, and improves the discharge characteristics in the final stage of discharge by improving the flatness of the discharge curve of a lithium secondary battery using a spinel type lithium-titanium oxide as a negative electrode. In addition, the present invention provides a lithium secondary battery that facilitates detection of the battery remaining capacity of electronic devices and has excellent charge / discharge cycle characteristics.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の非水電解液リチウム二次電池は、スピネ
ル型リチウム−チタン酸化物の負極に対してWO3、L
iWO2あるいはNb25のいずれか一種類かあるいは
二種類以上を混合して負極活物質として用いるものであ
る。
In order to solve the above-mentioned problems, the non-aqueous electrolyte lithium secondary battery of the present invention has WO 3 , L for a negative electrode of spinel type lithium-titanium oxide.
One of iWO 2 and Nb 2 O 5 or a mixture of two or more thereof is used as a negative electrode active material.

【0007】[0007]

【作用】スピネル型リチウム−チタン酸化物はリチウム
化合物と酸化チタンを800〜1100℃に熱処理して
得ることができる。これは、リチウムイオンの放出中期
にはリチウム基準で1.5V付近と比較的に低く平坦な
電位変化を示すが、リチウムイオンの放出末期において
は急激な電位上昇を示す。したがって、スピネル型リチ
ウム−チタン酸化物を負極に用いてリチウム二次電池を
構成した場合、高エネルギー密度を有し、充放電サイク
ル特性に優れたリチウム二次電池を実現できるが、電池
の放電末期においては電池電圧は急激に下降し、電子機
器に組み込まれた場合に電圧変化から電池残存容量を検
出することが困難となる。
The spinel type lithium-titanium oxide can be obtained by heat treating a lithium compound and titanium oxide at 800 to 1100 ° C. This shows a relatively low and flat potential change of around 1.5 V with respect to lithium in the middle stage of lithium ion release, but shows a sharp potential rise at the end stage of lithium ion release. Therefore, when a lithium secondary battery is constructed by using spinel type lithium-titanium oxide for the negative electrode, it is possible to realize a lithium secondary battery having high energy density and excellent charge / discharge cycle characteristics. In, the battery voltage drops sharply, and it becomes difficult to detect the battery remaining capacity from the voltage change when incorporated in an electronic device.

【0008】一方、LiWO2、Nb25、WO3などの
遷移金属酸化物はリチウムイオンの放出時において、リ
チウム基準で約1.7〜2.1V付近に電位変化の小さ
い平担部を示すものであり、20〜100mAh/gの
電気容量を有する。したがって、スピネル型リチウム−
チタン酸化物と上記酸化物との混合物を負極活物質とし
て用いてリチウム二次電池を構成すれば放電開始時にお
いてはスピネル型リチウム−チタン酸化物の特徴を活か
した維持電圧の高い放電カーブが得られ、更に放電末期
においてはLiWO2、Nb25、WO3の遷移金属酸化
物の特徴を活かした緩やかに下降する放電カーブが得ら
れる。そして、この負極を用いることにより、高エネル
ギー密度を有し、放電末期においては電池電圧の検出に
より電池残存容量の認識が容易なリチウム二次電池を得
ることができる。一方、正極活物質としては、五酸化バ
ナジウムやマンガン酸化物、スピネル型マンガン酸化
物、コバルト酸リチウム、ニッケル酸リチウムなどを用
いることができる。また、電解液としては、プロピレン
カーボネイト(PC)、エチレンカーボネイト(E
C)、ブチレンカーボネイト(BC)などの高粘度溶媒
に1,2−ジメトキシエタン(DME)、1,2−ジエ
トキシエタン(DEE)、ジエチルカーボネイト(DE
C)などを混合した混合溶媒に、溶質として、LiCl
4、LiBF4、LiPF6、LiN(CF3SO22
LiCF3SO3などを溶解して用いることができる。
On the other hand, transition metal oxides such as LiWO 2 , Nb 2 O 5 and WO 3 have a flat portion having a small potential change around 1.7 to 2.1 V on the basis of lithium when releasing lithium ions. It has a capacitance of 20 to 100 mAh / g. Therefore, spinel type lithium-
When a lithium secondary battery is constructed by using a mixture of titanium oxide and the above oxide as a negative electrode active material, a discharge curve with a high sustaining voltage is obtained at the start of discharge by taking advantage of the characteristics of spinel type lithium-titanium oxide. In addition, in the final stage of discharge, a gradually decreasing discharge curve that takes advantage of the characteristics of the transition metal oxides of LiWO 2 , Nb 2 O 5 , and WO 3 is obtained. Then, by using this negative electrode, it is possible to obtain a lithium secondary battery having a high energy density and in which the battery residual capacity can be easily recognized by detecting the battery voltage at the end of discharge. On the other hand, as the positive electrode active material, vanadium pentoxide, manganese oxide, spinel-type manganese oxide, lithium cobalt oxide, lithium nickel oxide, or the like can be used. In addition, as the electrolyte, propylene carbonate (PC), ethylene carbonate (E
C), butylene carbonate (BC) and other high viscosity solvents, 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), diethyl carbonate (DE)
In a mixed solvent in which C) and the like are mixed, as a solute, LiCl
O 4 , LiBF 4 , LiPF 6 , LiN (CF 3 SO 2 ) 2 ,
LiCF 3 SO 3 or the like can be dissolved and used.

