JPH0730219B2 - Resin composition for medical devices - Google Patents

Resin composition for medical devices

Info

Publication number
JPH0730219B2
JPH0730219B2 JP61089970A JP8997086A JPH0730219B2 JP H0730219 B2 JPH0730219 B2 JP H0730219B2 JP 61089970 A JP61089970 A JP 61089970A JP 8997086 A JP8997086 A JP 8997086A JP H0730219 B2 JPH0730219 B2 JP H0730219B2
Authority
JP
Japan
Prior art keywords
pentene
methyl
weight
copolymer
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61089970A
Other languages
Japanese (ja)
Other versions
JPS62246950A (en
Inventor
俊二 阿部
Original Assignee
三井石油化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井石油化学工業株式会社 filed Critical 三井石油化学工業株式会社
Priority to JP61089970A priority Critical patent/JPH0730219B2/en
Publication of JPS62246950A publication Critical patent/JPS62246950A/en
Publication of JPH0730219B2 publication Critical patent/JPH0730219B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は医療器具に適した4−メチル−1−ペンテン・
α−オレフインランダム共重合体を主体とする樹脂組成
物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to 4-methyl-1-pentene suitable for medical devices.
The present invention relates to a resin composition mainly composed of an α-olefin random copolymer.

〔従来の技術〕[Conventional technology]

ポリ4−メチル−1−ペンテンはその透明性、耐熱性、
耐薬品性等を活かして、ビーカー、メスシリンダー等の
化学実験用器具、注射器のシリンジ、光学測定用セル、
電子レンジ用トレーあるいは紙にコートしてベーキング
カートン等に使用されている。しかしながらポリ4−メ
チル−1−ペンテンは融点が高く、耐熱性が良好である
反面、柔軟性に欠けるので、血液バツクやチユーブ等の
柔軟性を要求される分野にはその用途が制限されてい
た。
Poly 4-methyl-1-pentene has its transparency, heat resistance,
Taking advantage of chemical resistance, beakers, measuring instruments such as graduated cylinders, syringes for syringes, optical measurement cells,
It is used for baking cartons by coating it on a microwave tray or paper. However, poly-4-methyl-1-pentene has a high melting point and good heat resistance, but on the other hand, lacks flexibility, so that its use was limited to fields requiring flexibility such as blood backing and tubes. .

一方、柔軟性、透明性等に優れた熱可塑性樹脂として
は、可塑剤を含んだポリ塩化ビニル(PVC)、所謂軟質P
VCが知られているが、かかる樹脂は可塑剤のブリードに
よるフイルム、シート等のブロツキングが生じるという
欠点があり、とくに医療用器具の場合製造工程上、加圧
蒸気滅菌処理を必要とすることが多く、かかる処理下に
おいては、更に可塑剤のブリードが激しく、ブロツキン
グが一層促進されたり、またブリードした可塑剤が薬液
等に溶出する虞れがあり、軟質PVCを医療器具に用いる
には大きな制限があつた。
On the other hand, as a thermoplastic resin excellent in flexibility and transparency, polyvinyl chloride (PVC) containing a plasticizer, so-called soft P
Although VC is known, such a resin has a drawback that it causes blocking of film, sheet, etc. due to bleeding of a plasticizer, and particularly in the case of medical equipment, it may require autoclaving in the manufacturing process. In many cases, under such treatment, bleeding of the plasticizer is more severe, blocking may be further promoted, and the bleeding plasticizer may be eluted into the drug solution, etc. I got it.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

かかる状況に鑑み、本発明者は多量の可塑剤を含むこと
なく、柔軟で、且つ耐熱性、透明性に優れた医療器具に
好適な熱可塑性樹脂を開発すべく、種々検討した結果、
特定の4−メチル−1−ペンテンと炭素数が4〜7のα
−オレフインとのランダム共重合体を主体とする組成物
がかかる用途に好適な性質を有していることを見出し、
本発明を完成するに至つた。
In view of such a situation, the present inventor did not include a large amount of a plasticizer, was flexible, and had various studies in order to develop a thermoplastic resin suitable for a medical device having excellent heat resistance and transparency,
Specific 4-methyl-1-pentene and α having 4 to 7 carbon atoms
-Finding that the composition based on a random copolymer with olefin has suitable properties for such applications,
The present invention has been completed.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は、 (イ)4−メチル−1−ペンテン含有量が40ないし80モ
ル%、融点が140ないし220℃、軟化点が90ないし190℃
及びX線による結晶化度が15ないし35%の範囲にある4
−メチル−1−ペンテンと炭素数が4ないし7(但し4
−メチル−1−ペンテンは除く)のα−オレフインとの
ランダム共重合体(A)80重量%を超えて100重量%以
下と、 (ロ)4−メチル−1−ペンテンの単独重合体もしくは
4−メチル−1−ペンテンを85モル%以上含む4−メチ
ル−1−ペンテンと炭素数2ないし20のα−オレフイン
との共重合体(B)(以下、「ポリ4−メチル−1−ペ
ンテン(B)という)0ないし20重量%未満 とからなることを特徴とする柔軟性、透明性に優れ、且
つ加圧蒸気滅菌処理可能な耐熱性を有する医療器具用樹
脂組成物を提供するものである。
That is, the present invention provides (a) 4-methyl-1-pentene content of 40 to 80 mol%, melting point of 140 to 220 ° C, and softening point of 90 to 190 ° C.
And crystallinity by X-ray is in the range of 15 to 35% 4
-Methyl-1-pentene and a carbon number of 4 to 7 (however, 4
(Excluding methyl-1-pentene) and a random copolymer (A) with α-olefin (A) more than 80% by weight and 100% by weight or less, (b) a homopolymer of 4-methyl-1-pentene or 4 A copolymer (B) of 4-methyl-1-pentene containing 85-mol% or more of -methyl-1-pentene and α-olefin having 2 to 20 carbon atoms (hereinafter referred to as "poly-4-methyl-1-pentene ( The present invention provides a resin composition for medical devices, which is characterized in that it is B)) 0 to less than 20% by weight, is excellent in flexibility and transparency, and has heat resistance capable of being subjected to autoclaving. .