【0009】[0009]

【実施例】以下、本発明の実施例を図面を参照にしなが
ら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】スピネル型リチウム−チタン酸化物はアナ
ターゼ型二酸化チタンと水酸化リチウムを5:4の原子
比で混合した後に空気中において900℃で15時間加
熱処理することによって得た。これとWO3、導電剤と
してのカーボンブラック、結着剤としてのフッ素樹脂デ
ィスパージョンを60:30:5:5の重量比で混合し
て負極合剤とした。この負極合剤を2ton/cm2で直
径16mmのぺレットに加圧成型した後に、水分1%以下
のドライ雰囲気中において250℃で24時間乾燥を行
い、これを負極とした。正極活物質は二酸化マンガンと
水酸化リチウムを1:2のモル比で混合した後に空気中
で400℃で15時間加熱処理してLi 2MnO3を得
た。このようにして得た活物質粉末と、導電剤としての
カーボンブラック、結着剤としてのフッ素樹脂ディスパ
ージョンを90:5:5の重量比で混合して正極合剤と
した。この正極合剤を2ton/cm2で直径16mmのペ
レットに加圧成型した後に、水分1%以下のドライ雰囲
気中において250℃で24時間乾燥を行い、これを正
極とした。また電解液にはプロピレンカーボネイトと
1,2−ジメトキシエタンの混合溶媒に溶質としてLi
N(CF3SO22を1mol/lを溶解したものを用
いた。図1に上記の正極、負極及び電解液を用いて組み
立てたコイン型リチウム二次電池の断面図を示す。1,
2はステンレス鋼製の正、負極ケースである。3はポリ
プロピレン製の絶縁パッキングである。4は正極であ
る。5は負極であり、リチウム金属シートを負極ケース
にあらかじめ圧着し、これに前記負極を接触させた後、
電解液を注入してリチウムと負極とを反応させリチウム
を負極に吸蔵させたものを用いている。6はポリプロピ
レン製の不織布からなるセパレータである。このように
して得られた電池を本発明の電池Aとする。
Spinel type lithium-titanium oxide is
Titanium dioxide and lithium hydroxide 5: 4 atom
After mixing in the ratio, add in air at 900 ℃ for 15 hours.
Obtained by heat treatment. This and WO3, With conductive agent
Carbon black and fluorocarbon resin as a binder
Mix the dispersion at a weight ratio of 60: 30: 5: 5.
As a negative electrode mixture. This negative electrode mixture is 2 ton / cm2Direct
After pressure molding into pellets with a diameter of 16 mm, water content is 1% or less
In a dry atmosphere at 250 ° C for 24 hours
This was used as the negative electrode. The positive electrode active material is manganese dioxide
In the air after mixing lithium hydroxide in a molar ratio of 1: 2
Heat treatment at 400 ° C for 15 hours at Li 2MnO3Got
It was The active material powder thus obtained, and the conductive agent
Carbon black, fluororesin dispa as binder
Of the positive electrode mixture by mixing the mixture in a weight ratio of 90: 5: 5.
did. This positive electrode mixture is 2 ton / cm2With a diameter of 16 mm
In a dry atmosphere with a water content of 1% or less after pressure molding
Dry in air at 250 ° C for 24 hours and
It was a pole. In addition, the electrolyte contains propylene carbonate
Li as a solute in a mixed solvent of 1,2-dimethoxyethane
N (CF3SO2)21mol / l dissolved in
I was there. Assembled in FIG. 1 using the above positive electrode, negative electrode and electrolyte
The cross section of the coin type lithium secondary battery which was erected is shown. 1,
2 is a positive and negative case made of stainless steel. 3 is poly
Insulating packing made of propylene. 4 is a positive electrode
It 5 is a negative electrode, a lithium metal sheet is a negative electrode case
In advance, and after contacting the negative electrode to this,
Inject electrolyte to react lithium with negative electrode
The negative electrode is used for storage. 6 is polypropy
It is a separator made of ren. in this way
The battery thus obtained is referred to as Battery A of the present invention.

【0011】次にWO3と水酸化リチウムを1:1のモ
ル比で混合した後に空気中において400℃で15時間
加熱処理することによってLiWO2の粉末を得た。そ
して、前記スピネル型リチウム−チタン酸化物とLiW
2、導電剤としてのカーボンブラック、結着剤として
のフッ素樹脂ディスパージョンを60:30:5:5の
重量比で混合して負極合剤とした。この負極合剤を2t
on/cm2で直径16mmのペレットに加圧成型した後
に、水分1%以下のドライ雰囲気中において250℃で
24時間乾燥を行い、これを負極とした。この負極を用
いた以外は本発明と同様のコイン型リチウム二次電池を
作製し、こうして得られた電池を本発明の電池Bとし
た。
Next, WO 3 and lithium hydroxide were mixed at a molar ratio of 1: 1 and then heat-treated in air at 400 ° C. for 15 hours to obtain LiWO 2 powder. And, the spinel type lithium-titanium oxide and LiW
O 2, carbon black as a conductive agent, a fluorine resin dispersion as a binder 60: 30: 5: was mixed in a weight ratio of 5 anode mixture. 2t of this negative electrode mixture
After pressure-molding into a pellet having a diameter of 16 mm at a pressure of on / cm 2 , the pellet was dried at 250 ° C. for 24 hours in a dry atmosphere having a water content of 1% or less, to obtain a negative electrode. A coin-type lithium secondary battery similar to that of the present invention was prepared except that this negative electrode was used, and the battery thus obtained was designated as Battery B of the present invention.

【0012】次に水酸化ニオブNb(OH)5を900
℃で6時間加熱処理し、H型のNb25の粉末を得た。
そして、前記スピネル型リチウム−チタン酸化物とLi
WO2、導電剤としてのカーボンブラック、結着剤とし
てのフッ素樹脂ディスパージョンを60:30:5:5
の重量比で混合して負極合剤とした。この負極合剤を2
ton/cm2で直径16mmのぺレットに加圧成型した後
に、水分1%以下のドライ雰囲気中において250℃で
24時間乾燥を行い、これを負極とした。この負極を用
いた以外は本発明と同様のコイン型リチウム二次電池を
作製し、こうして得られた電池を本発明の電池Cとし
た。
Then, niobium hydroxide Nb (OH) 5 was added to 900
Heat treatment was performed at 6 ° C. for 6 hours to obtain H-type Nb 2 O 5 powder.
Then, the spinel type lithium-titanium oxide and Li
WO 2 ; carbon black as a conductive agent; fluororesin dispersion as a binder, 60: 30: 5: 5
To prepare a negative electrode mixture. This negative electrode mixture is 2
After pressure molding to a pellet having a diameter of 16 mm at ton / cm 2 , the pellet was dried at 250 ° C. for 24 hours in a dry atmosphere having a water content of 1% or less to obtain a negative electrode. A coin-type lithium secondary battery similar to that of the present invention was produced except that this negative electrode was used, and the battery thus obtained was designated as Battery C of the present invention.