〔作 用〕[Work]

本発明の医療器具用樹脂組成物(以下組成物と略すこと
がある)の主体となるポリ4−メチル−1−ペンテン・
α−オレフインランダム共重合体(A)(以下ランダム
共重合体(A)と略すことがある)とは、4−メチル−
1−ペンテン含有量が40ないし80モル%、好ましくは50
ないし75モル%、融点が140ないし220℃、好ましくは16
0ないし210℃、軟化点が90ないし190℃、好ましくは110
ないし180℃及びX線による結晶化度が15ないし35モル
%、好ましくは20ないし30%の範囲にある4−メチル−
1−ペンテンと炭素数が4ないし7(但し4−メチル−
1−ペンテンは除く)のα−オレフインとのランダム共
重合体で通常デカリン溶媒135℃における極限粘度
〔η〕が0.5ないし6dl/g、好ましくは1ないし5dl/gの
範囲のものである。
Poly-4-methyl-1-pentene, which is the main component of the resin composition for medical devices of the present invention (hereinafter sometimes abbreviated as composition)
α-olefin random copolymer (A) (hereinafter sometimes abbreviated as random copolymer (A)) means 4-methyl-
1-Pentene content is 40 to 80 mol%, preferably 50
To 75 mol%, melting point 140 to 220 ° C., preferably 16
0 to 210 ° C, softening point 90 to 190 ° C, preferably 110
4-Methyl-, whose degree of crystallinity by X-rays is from 15 to 35% by moles, preferably from 20 to 30%.
1-Pentene and 4 to 7 carbon atoms (provided that 4-methyl-
(Excluding 1-pentene) and a random copolymer with α-olefin, usually having an intrinsic viscosity [η] at 135 ° C. in a decalin solvent of 0.5 to 6 dl / g, preferably 1 to 5 dl / g.

4−メチル−1−ペンテン含有量が40モル%未満の共重
合体は、組成物の耐熱性及び機械的強度が低く、透明性
も劣る。一方80モル%を越えると共重合体は柔軟性、ヒ
ートシール性に劣る。本発明における4−メチル−1−
ペンテン含有量は13C−NMR法により測定した値である。
A copolymer having a 4-methyl-1-pentene content of less than 40 mol% has low heat resistance and mechanical strength of the composition, and also has poor transparency. On the other hand, when it exceeds 80 mol%, the copolymer is inferior in flexibility and heat sealability. 4-methyl-1- in the present invention
The pentene content is a value measured by 13 C-NMR method.

融点が140℃未満の共重合体は組成物の耐熱性に劣り、
一方220℃を越えるものは、柔軟性、ヒートシール性に
劣る。本発明における融点は、示差走査型熱量計(DS
C)を用い、成形後20時間経過後の厚さ0.1mmのプレスシ
ートから10mmgの試料を採取し、10℃/minの昇温速度で
0〜250℃まで加熱曲線を測定し、最大吸熱ピークを融
点(Tm)とした。
A copolymer having a melting point of less than 140 ° C has poor heat resistance of the composition,
On the other hand, if the temperature exceeds 220 ° C, the flexibility and heat sealability are poor. The melting point in the present invention is the differential scanning calorimeter (DS
C), a sample of 10 mmg was taken from a press sheet with a thickness of 0.1 mm after 20 hours from molding, and the heating curve was measured from 0 to 250 ° C at a heating rate of 10 ° C / min, and the maximum endothermic peak Was taken as the melting point (Tm).

軟化点が90℃未満の共重合体は耐熱性に劣り、一方、19
0℃を越えるものはヒートシール性に劣る。本発明にお
ける軟化点は、サーマル・メカニカル・アナライザー
(TMA)を用い、成形後20時間経過後の厚さ1mmのプレス
シートから1cm角の試料を採取し、直径0.025インチの針
を試料の片面に当て49gの荷重をかけて10℃/minの昇温
速度で加熱し、針が0.1mmの深さだけ侵入した時の温度
を読み取り、軟化点とした。
A copolymer having a softening point of less than 90 ° C has poor heat resistance, while
If the temperature exceeds 0 ° C, the heat sealability is poor. The softening point in the present invention, using a thermal mechanical analyzer (TMA), a 1 cm square sample is taken from a 1 mm-thick press sheet after 20 hours from molding, and a 0.025 inch diameter needle is placed on one side of the sample. A load of 49 g of pad was applied and heating was performed at a temperature rising rate of 10 ° C./min, and the temperature when the needle penetrated to a depth of 0.1 mm was read and used as the softening point.

X線による結晶化度が15%未満の共重合体は機械的強度
が低く、一方、35%を越えるものは柔軟性に劣る。本発
明における結晶化度は成形後20時間経過後の厚さ1.0mm
のプレスシートから2×4cmの試料を採取し、X線回折
法によりX線回折曲線を測定し、反射角2θ:4〜30度を
ベースラインとして、結晶部と無定形分に分離しその面
積を測定した後結晶部を重量%として求めた。
A copolymer having a crystallinity of less than 15% by X-ray has low mechanical strength, while a copolymer having a crystallinity of more than 35% has poor flexibility. The crystallinity in the present invention is 1.0 mm after 20 hours of molding.
2 x 4 cm sample was taken from the press sheet of and the X-ray diffraction curve was measured by the X-ray diffraction method. The reflection angle 2θ: 4 to 30 degrees was used as the baseline to separate the crystal part and the amorphous part After measuring, the crystal part was determined as the weight%.

尚いずれのプレスシートもランダム共重合体(A)をそ
れぞれ厚さ0.1及び1.0mmの金型に所定量投入し240℃に
加熱した油圧プレス成形機で5分間予熱後5分間加圧し
た後金型を直ちに20℃の水で冷却した冷却プレス成形機
に移し5分間冷却を行う方法により作製した。
In addition, in each press sheet, the random copolymer (A) was put in a predetermined amount in a mold having a thickness of 0.1 and 1.0 mm, respectively, and preheated for 5 minutes in a hydraulic press molding machine heated to 240 ° C. and then pressed for 5 minutes, and then the metal sheet was pressed. The mold was immediately transferred to a cooling press molding machine cooled with water at 20 ° C., and cooling was performed for 5 minutes.

本発明に用いるランダム共重合体(A)における4−メ
チル−1−ペンテンと共重合される炭素数4ないし7の
α−オレフインとしては、具体的に1−ブテン、1−ペ
ンテン、1−ヘキセン、1−ヘプテンなどを例示するこ
とができ、これらα−オレフインの中では1−ブテン及
び1−ヘキセンが好ましく、とくに1−ヘキセンが最も
透明性が優れるので好ましい。炭素数が3以下のα−オ
レフイン、即ちエチレン又はプロピレンとの共重合体
は、透明性を低下させ、一方炭素数が8以上、例えば1
−デセンあるいは1−ヘキサデセン等との共重合体も透
明性を低下させ、更に機械的強度も低く、いずれも本発
明の目的を達成し得ない。
Specific examples of the α-olefin having 4 to 7 carbon atoms which is copolymerized with 4-methyl-1-pentene in the random copolymer (A) used in the present invention include 1-butene, 1-pentene and 1-hexene. , 1-heptene and the like can be exemplified. Among these α-olefins, 1-butene and 1-hexene are preferable, and 1-hexene is particularly preferable because it has the highest transparency. Copolymers with α-olefins having 3 or less carbon atoms, that is, copolymers with ethylene or propylene, reduce transparency, while having 8 or more carbon atoms, for example, 1 or less.
-Copolymers with decene, 1-hexadecene and the like also reduce transparency and mechanical strength, and neither of them can achieve the object of the present invention.

本発明に用いるランダム共重合体(A)は前記特性に加
えて、10℃におけるアセトン・n−デカン混合溶媒(容
積比1/1)への可溶分量が4×〔η〕−0.8重量%以下、
さらには0.2×〔η〕−0.8〜3.8×〔η〕−0.8重量%
(〔η〕はランダム共重合体(A)の極限粘度の数値で
あって、単位を除いた値を示す)のものが、フイルム等
に加工した際に表面への低分子重合成分のブリード・ア
ウトによるべたの発生もなく、抗ブロツキング性、ヒー
トシール性に優れているので好ましい。本発明における
該混合溶媒中への共重合体の可溶分量は次の方法によつ
て測定決定される。すなわち、撹拌羽根付150mlのフラ
スコに、1gの共重合体試料、0.05gの2,6−ジ−tert−ブ
チル−4−メチルフエノール、50mlのn−デカンを入
れ、120℃の油溶上で溶解させる。溶解後30分間室温下
で自然放冷し、次いで50mlのアセトンを30秒で添加し、
10℃の水浴上で60分間放冷する。析出した共重合体と低
分子量重合体成分の溶解した溶液をグラスフイルターで
濾過分離し、溶液を10mmHgで150℃で恒量になるまで乾
燥し、その重量を測定し、前記混合溶媒中への共重合体
の可溶分量を試料共重合体の重量に対する百分率として
算出決定した。なお、前記測定方法において撹拌は溶解
時から濾過の直前まで連続して行つた。
In addition to the above characteristics, the random copolymer (A) used in the present invention has a soluble content in an acetone / n-decane mixed solvent (volume ratio 1/1) at 10 ° C. of 4 × [η] −0.8 % by weight. Less than,
Furthermore, 0.2 × [η] −0.8 to 3.8 × [η] −0.8 % by weight
([Η] is the numerical value of the intrinsic viscosity of the random copolymer (A), which is a value excluding the unit), is the value of bleeding of the low molecular weight polymerized component onto the surface when processed into a film or the like. It is preferable because it does not cause stickiness due to out and is excellent in anti-blocking property and heat sealing property. The soluble content of the copolymer in the mixed solvent in the present invention is measured and determined by the following method. That is, in a 150 ml flask equipped with a stirring blade, 1 g of the copolymer sample, 0.05 g of 2,6-di-tert-butyl-4-methylphenol and 50 ml of n-decane were put, and the mixture was dissolved in oil at 120 ° C. Dissolve. After dissolution, let it cool naturally at room temperature for 30 minutes, then add 50 ml of acetone in 30 seconds,
Allow to cool for 60 minutes on a 10 ° C water bath. The precipitated copolymer and the solution of the low-molecular weight polymer component were dissolved by filtration with a glass filter, the solution was dried at 10 mmHg at 150 ° C. until a constant weight was obtained, and its weight was measured. The soluble content of the polymer was calculated and determined as a percentage with respect to the weight of the sample copolymer. In the measuring method, stirring was continuously performed from the time of dissolution until immediately before filtration.