【0013】また、比較として負極に前記スピネル型リ
チウム−チタン酸化物、導電剤としてのカーボンブラッ
ク、結着剤としてのフッ素樹脂ディスパージョンを9
0:5:5の重量比で混合した以外は本発明と同様の電
池を作製し、これを比較の電池Dとした。
For comparison, the spinel type lithium-titanium oxide is used for the negative electrode, carbon black is used as the conductive agent, and fluororesin dispersion is used as the binder.
A battery similar to that of the present invention was prepared except that the mixture was carried out at a weight ratio of 0: 5: 5, and this was used as a comparative battery D.

【0014】次に、上記の電池A、B、C、Dを用い、
2.0Vで定電圧充電を行った後に2mAの定電流で放
電した。このときの各電池の放電カーブを図2に示す。
Next, using the above batteries A, B, C and D,
After performing constant voltage charging at 2.0 V, discharging was performed at a constant current of 2 mA. The discharge curve of each battery at this time is shown in FIG.

【0015】図2から明らかなように負極活物質がスピ
ネル型リチウム−チタン酸化物のみの比較の電池Dでは
放電末期に電池電圧が急激に電圧降下しているのに対
し、本発明の電池A、B、Cはいずれも放電末期の電池
電圧が1.2Vあたりから0.8Vあたりまで緩やかに
傾斜している。これは、本発明の電池では電池電圧が
1.2VになったあたりからそれぞれWO3、LiW
2、Nb25のリチウムイオンの放出電位領域に入る
ためである。
As is apparent from FIG. 2, in Comparative Battery D in which the negative electrode active material was only spinel type lithium-titanium oxide, the battery voltage dropped sharply at the end of discharge, whereas in Battery A of the present invention. , B, and C, the battery voltage at the end of discharge gradually inclines from around 1.2V to around 0.8V. This is because when the battery voltage of the battery of the present invention was 1.2 V, WO 3 and LiW were obtained, respectively.
This is because the emission potential region of lithium ions of O 2 and Nb 2 O 5 is entered.

【0016】次に、図3には、2mAの定電流で2.4
Vから1.0Vの間で充放電をしたときに得られる各電
池の放電容量の変化を示したものである。いずれの電池
も100サイクルまで安定に推移しており、負極に活物
質の混合物を用いたことによって可逆性は失われること
はない。また、WO3、LiWO2、Nb25を二種類以
上の組み合わせで混合して同じ評価を行ったが効果は全
く同じであった。更に正極として、五酸化バナジウム、
マンガン酸化物、スピネル型マンガン酸化物、コバルト
酸リチウム、ニッケル酸リチウムを用いて同じ評価を行
ったが、効果は全く同じであった。
Next, in FIG. 3, 2.4 mA is applied at a constant current of 2 mA.
It shows a change in discharge capacity of each battery obtained when charging and discharging between V and 1.0V. All the batteries remained stable up to 100 cycles, and reversibility was not lost by using the mixture of the active materials for the negative electrode. Further, WO 3 , LiWO 2 , and Nb 2 O 5 were mixed in a combination of two or more kinds and the same evaluation was performed, but the effect was exactly the same. Further, as a positive electrode, vanadium pentoxide,
The same evaluation was performed using manganese oxide, spinel-type manganese oxide, lithium cobalt oxide, and lithium nickel oxide, but the effect was exactly the same.