前記のような諸性質を有する4−メチル−1−ペンテン
・α−オレフインランダム共重合体(A)は、たとえ
ば、 (a) マグネシウム化合物、チタン化合物、ジエステ
ル及び必要に応じてハロゲン化合物(マグネシウム化合
物又はチタン化合物がハロゲン原子を含む場合には必ず
しも必要としない)を相互に反応させることによつて形
成されるマグネシウム、チタン、ハロゲン及びジエステ
ルを必須成分とする高活性チタン触媒成分、 (b) 有機アルミニウム化合物触媒成分、及び (c) Si−O−C結合を有する有機硅素化合物触媒成
分、 から形成される触媒の存在下に、約20ないし約200℃の
温度で4−メチル−1−ペンテンと1−ブテン、1−ヘ
キセン等の炭素数4〜7のα−オレフインとを共重合さ
せることにより得られる。上記の如き、本発明で用いる
のに好適なランダム共重合体(A)を製造するための共
重合条件等に関しては、本出願人による特願昭60−2162
586に詳述されている。
The 4-methyl-1-pentene / α-olefin random copolymer (A) having various properties as described above is, for example, (a) a magnesium compound, a titanium compound, a diester, and optionally a halogen compound (magnesium compound). Or a highly active titanium catalyst component containing magnesium, titanium, halogen and a diester as essential components, which are formed by reacting each other) when the titanium compound contains a halogen atom). In the presence of a catalyst formed from an aluminum compound catalyst component and (c) an organosilicon compound catalyst component having a Si—O—C bond, 4-methyl-1-pentene is added at a temperature of about 20 to about 200 ° C. It is obtained by copolymerizing with α-olefin having 4 to 7 carbon atoms such as 1-butene and 1-hexene. Regarding the copolymerization conditions and the like for producing the random copolymer (A) suitable for use in the present invention as described above, Japanese Patent Application No. 60-2162 by the applicant of the present invention can be referred to.
See 586 for details.

本発明の組成物に用いるポリ4−メチル−1−ペンテン
(B)とは4−メチル−1−ペンテンの単独重合体もし
くは4−メチル−1−ペンテンと他のα−オレフイン、
例えばエチレン、プロピレン、1−ブテン、1−ヘキセ
ン、1−オクテン、1−デセン、1−テトラデセン、1
−オクタデセン等の炭素数2ないし20のα−オレフイン
との共重合体であって、4−メチル−1−ペンテンを85
モル%以上含む共重合体である。ポリ4−メチル−1−
ペンテン(B)のメルトフローレート(MFR,荷重:5kg、
温度:260℃)は好ましくは0.5ないし200g/10minの範囲
のものである。MFRが0.5g/10min未満のものは溶融粘度
が高く成形等に劣り、MFRが200g/10minを越えるものは
溶融粘度が低く成形性に劣り、また機械的強度も低い。
The poly-4-methyl-1-pentene (B) used in the composition of the present invention is a homopolymer of 4-methyl-1-pentene or 4-methyl-1-pentene and another α-olefin,
For example, ethylene, propylene, 1-butene, 1-hexene, 1-octene, 1-decene, 1-tetradecene, 1
-Copolymer with α-olefin having 2 to 20 carbon atoms, such as octadecene, wherein 4-methyl-1-pentene is 85
It is a copolymer containing mol% or more. Poly-4-methyl-1-
Penten (B) melt flow rate (MFR, load: 5 kg,
Temperature: 260 ° C.) is preferably in the range 0.5 to 200 g / 10 min. If the MFR is less than 0.5 g / 10 min, the melt viscosity is high and the molding is inferior. If the MFR is more than 200 g / 10 min, the melt viscosity is low and the moldability is poor, and the mechanical strength is low.

本発明の医療器具用樹脂組成物は、前記ランダム共重合
体(A)80重量%を超えて100重量%以下と、前記ポリ
4−メチル−1−ペンテン(B)0ないし20重量%未満
とを含んでなるものである。本発明の組成物は前記ラン
ダム共重合体(A)単体からも構成され得るが、医療器
具の柔軟性、耐熱性、機械的強度等を調節するために、
前記ポリ4−メチル−1−ペンテン(B)を組成物100
重量に対して、20重量%未満迄添加してもよい。ポリ4
−メチル−1−ペンテン(B)の量が60重量%を越える
と柔軟性が低下する。
The resin composition for medical devices of the present invention comprises more than 80% by weight of the random copolymer (A) and 100% by weight or less, and 0 to less than 20% by weight of the poly-4-methyl-1-pentene (B). Is included. The composition of the present invention may be composed of the random copolymer (A) alone, but in order to adjust the flexibility, heat resistance, mechanical strength, etc. of the medical device,
The composition containing the poly-4-methyl-1-pentene (B)
You may add up to less than 20 weight% with respect to weight. Poly 4
When the amount of -methyl-1-pentene (B) exceeds 60% by weight, flexibility decreases.

本発明の組成物を製造するにはランダム共重合体(A)
とポリ4−メチル−1−ペンテン(B)とを前記範囲で
種々公知の方法、例えばV−ブレンダー、リボンブレン
ダー、ヘンシエルミキサー、タンブローブレンダーで混
合する方法、あるいは前記ブレンダーで混合後、押出機
で造粒する方法、単軸押出機、複軸押出機、ニーダー、
バンバリーミキサー等で溶融混練し、造粒あるいは粉砕
する方法、もしくは、一つの重合反応系中で先にランダ
ム共重合体(A)又はポリ4−メチル−1−ペンテン
(B)を所定量重合した後、引き続きポリ4−メチル−
1−ペンテン(B)又はランダム共重合体(A)を所定
量重合させる、所謂ブロツク重合による非ポリマーブレ
ンドタイプの組成物として重合により製造してもよい。
Random copolymer (A) for producing the composition of the present invention
And poly 4-methyl-1-pentene (B) by various known methods within the above range, for example, a method of mixing with a V-blender, a ribbon blender, a Hensiel mixer, a tumbler blender, or after mixing with the above blender, extrusion. Granulation method, single screw extruder, double screw extruder, kneader,
Melt-kneading with a Banbury mixer or the like, and granulating or pulverizing, or previously polymerizing a predetermined amount of random copolymer (A) or poly-4-methyl-1-pentene (B) in one polymerization reaction system. After that, continue with poly-4-methyl-
It may be produced by polymerization as a non-polymer blend type composition by so-called block polymerization, in which 1-pentene (B) or random copolymer (A) is polymerized in a predetermined amount.

本発明の組成物には前記成分に加えて、耐候安定剤、耐
熱安定剤、帯電防止剤、抗ブロツキング剤、スリツプ
剤、滑剤、塩酸吸収剤、顔料、染料、流滴剤、核剤等の
通常ポリオレフインに添加して使用される各種配合剤を
本発明の目的を損わない範囲で添加しておいてもよい。
In the composition of the present invention, in addition to the above components, a weather resistance stabilizer, a heat resistance stabilizer, an antistatic agent, an anti-blocking agent, a slip agent, a lubricant, a hydrochloric acid absorbent, a pigment, a dye, a drip agent, a nucleating agent, etc. Various compounding agents which are usually used by adding to polyolefin may be added within a range that does not impair the object of the present invention.

本発明の組成物から製造される医療器具とはフイルム、
チユーブ、シート、中空瓶、トレー、パイプ、容器、モ
ノフイラメント等の形状からなる血液保存バツク、輸液
バツグ、輸液ボトル、輸血セツト、ガスケツト、フイル
ター、容器類等医療に用いられる器具である。
The medical device produced from the composition of the present invention is a film,
It is a device used for medical treatment such as a blood preservation bag, an infusion bag, an infusion bottle, a blood transfusion set, a gasket, a filter, and a container in the shape of a tube, a sheet, a hollow bottle, a tray, a pipe, a container, a monofilament.

〔発明の効果〕〔The invention's effect〕

本発明の医療器具用樹脂組成物は従来の軟質PVCに比べ
て、耐熱性、抗ブロツキング性、撥水性に優れ、且つ多
量の可塑剤を含むことなく、透明性、柔軟性、ヒートシ
ール性、耐寒性、成形加工性が良好であるので、チユー
ブ、フイルム、シート、中空容器等に成形加工した後12
0℃以上の加圧蒸気滅菌処理を行つても成形加工品の変
化もなく、又可塑剤のブリードによるブロツキングの発
生、薬液等への移行等を全く生じないので、医療器具用
材料として好適である。
The resin composition for medical devices of the present invention is superior to conventional soft PVC in heat resistance, anti-blocking property, excellent water repellency, and without containing a large amount of plasticizer, transparency, flexibility, heat sealability, Since it has good cold resistance and moldability, it can be molded into a tube, film, sheet, hollow container, etc.
Even if it is subjected to autoclaving at 0 ° C or higher, there is no change in the molded product, and there is no occurrence of blocking due to bleeding of the plasticizer, transfer to chemicals, etc. is there.

〔実施例〕〔Example〕

次に実施例を挙げて本発明を更に詳しく説明するが、本
発明はその要旨を越えない限りこれらの例に何ら制約さ
れるものではない。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples as long as the gist thereof is not exceeded.

実施例 1 〔4−メチル−1−ペンテン・1−ヘキセンランダム共
重合体の製造〕 〈チタン触媒成分(a)の調製〉 無水塩化マグネシウム4.76g(50mmol)、デカン250mlお
よび2−エチルヘキシルアルコール23.4ml(150mmol)
を130℃で2時間加熱反応を行い均一溶液とした後、こ
の溶液中に無水フタル酸1.11g(7.5mmol)を添加し、13
0℃にて更に1時間撹拌混合を行い、無水フタル酸を該
均一溶液に溶解させる。この様にして得られた均一溶液
を室温に冷却した後、−20℃に保持された四塩化チタン
200ml(1.8mmol)中に1時間に亙つて全量滴下装入す
る。装入終了後、この混合液の温度を4時間かけて110
℃に昇温し、110℃に達したところでジイソブチルフタ
レート2.68ml(12.5mmol)を添加しこれより2時間同温
度にて撹拌下保持する。2時間の反応終了後熱濾過にて
固体部を採取し、この固体部を200mlのTiCl4にて再懸濁
させた後、更に110℃で2時間、加熱反応を行う。反応
終了後、再び熱濾過にて固体部を採取し、110℃デカン
及びヘキサンにて、洗液中に遊離のチタン化合物が検出
されなくなる迄充分洗浄する。以上の製造方法にて調製
されたチタン触媒成分(a)はヘキサンスラリーとして
保存するが、このうち一部を触媒組成を調べる目的で乾
燥した。この様にして得られたチタン触媒成分(a)の
組成はチタン3.1重量%、塩素56.0重量%、マグネシウ
ム17.0重量%およびジイソブチルフタレート20.9重量%
であつた。
Example 1 [Production of 4-methyl-1-pentene / 1-hexene random copolymer] <Preparation of titanium catalyst component (a)> 4.76 g (50 mmol) of anhydrous magnesium chloride, 250 ml of decane and 23.4 ml of 2-ethylhexyl alcohol. (150 mmol)
Was heated at 130 ° C for 2 hours to form a uniform solution, and 1.11 g (7.5 mmol) of phthalic anhydride was added to this solution.
Stir-mixing is further performed at 0 ° C. for 1 hour to dissolve phthalic anhydride in the homogeneous solution. After cooling the homogeneous solution thus obtained to room temperature, titanium tetrachloride kept at -20 ° C.
The total amount is dropped into 200 ml (1.8 mmol) over 1 hour. After the charging is completed, the temperature of this mixed solution is 110 for 4 hours.
The temperature was raised to ℃, and when it reached 110 ℃, 2.68 ml (12.5 mmol) of diisobutyl phthalate was added, and the mixture was maintained at the same temperature for 2 hours with stirring. After completion of the reaction for 2 hours, a solid portion was collected by hot filtration, and the solid portion was resuspended in 200 ml of TiCl 4 and then heated at 110 ° C. for 2 hours. After the completion of the reaction, the solid part is again collected by hot filtration and thoroughly washed with decane and hexane at 110 ° C. until no free titanium compound is detected in the washing liquid. The titanium catalyst component (a) prepared by the above production method was stored as a hexane slurry, and a part of this was dried for the purpose of examining the catalyst composition. The titanium catalyst component (a) thus obtained had a composition of 3.1 wt% titanium, 56.0 wt% chlorine, 17.0 wt% magnesium and 20.9 wt% diisobutylphthalate.
It was.

〈重 合〉 200のSUS製反応釜へ、1時間当り20の1−ヘキセ
ン、60の4−メチル−1−ペンテン(以下4MPと略
す)、80mmolのトリエチルアルミニウム、80mmolのトリ
エチルメトキシシラン、チタン原子に換算して1.2mmol
のチタン触媒成分(a)を連続的に装入し。気相中の水
素分圧を1.5kg/cm2に保ち、重合温度を70℃に保つた。
<Polymerization> Into a 200 SUS reaction kettle, 20 1-hexene, 60 4-methyl-1-pentene (hereinafter abbreviated as 4MP), 80 mmol triethylaluminum, 80 mmol triethylmethoxysilane, titanium atom per hour Converted to 1.2 mmol
Titanium catalyst component (a) was continuously charged. The hydrogen partial pressure in the gas phase was kept at 1.5 kg / cm 2 , and the polymerization temperature was kept at 70 ° C.

反応釜の液量が100になる様、重合液を連続的に抜き
出し、少量のメタノールで重合を停止し、未反応のモノ
マーを除去し、1時間当り7.5kgの共重合体を得た。こ
のようにして得られた4−メチル−1−ペンテン・1−
ヘキセンランダム共重合体(以下PMH−Iと略す)は4MP
の含有量が55モル%、融点が168℃、軟化点が140℃、結
晶化度が24%、極限粘度〔η〕が2.2dl/g及びアセトン
・n−デカン可溶分が1.7重量%であつた。
The polymerization liquid was continuously withdrawn so that the liquid amount in the reaction vessel became 100, the polymerization was stopped with a small amount of methanol, and the unreacted monomer was removed to obtain 7.5 kg of a copolymer per hour. 4-Methyl-1-pentene.1-obtained in this way
Hexene random copolymer (abbreviated as PMH-I below) is 4MP
Content of 55 mol%, melting point of 168 ° C, softening point of 140 ° C, crystallinity of 24%, intrinsic viscosity [η] of 2.2 dl / g and acetone / n-decane-soluble component of 1.7% by weight. Atsuta

〔成形加工品の製造〕[Manufacture of molded products]

前記PMH−I100重量部にフエノール系酸化防止剤を0.12
重量部添加した後、40mmφ押出機(成形温度230℃)で
造粒し、組成物−Iを得た。
0.12 parts by weight of phenolic antioxidant in 100 parts by weight of PMH-I.
After adding by weight, a composition-I was obtained by granulating with a 40 mmφ extruder (molding temperature: 230 ° C.).

該組成物−Iを用いて、射出成形機(成形温度260℃)
で130×130×2mmの角板を製造した。又、別途前記組成
物−Iを50mmφ押出機(成形温度200℃)で溶融後T−
ダイ(成形温度200℃)に供給し、厚さ200μmのシート
を製造した。又、更に前記組成物−Iを30mmφ押出機
(成形温度200℃)で溶融後チユーブ製造用ダイ(成形
温度200℃)に供給し、外径8mm、内径5mmのチユーブを
製造した。かかる角板、シート及びチユーブの性能を以
下の方法で評価した。
An injection molding machine (molding temperature of 260 ° C.) using the composition-I
Manufactured a square plate of 130 × 130 × 2 mm. Separately, the composition-I is melted in a 50 mmφ extruder (molding temperature 200 ° C.) and then T-
It was supplied to a die (molding temperature 200 ° C.) to manufacture a sheet having a thickness of 200 μm. Further, the composition-I was melted by a 30 mmφ extruder (molding temperature 200 ° C.) and then fed to a tube manufacturing die (molding temperature 200 ° C.) to manufacture a tube having an outer diameter of 8 mm and an inner diameter of 5 mm. The following methods evaluated the performance of such a square board, a sheet, and a tube.

射出成形角板を用いて 霞 度(%):ASTM D 1003 捩り剛性率:ASTM D 1043 低温脆化点:ASTM D 746 水との接触角:直径2mm程度の蒸留水水滴を注射針より
角板上へ滴下させ水滴と角板のなす角度を測定した。
Using injection molded square plate Haze (%): ASTM D 1003 Torsional rigidity: ASTM D 1043 Low temperature embrittlement point: ASTM D 746 Contact angle with water: Distilled water droplets with a diameter of about 2 mm are squared from the injection needle. The angle formed by the water droplet and the square plate was measured by dropping it on top.

シート・チユーブの成形性 :○ 表面肌が滑らかである。Formability of sheet / tube: ○ The surface is smooth.

△ 表面肌が若干荒れている。 △ The surface skin is slightly rough.

× 肌荒れが著しい。 × The skin is extremely rough.

高圧蒸気滅菌性:オートクレーブに試料を入れ、121℃
−30分高圧蒸気滅菌処理を行つた後、試料の変形、ブリ
ード、ブロツキングの有無及び霞度を測定した。
Autoclaving: Put the sample in the autoclave, 121 ℃
After performing high-pressure steam sterilization treatment for -30 minutes, the deformation of the sample, the presence or absence of bleeding and blocking, and the haze were measured.

結果を第1表に示す。The results are shown in Table 1.

実施例 2 実施例1で用いたPMH−Iの代わりに1−ヘキセンと4MP
の装入量を変更し、且つ水素分圧を適宜変更して重合す
ることにより得られた4MP含有量70モル%、融点195℃、
軟化点165℃、結晶化度26%、極限粘度〔η〕2.5dl/g及
びアセトン・n−デカン可溶分2.0重量%の4−メチル
−1−ペンテン・1−ヘキセンランダム共重合体(以下
PMH−IIと略す)を用いる以外は実施例1と同様に行つ
た。結果を第1表に示す。
Example 2 Instead of PMH-I used in Example 1, 1-hexene and 4MP
By changing the charging amount of, and 4MP content 70 mol% obtained by polymerization by appropriately changing the hydrogen partial pressure, melting point 195 ℃,
4-methyl-1-pentene / 1-hexene random copolymer having a softening point of 165 ° C., a crystallinity of 26%, an intrinsic viscosity [η] of 2.5 dl / g and an acetone / n-decane soluble content of 2.0% by weight (hereinafter
The same procedure as in Example 1 was performed except that PMH-II was used. The results are shown in Table 1.

比較例 1 実施例1で用いたPMH−Iの代わりに実施例3で用いたP
MH−Iを用いて、成形温度を240℃とした以外は実施例
1と同様に行つた。結果を第1表に示す。
Comparative Example 1 P used in Example 3 in place of PMH-I used in Example 1
The same procedure as in Example 1 was carried out using MH-I, except that the molding temperature was 240 ° C. The results are shown in Table 1.

比較例 2 実施例1で用いたPMH−Iの代わりにポリ塩化ビニル樹
脂100重量部にジオクチルフタレート70重量部を混合し
た軟質ポリ塩化ビニル樹脂(以下PVCと略す)を用い成
形温度を170℃とした以下は実施例1と同様に行つた。
結果を第1表に示す。
Comparative Example 2 Instead of PMH-I used in Example 1, 100 parts by weight of polyvinyl chloride resin was mixed with 70 parts by weight of dioctyl phthalate, and a soft polyvinyl chloride resin (hereinafter abbreviated as PVC) was used. After that, the same procedure as in Example 1 was performed.
The results are shown in Table 1.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(イ)4−メチル−1−ペンテン含有量が
40ないし80モル%、融点が140ないし220℃、軟化点が90
ないし190℃及びX線による結晶化度が15ないし35%の
範囲にある4−メチル−1−ペンテンと炭素数が4ない
し7(但し4−メチル−1−ペンテンは除く)のα−オ
レフインとのランダム共重合体(A)80重量%を超えて
100重量%以下と、 (ロ)4−メチル−1−ペンテンの単独重合体もしくは
4−メチル−1−ペンテンを85モル%以上含む4−メチ
ル−1−ペンテンと炭素数2ないし20のα−オレフイン
との共重合体(B)0ないし20重量%未満 とからなることを特徴とする医療器具用樹脂組成物。
1. The content of (a) 4-methyl-1-pentene
40-80 mol%, melting point 140-220 ° C, softening point 90
4-methyl-1-pentene having a crystallinity in the range of 15 to 35% by X-rays and α-olefin having 4 to 7 carbon atoms (excluding 4-methyl-1-pentene). More than 80% by weight of random copolymer (A)
100% by weight or less, (B) 4-methyl-1-pentene homopolymer or 4-methyl-1-pentene containing 85% by mole or more of 4-methyl-1-pentene and α- having 2 to 20 carbon atoms A resin composition for medical devices, comprising 0 to less than 20% by weight of a copolymer (B) with olefin.
JP61089970A 1986-04-21 1986-04-21 Resin composition for medical devices Expired - Lifetime JPH0730219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61089970A JPH0730219B2 (en) 1986-04-21 1986-04-21 Resin composition for medical devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61089970A JPH0730219B2 (en) 1986-04-21 1986-04-21 Resin composition for medical devices

Publications (2)

Publication Number Publication Date
JPS62246950A JPS62246950A (en) 1987-10-28
JPH0730219B2 true JPH0730219B2 (en) 1995-04-05

Family

ID=13985537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61089970A Expired - Lifetime JPH0730219B2 (en) 1986-04-21 1986-04-21 Resin composition for medical devices

Country Status (1)

Country Link
JP (1) JPH0730219B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163144A (en) * 1989-11-22 1991-07-15 Mitsubishi Kasei Corp Molding material for medical appliance and medical appliance prepared by using same
KR20070047274A (en) * 2004-08-03 2007-05-04 미쓰이 가가쿠 가부시키가이샤 Poly-4-methyl-1-pentene resin composition, film, and mold for producing electronic component sealing body
JP2008144155A (en) * 2006-11-14 2008-06-26 Mitsui Chemicals Inc 4-methyl-1-pentene-based random copolymer, method for manufacturing it and composition comprising the copolymer
EP3437620A4 (en) * 2016-03-28 2019-11-27 Kawasumi Laboratories, Inc. Composition for platelet storage container, sheet for platelet storage container, and platelet storage container

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745603B2 (en) * 1986-03-11 1995-05-17 三井石油化学工業株式会社 Resin composition

Also Published As

Publication number Publication date
JPS62246950A (en) 1987-10-28

Similar Documents

Publication Publication Date Title
EP0611801B1 (en) Olefin polymer films
WO1997010299A1 (en) Polyolefin composition and article molded therefrom
JPS63118307A (en) Polymerization of novel propylene
JPS623177B2 (en)
JPH08512085A (en) Highly processable polymer composition based on LLDPE
JP3921951B2 (en) Polypropylene resin composition and method for producing the same
US4308361A (en) Propylene copolymers
JPH0730219B2 (en) Resin composition for medical devices
JPH0745603B2 (en) Resin composition
JPH0677987B2 (en) Laminated film
US6835791B2 (en) Stretched polypropylene film
JP2000129053A (en) Polypropylene resin composition and its non-stretched film
JP3570774B2 (en) Flexible polyolefin composition and use thereof
JPH08245846A (en) Polypropylene composition for oriented laminate and oriented laminate
JPS631327B2 (en)
JPH066653B2 (en) Polypropylene composition
JP2021528510A (en) Molded article and its method
JPH0258105B2 (en)
JP3141705B2 (en) Propylene random copolymer composition
JPH0655405B2 (en) Mandrel for hose manufacturing
JPS617308A (en) Crystalline polybutene-1 composition
JP2596053B2 (en) Ethylene polymer composition and method for producing the same
JPS638131B2 (en)
JP3841750B2 (en) A syndiotactic polypropylene copolymer composition for resin modification and an isotactic polypropylene polymer composition containing the composition.
JPH0947486A (en) Laminated body and medical bag