【0017】[0017]

【発明の効果】以上のように、本発明のリチウム二次電
池は、スピネル型リチウム−チタン酸化物を負極に用い
たリチウム二次電池において負極に対してWO3、Li
WO2、Nb25のいずれか、またはこれらの混合物を
混ぜることにより、放電末期の放電特性を改良すること
ができる。
As is evident from the foregoing description, a lithium secondary battery of the present invention, the spinel-type lithium - WO 3 with respect to the negative electrode in a lithium secondary battery using titanium oxide in the negative electrode, Li
One of WO 2, Nb 2 O 5, or by mixing these mixtures can improve the discharge characteristics of the discharge end.

【0018】したがって、放電末期の電圧変化からの電
池残存容量の検出を容易にすることができる。
Therefore, it is possible to easily detect the battery remaining capacity from the voltage change at the end of discharge.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のリチウム二次電池の縦断面図FIG. 1 is a vertical sectional view of a lithium secondary battery of the present invention.

【図2】本発明と比較の電池の放電特性図FIG. 2 is a discharge characteristic diagram of a battery of the present invention and a comparative battery.

【図3】本発明と比較の電池の充放電サイクル特性図FIG. 3 is a charge / discharge cycle characteristic diagram of a battery of the present invention and a comparative battery.

【符号の説明】[Explanation of symbols]

1 正極ケース 2 負極ケース 3 絶縁パッキング 4 正極 5 負極 6 セパレータ 1 Positive Case 2 Negative Case 3 Insulating Packing 4 Positive 5 Negative 6 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小柴 信晴 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Nobuharu Koshiba 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】正極と負極と非水電解液からなるリチウム
二次電池において、負極にスピネル型リチウム−チタン
酸化物とタングステン酸化物の混合物を用いた非水電解
液リチウム二次電池。
1. A lithium secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolytic solution, wherein a mixture of spinel type lithium-titanium oxide and tungsten oxide is used for the negative electrode.
【請求項2】タングステン酸化物がWO3である請求項
1記載の非水電解液リチウム二次電池。
2. The non-aqueous electrolyte lithium secondary battery according to claim 1, wherein the tungsten oxide is WO 3 .
【請求項3】タングステン酸化物がLiWO2である請
求項1記載の非水電解液リチウム二次電池。
3. The non-aqueous electrolyte lithium secondary battery according to claim 1, wherein the tungsten oxide is LiWO 2 .
【請求項4】正極と負極と非水電解液からなるリチウム
二次電池において、負極にスピネル型リチウム−チタン
酸化物とNb25の混合物を用いた非水電解液リチウム
二次電池。
4. A lithium secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte, wherein the negative electrode uses a mixture of spinel type lithium-titanium oxide and Nb 2 O 5 for the non-aqueous electrolyte lithium secondary battery.
JP06094198A 1994-05-06 1994-05-06 Non-aqueous electrolyte lithium secondary battery Expired - Fee Related JP3077508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06094198A JP3077508B2 (en) 1994-05-06 1994-05-06 Non-aqueous electrolyte lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06094198A JP3077508B2 (en) 1994-05-06 1994-05-06 Non-aqueous electrolyte lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH07302587A true JPH07302587A (en) 1995-11-14
JP3077508B2 JP3077508B2 (en) 2000-08-14

Family

ID=14103603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06094198A Expired - Fee Related JP3077508B2 (en) 1994-05-06 1994-05-06 Non-aqueous electrolyte lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3077508B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827231A2 (en) * 1996-08-27 1998-03-04 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte lithium secondary battery
US6316145B1 (en) 1997-03-10 2001-11-13 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and charging method therefor
US6482546B1 (en) * 1999-03-19 2002-11-19 Sanyo Electric Co., Ltd. Rechargeable lithium battery
JP2010517218A (en) * 2007-01-18 2010-05-20 エルジー・ケム・リミテッド Positive electrode active material and secondary battery including the same
JP2011181355A (en) * 2010-03-02 2011-09-15 Sony Corp Nonaqueous electrolyte battery
US8349495B2 (en) 2005-09-29 2013-01-08 Kabushiki Kaisha Toshiba Nonaqueous battery with composite negative electrode
JP2016081691A (en) * 2014-10-16 2016-05-16 日立化成株式会社 Lithium ion secondary battery, negative electrode and battery system using these
CN114956182A (en) * 2021-02-25 2022-08-30 华中科技大学 Micron rod-shaped niobium tungsten oxide and preparation method and application thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827231A2 (en) * 1996-08-27 1998-03-04 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte lithium secondary battery
EP0827231A3 (en) * 1996-08-27 2000-06-21 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte lithium secondary battery
US6274271B1 (en) 1996-08-27 2001-08-14 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte lithium secondary battery
CN1088267C (en) * 1996-08-27 2002-07-24 松下电器产业株式会社 Lithium secondary cell with no water electrolyte
US6316145B1 (en) 1997-03-10 2001-11-13 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and charging method therefor
US6482546B1 (en) * 1999-03-19 2002-11-19 Sanyo Electric Co., Ltd. Rechargeable lithium battery
US8349495B2 (en) 2005-09-29 2013-01-08 Kabushiki Kaisha Toshiba Nonaqueous battery with composite negative electrode
JP2010517218A (en) * 2007-01-18 2010-05-20 エルジー・ケム・リミテッド Positive electrode active material and secondary battery including the same
JP2011181355A (en) * 2010-03-02 2011-09-15 Sony Corp Nonaqueous electrolyte battery
JP2016081691A (en) * 2014-10-16 2016-05-16 日立化成株式会社 Lithium ion secondary battery, negative electrode and battery system using these
CN114956182A (en) * 2021-02-25 2022-08-30 华中科技大学 Micron rod-shaped niobium tungsten oxide and preparation method and application thereof
CN114956182B (en) * 2021-02-25 2023-03-21 华中科技大学 Micron rod-shaped niobium tungsten oxide and preparation method and application thereof

Also Published As

Publication number Publication date
JP3077508B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
JP4696557B2 (en) Active material for lithium secondary battery, production method thereof, raw material used therefor, and lithium secondary battery
JP2000195516A (en) Lithium secondary battery
JPH02288068A (en) Nonaqueous electrolyte secondary battery
CN101252205A (en) Nonaqueous electrolyte secondary battery
WO2002039523A1 (en) Positive electrode material and cell comprising the same
KR20040052463A (en) Positive plate material and cell comprising it
JP2009129721A (en) Non-aqueous secondary battery
JPH1027626A (en) Lithium secondary battery
JPH07335261A (en) Lithium secondary battery
US6436574B1 (en) Nonaqueous electrolyte secondary battery
JPH07320784A (en) Nonaqeous electrolytic lithium secondary battery
JP2006236653A (en) Nonaqueous electrolyte and nonaqueous electrochemical device using it
JP3077508B2 (en) Non-aqueous electrolyte lithium secondary battery
JP2002270181A (en) Non-aqueous electrolyte battery
JP3451781B2 (en) Organic electrolyte secondary battery
JPH097635A (en) Nonaqueous electrolytic secondary battery
JP3625630B2 (en) Method for producing cobalt oxide positive electrode material, and battery using cobalt oxide positive electrode material produced by the method
JPH05258773A (en) Secondary battery with nonaqueous electrolyte
JP3267867B2 (en) Organic electrolyte lithium secondary battery
JP2000077099A (en) Battery
JP3303319B2 (en) Non-aqueous electrolyte secondary battery
JP2001006684A (en) Nonaqueous electrolyte battery
JPH1083835A (en) Manufacture of non-aqueous electrolytic secondary battery
JP4938923B2 (en) Secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees