JPS623177B2 - - Google Patents

Info

Publication number
JPS623177B2
JPS623177B2 JP3996477A JP3996477A JPS623177B2 JP S623177 B2 JPS623177 B2 JP S623177B2 JP 3996477 A JP3996477 A JP 3996477A JP 3996477 A JP3996477 A JP 3996477A JP S623177 B2 JPS623177 B2 JP S623177B2
Authority
JP
Japan
Prior art keywords
weight
copolymer
ethylene
parts
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3996477A
Other languages
Japanese (ja)
Other versions
JPS53125452A (en
Inventor
Kazuya Kugimya
Takumi Fujisaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP3996477A priority Critical patent/JPS53125452A/en
Publication of JPS53125452A publication Critical patent/JPS53125452A/en
Publication of JPS623177B2 publication Critical patent/JPS623177B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は透明性、耐衝撃性ならびに押出特性の
良好な、特に包装用フイルムとして好適なポリオ
レフイン組成物に関する。 高圧法で製造されるポリエチレンは、ポリオレ
フインのうちでも比較的透明性の良い樹脂として
知られており、フイルムや中空容器などの用途に
供せられている。しかしフイルム用途に関して言
えば、高圧法のポリエチレンは、通常、フイルム
成形で多用されている空冷インフレーシヨン法に
よる成形では透明性、耐衝撃性、耐引裂性は十分
とは言えない。これらの欠点を改良するために、
エチレンに他の重合性単量体例えば酢酸ビニルを
共重合せしめる方法が採用されている。しかし、
この方法はフイルムの機械的強度、剛性が低下す
る、フイルムがブロツキングしやすくなつて成形
性に支障をきたす等の問題を生じるため、好まし
い方法とは言えない。 一方、機械的強度が優れ、高圧法ポリエチレン
と同程度の密度を有する樹脂として、チーグラー
型触媒を用いて製造したエチレンと炭素数3以上
のα−オレフインとの共重合体が知られている。
一般にチーグラー型触媒としてバナジウム系触媒
を用いて製造したものは、融点が低いため耐熱
性、機械的強度に問題がある。一方、チタン系触
媒を用いて通常の重合条件で得られる共重合体は
一般に耐衝撃性が高圧法ポリエチレンと同等か劣
つたものしか得られない。そこで、エチレンと炭
素数5ないし10のα−オレフインを触媒として炭
化水素不溶性の固体担体に担持されたチタン系固
体触媒と有機アルミニウム化合物からなる触媒を
用い、かつ重合を炭化水素溶媒の共存下あるいは
モノマー自身を溶媒とする条件下で、共重合体の
融点以上の温度、とくに溶媒と共重合体が均一相
になる条件下で行うことにより、耐引裂性、耐衝
撃性の優れた樹脂が得られることが見出されてい
る。このような高温溶解重合法で得られるエチレ
ン−α−オレフイン共重合体の耐引裂性、耐衝撃
性は、ポリオレフイン中で最も優れているもので
あると考えられるが、一方欠点として、溶融張力
および流動特性が高圧法低密度ポリエチレンに比
べて劣ること、触媒系によつては透明性の良好な
共重合体が得られにくいことが判明した。フイル
ム成形において、樹脂本来の性能が優れていても
樹脂の流動特性および溶融張力(以下これらを合
わせて成形性ということがある)が劣ると、フイ
ルムのバブル安定性が劣つてしわが出やすく、ま
たフイルムの薄肉化が困難となる。中空容器の成
形においても高速化が困難になる等の点でいずれ
にせよ好ましくない。樹脂の流動特性を改善する
には、樹脂のメルトインデツクスを増加させる、
すなわち分子量を低下さす方法が通常とられる
が、この方法では代りに溶融張力がいつそう劣
り、かつ共重合体の最大の特長である耐衝撃性、
耐引裂性を損ねてしまう。一方、重合体の分子量
分布およびまたは組成分布を広げ流動性を改良す
る方法もとれなくはないが、この方法でも代りに
樹脂の透明性、耐衝撃性が損われ、樹脂がべたつ
きを有するようになる。また溶融張力も劣つたも
のになる。 本発明は、前記した特定の重合方法で得られた
エチレン−α−オレフイン共重合体の優れた特性
である耐衝撃性、耐引裂性、剛性を実質上損なう
ことなく透明性、成形性を改良することを目的と
している。 すなわち本発明は、炭化水素不溶性の固体担体
に担持されたチタン系固体触媒と有機アルミニウ
ム化合物とからなる触媒を用い、共重合体の融点
以上の温度で重合して得られるメルトインデツク
ス(190℃)0.1ないし20、密度0.910ないし0.940
g/cm3、エチレン含有率99.5ないし90モル%、常
温p−キシレン可溶分(A)が0.1ないし20重量%
で、かつ沸騰n−ヘプタン不溶分(B)が10ないし50
重量%で、しかも(A)+(B)が20ないし60重量%のエ
チレンと炭素数5ないし10のα−オレフインとの
ランダム共重合体99ないし60重量部と、高圧法ポ
リエチレン1ないし40重量部とからなるポリオレ
フイン組成物である。 本発明につき詳しく説明する。 本発明の組成物において主成分として用いられ
るエチレンと少割合の炭素数5ないし10のα−オ
レフインとのランダム共重合体は、メルトインデ
ツクス0.1ないし20、密度0.910ないし0.940g/
cm3、常温p−キシレン可溶分(A)が0.1ないし20重
量%で、かつ沸騰n−ヘプタン不溶分(B)が10ない
し50重量%で、しかも(A)+(B)が20ないし60重量%
の重合体である。 共重合される炭素数5ないし10のα−オレフイ
ンとは、具体的には、1−ペンテン、1−ヘキセ
ン、4−メチル−1−ペンテン、1−オクテン、
1−デセンあるいはこれらの混合物であり、とく
に炭素数6ないし8のα−オレフイン、とりわけ
4−メチル−1−ペンテンが好ましい。 共重合体のメルトインデツクスは、0.1ないし
20、好ましくは、0.5ないし10の範囲にあること
が必要である。メルトインデツクスが0.1未満で
あると、流動特性が劣るため成形性が悪く、良好
な製品が得られ難い。他方、20を越すと、組成物
から得られるフイルム、中空瓶の耐衝撃性、耐引
裂性が劣り、本発明の目的にそぐわなくなる。と
くに、重合のしやすさ、樹脂の耐衝撃性、引裂性
のバランスの点でメルトインデツクス1.0ないし
5.0の範囲のものが最も好ましい。なお、本発明
におけるメルトインデツクスは、ASTM−D−
1238−65Tの方法に準じ、190℃、2160gの荷重
で測定した値である。本発明で使用する共重合体
の密度は組成物の透明性が良好であるためには
0.940g/cm3以下、好ましくは0.935g/cm3以下で
あることが必要であり、一方、組成物の機械的特
性が優れており、しかもべたつきがないためには
0.910g/cm3以上、好ましくは0.915/cm3以上でな
ければならない。樹脂にベたつきがあると、フイ
ルム成形においては、フイルムがブロツキングす
るため、製品化が困難である。また中空瓶の用途
においても感触が悪いため、好まれない。本発明
における共重合体の密度の測定は、ASTM−D
−1505の方法で測定した値である。なお、本発明
で使用するエチレン−α−オレフイン共重合体の
密度は、共重合成分の割合に大きく依存し、共重
合体の密度が0.910ないし0.940g/cm3の範囲にあ
るには、共重合成分が0.5ないし10モル%、好ま
しくは1.0ないし6.0モル%、とくに2.0ないし4.0
モル%の範囲にあることが必要である。 本発明で使用する共重合体の組成分布は、触媒
により様々である。常温p−キシレン可溶分(A)お
よび沸騰n−ヘプタン不溶分(B)は、組成分布の拡
がりを示す尺度として有用な値であり、例えば同
じ平均分子量、密度の共重合体において(A)が多い
ことは、低分子量分および/または非晶分が多い
ことを示す。一方(B)が多いことは、共重合体のポ
リエチレン結晶部分が多い、すなわち共重合が均
一に行われていないことを示すものである。(A)が
5重量%以下、とくに3重量%以下で、かつ(B)が
20重量%以下で、しかも(A)+(B)が20重量%以下の
共重合体は透明性がとくに優れている。興味ある
ことに、本発明で後述の高圧ポリエチレンを配合
した際、透明性、および成形性で著しい改良効果
の得られる共重合体は(A)が0.1ないし20重量%、
とくに1ないし15重量%でかつ(B)が10ないし50重
量%、とくに15ないし40重量%で、しかも(A)+(B)
が20ないし60重量%とくに25ないし45重量%の範
囲のものである。このような共重合体は耐衝撃
性、耐引裂性では優れているが、透明性はさほど
良好とは言えない。なお、沸騰n−ヘプタン不溶
分および常温p−キシレン可溶分の定量は、ソツ
クスレー油出法により行う。 本発明で使用する前記性能を有する共重合体を
製造する触媒としては、炭化水素不溶性の固体担
体に担持されたチタン系固体触媒と有機アルミニ
ウム化合物からなる触媒を用いるのであるが、チ
タン系固体触媒としては、ハロゲン化マグネシウ
ム、とくに塩化マグネシウムもしくは酸化マグネ
シウムを含有する化合物に担持されたチタン形触
媒であつて、Cl/Ti(重量比)が好ましくは5
ないし150、Ti/Mg(モル比)が好ましくは3な
いし90の範囲にあり、表面積が70m2/g以上、好
適には150m2/g以上で、とくにその中では、特
公昭50−32270号および特開昭50−95382号に記載
された触媒を用いるのが好ましい。また有機アル
ミニウム化合物としては、実験式 RnAlX3-o(但し、Rはアルキル基のような炭
化水素基、1≦n≦3、Xは水素、塩素、炭素数
2ないし4のアルコキシ基)の実験式で示される
有機アルミニウム化合物が共触媒として用いられ
る。平均組成がこれらの実験式になる限り、2以
上の混合物であつてもよい。これらのうち透明性
の優れた重合体が得られるのは、アルキルアルミ
ニウムセスキクロリドおよび/またはジアルキル
アルミニウムハライドであり、とくにアルキルア
ルミニウムハライドおよびこれとジアルキルアル
ミニウムハライドの混合物である。その他の有機
アルミニウム化合物、例えばトリアルキルアルミ
ニウムやジアルキルアルミニウムハイドライドあ
るいはジアルキルアルミニウムアルコキシドやア
ルキルアルミニウムアルコキシハライドなどを共
触媒に用いると、組成分布の広い従つて透明性の
あまり良好でない共重合体が得られる。前に述べ
た通り本発明の組成物とする効果はこのような透
明性があまり良好でない共重合体に対し特に有効
である。 本発明で使用する共重合体を得るためには、共
重合条件の選択が重要である。重合は、好ましく
は炭化水素溶媒の共存化あるいはモノマー自身を
溶媒とする条件下、共重合体の融点以上好ましく
は140℃以上の温度で、好ましくは溶媒と共重合
体が均一相になる条件で行う必要がある。そして
単量体濃度を一定にしつつ連続重合を行うのが好
ましい。溶媒と共重合体が均一相を形成する範囲
は、溶媒の種類、溶液中の単量体や水素などの濃
度(圧力)、重合温度、共重合体の分子量(極限
粘度)などによつて変動するので予め、予備実験
によつてその範囲を定めておかねばならない。ま
た重合は、加圧下で行うのが好ましく、例えば2
ないし100Kg/cm2、好ましくは15ないし70Kg/cm2
とするのがよい。上記の如き、本発明で使用する
エチレン−α−オレフインランダム共重合体を製
造するための重合条件に関しては、本願出願人に
よる昭52年1月27日出願の特許願に詳述されてい
る。 本発明で用いられる高圧法ポリエチレンは、メ
ルトインデツクス(190℃)が好ましくは0.1ない
し10、特に好ましくは1.0ないし5.0で密度が好ま
しくは0.915ないし0.935g/cm3の範囲のものでと
くに0.920ないし0.925g/cm3の範囲のものは、透
明性向上効果が優れる。 なお、本発明でいう高圧法ポリエチレンとは、
エチレンの単独重合体のみならず、本発明の目的
を損なわない範囲、例えば10重量%以下の少量の
他の重合性単量体、例えば酢酸ビニル、アクリル
酸エステル等とエチレンとの共重合体であつても
よい。 本発明は前記した特定のエチレン−α−オレフ
イン共重合体の透明性および成形性改良のため、
高圧法ポリエチレンを少量混合せしめることを特
徴とする。通常2つの重合体を混合した場合、得
られる組成物は両者の平均的な性能、もしくはそ
れ以下の性能しか示さないものであり、本発明の
如く、エチレン−α−オレフインランダム共重合
体に高圧法ポリエチレンを少量混合せしめること
により、エチレン−α−オレフイン共重合体の優
れた特性である耐衝撃性、耐引裂性、剛性等をほ
とんど低下せしめることなく、透明性、成形性を
向上せしめ得たことは、正に予想外のことであ
る。 本発明組成物におけるエチレン−α−オレフイ
ン共重合体と高圧法ポリエチレンとの配合比は、
99重量部対1重量部ないし60重量部対40重量部、
好ましくは95重量部対5重量部ないし70重量部対
30重量部、とくに90重量部対10重量部ないし80重
量部対20重量部である。高圧法ポリエチレンの配
合量が組成物100重量部に対し1重量部未満であ
ると、成形性および透明性の改良効果が不十分で
あり、一方40重量部を越えると、組成物の透明
性、剛性、耐引裂性、耐衝撃性が低下するため、
採用できない。 本発明組成物には、耐候安定剤、耐熱安定剤、
帯電防止剤、防曇剤、アンチブロツキング剤、ス
リツプ剤、滑剤、顔料、染料等を通常のポリオレ
フインに配合する程度の量配合しておいてもよ
い。 本発明の組成物は透明性、耐引裂性、耐衝撃性
とも高圧法ポリエチレンより優れており、一方成
形性は高圧法ポリエチレンと同等に良好であり、
通常の高圧法ポリエチレン用成形機で容易に成形
できる。従つて、特に包装用フイルム等のフイル
ム用途に好適であり、その他、輸液容器等の中空
成形品、他のフイルムと積層した複合フイルム等
の用途にもその特性を生かして使用することがで
きる。 実施例 1 <共重合体の重合> 200の連続重合反応器を用いて、溶媒ヘキサ
ンを80/hr、ジエチルアルミニウムクロリドと
トリエチルアルミ2:3の混合物を20mmol/
hr、無水塩化マグネシウム10モルにヘキサン中で
エタノール60モル、ジエチルアルミニウムクロリ
ド27モル、四塩化チタン100モルの順に滴下反応
せしめた触媒をチタンに換算して0.28mmol/hr
を連続的に供給し、重合器内において、同時にエ
チレン13.5Kg/hr、4−メチル−1−ペンテン
14.4Kg/hr、水素60/hrの割合で連続供給し、
重合温度145℃、全圧30Kg/cm2G、帯留時間1時
間、溶媒ヘキサンに対する重合体の濃度119g/
となる条件下で共重合を行つた。得られた共重
合体はメルトインデツクス(190℃)2.3、密度
0.926g/cm3、エチレン含有率96.9モル%、炭素
原子1000個当りのイソブチル基14.6個、沸騰n−
ヘプタン不溶分が31重量%、常温p−キシレン可
溶分2.8重量%であつた。 <組成物の製造> 上記共重合体に耐熱安定剤を配合後溶融押出し
てペレツト化した。該ペレツト95重量部に、高圧
法ポリエチレン(メルトインデツクス3.2、密度
0.921g/cm3)ペレツト5重量部を配合しV型ブ
レンダーで混合した。 <フイルムの成形> 市販のポリオレフイン用チユーブラーフイルム
成形機で幅180mm、厚み0.03mmのフイルムを成形
した。なお、成形時の樹脂温は、180℃で、押出
機のスクリユー回転数60r.p.m.、ダイ径100mm
φ、ダイスリツト幅0.5mm、冷却エアーリング一
段で行つた。 <フイルムの評価> 成形したフイルムの引張特性はASTM−D−
882の方法に、衝撃強度はASTM−D−3420の方
法に、引裂強度はASTM−D−1004の方法に、
透明性はASTM−D−1003の方法に準じて行つ
た。結果を第1表に示す。 実施例 2 組成物の配合比をエチレン−4−メチル−1−
ペンテン共重合体90重量部および高圧法ポリエチ
レン10重量部とする以外は実施例1と同様に行つ
た。結果を第1表に示す。 実施例 3 組成物の配合比をエチレン−4−メチル−1−
ペンテン共重合体80重量部および高圧法ポリエチ
レン20重量部とする以外は実施例1と同様に行つ
た。結果を第1表に示す。 実施例 4 組成物の配合比をエチレン−4−メチル−1−
ペンテン共重合体70重量部および高圧法ポリエチ
レン30重量部とする以外は実施例1と同様に行つ
た。結果を第1表に示す。 比較例 1 実施例1の方法で製造したエチレン−4−メチ
ル−1−ペンテン共重合体のみでフイルムを成形
する以外は実施例1と同様に行つた。結果を第1
表に示す。 比較例 2 組成物の配合比をエチレン−4−メチル−1−
ペンテン共重合体50重量部および高圧法ポリエチ
レン50重量部とする以外は実施例1と同様に行つ
た。結果を第1表に示す。 比較例 3 高圧法ポリエチレンを実施例1と同様の方法で
フイルム成形し、評価した。結果を第1表に示
す。 比較例 11、12 実施例2および実施例4で用いたエチレン−4
−メチル−1−ペンテン共重合体の代わりにメル
トインデツクス(190℃)2.0、密度0.920g/
cm3、エチン含有率95.8モル%のエチレン−1−ブ
テン共重合体を用いる以外は実施例2及び実施例
4と同様に行つた。結果を第1表に示す。
The present invention relates to a polyolefin composition that has good transparency, impact resistance and extrusion properties and is particularly suitable as a packaging film. Polyethylene produced by a high-pressure method is known as a resin with relatively good transparency among polyolefins, and is used for applications such as films and hollow containers. However, when it comes to film applications, high-pressure polyethylene cannot be said to have sufficient transparency, impact resistance, or tear resistance when molded by the air-cooled inflation method, which is commonly used in film molding. In order to improve these shortcomings,
A method has been adopted in which ethylene is copolymerized with other polymerizable monomers, such as vinyl acetate. but,
This method is not a preferred method because it causes problems such as a decrease in the mechanical strength and rigidity of the film, and a tendency for the film to block, which impairs moldability. On the other hand, a copolymer of ethylene produced using a Ziegler type catalyst and an α-olefin having 3 or more carbon atoms is known as a resin having excellent mechanical strength and a density comparable to that of high-pressure polyethylene.
Generally, Ziegler type catalysts manufactured using vanadium catalysts have problems in heat resistance and mechanical strength because of their low melting points. On the other hand, copolymers obtained using titanium-based catalysts under normal polymerization conditions generally have impact resistance equivalent to or inferior to that of high-pressure polyethylene. Therefore, we used a catalyst consisting of a titanium-based solid catalyst supported on a hydrocarbon-insoluble solid support and an organoaluminum compound using ethylene and an α-olefin having 5 to 10 carbon atoms as catalysts, and polymerization was carried out in the coexistence of a hydrocarbon solvent or By carrying out the process under conditions where the monomer itself is used as a solvent and at a temperature above the melting point of the copolymer, especially under conditions where the solvent and copolymer form a homogeneous phase, a resin with excellent tear resistance and impact resistance can be obtained. It has been found that The tear resistance and impact resistance of the ethylene-α-olefin copolymer obtained by such a high-temperature melt polymerization method are considered to be the best among polyolefins, but on the other hand, it has drawbacks such as melt tension and It was found that the flow characteristics were inferior to that of high-pressure low-density polyethylene, and that it was difficult to obtain a copolymer with good transparency depending on the catalyst system. In film molding, even if the original performance of the resin is excellent, if the resin's flow characteristics and melt tension (hereinafter collectively referred to as moldability) are poor, the bubble stability of the film will be poor and wrinkles will easily appear. Furthermore, it becomes difficult to make the film thin. In any case, this is not preferable since it becomes difficult to increase the speed in molding hollow containers. To improve the flow properties of the resin, increase the melt index of the resin,
In other words, the method usually used is to lower the molecular weight, but this method has the disadvantage that the melt tension is considerably inferior, and the impact resistance, which is the most important feature of copolymers, is reduced.
This will impair tear resistance. On the other hand, it is possible to improve the fluidity by widening the molecular weight distribution and/or composition distribution of the polymer, but this method also impairs the transparency and impact resistance of the resin, and causes the resin to become sticky. Become. Also, the melt tension becomes inferior. The present invention improves transparency and moldability without substantially impairing impact resistance, tear resistance, and rigidity, which are the excellent properties of the ethylene-α-olefin copolymer obtained by the specific polymerization method described above. It is intended to. That is, the present invention uses a catalyst consisting of a titanium-based solid catalyst supported on a hydrocarbon-insoluble solid support and an organoaluminum compound, and a melt index (190°C) obtained by polymerizing at a temperature equal to or higher than the melting point of the copolymer. ) 0.1 to 20, density 0.910 to 0.940
g/cm 3 , ethylene content 99.5 to 90 mol%, normal temperature p-xylene soluble content (A) 0.1 to 20% by weight
and boiling n-heptane insoluble content (B) is 10 to 50
99 to 60 parts by weight of a random copolymer of ethylene and α-olefin having 5 to 10 carbon atoms, and 20 to 60 parts by weight of (A) + (B), and 1 to 40 parts by weight of high-pressure polyethylene. It is a polyolefin composition consisting of parts. The present invention will be explained in detail. The random copolymer of ethylene and a small proportion of α-olefin having 5 to 10 carbon atoms, which is used as a main component in the composition of the present invention, has a melt index of 0.1 to 20 and a density of 0.910 to 0.940 g/
cm 3 , the p-xylene soluble content at room temperature (A) is 0.1 to 20% by weight, the boiling n-heptane insoluble content (B) is 10 to 50% by weight, and (A) + (B) is 20 to 20% by weight. 60% by weight
It is a polymer of Specifically, the α-olefin having 5 to 10 carbon atoms to be copolymerized includes 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene,
1-decene or a mixture thereof, particularly preferred is α-olefin having 6 to 8 carbon atoms, especially 4-methyl-1-pentene. The melt index of the copolymer is between 0.1 and
20, preferably in the range of 0.5 to 10. If the melt index is less than 0.1, the flow characteristics will be poor, resulting in poor moldability and it will be difficult to obtain a good product. On the other hand, if it exceeds 20, the impact resistance and tear resistance of the film and hollow bottle obtained from the composition will be poor, and the object of the present invention will not be met. In particular, in terms of ease of polymerization, resin impact resistance, and tear resistance, melt index 1.0 or higher is preferred.
A range of 5.0 is most preferred. Note that the melt index in the present invention is based on ASTM-D-
The value was measured at 190°C and a load of 2160g according to the method of 1238-65T. The density of the copolymer used in the present invention is determined in order for the composition to have good transparency.
It is necessary that the content is 0.940 g/cm 3 or less, preferably 0.935 g/cm 3 or less, and on the other hand, in order for the composition to have excellent mechanical properties and not be sticky.
It should be at least 0.910 g/cm 3 , preferably at least 0.915/cm 3 . If the resin is sticky, the film will block during film molding, making it difficult to commercialize the product. It is also not preferred in hollow bottle applications because it has a poor feel. The density of the copolymer in the present invention is measured using ASTM-D
-1505 is the value measured using the method. Note that the density of the ethylene-α-olefin copolymer used in the present invention largely depends on the ratio of copolymerization components, and for the density of the copolymer to be in the range of 0.910 to 0.940 g/cm 3 , Polymerization component: 0.5 to 10 mol%, preferably 1.0 to 6.0 mol%, especially 2.0 to 4.0 mol%
It is necessary that the amount be within the range of mol%. The composition distribution of the copolymer used in the present invention varies depending on the catalyst. The room temperature p-xylene soluble content (A) and the boiling n-heptane insoluble content (B) are useful values as a measure of the spread of the composition distribution. For example, in copolymers with the same average molecular weight and density, (A) A large amount indicates a large amount of low molecular weight components and/or amorphous components. On the other hand, a large amount of (B) indicates that the copolymer contains many polyethylene crystal parts, that is, copolymerization is not uniformly performed. (A) is 5% by weight or less, especially 3% by weight or less, and (B) is
A copolymer containing 20% by weight or less, and in which (A)+(B) is 20% by weight or less, has particularly excellent transparency. Interestingly, in the present invention, when blended with the high-pressure polyethylene described below, the copolymer that can significantly improve transparency and moldability is a copolymer containing 0.1 to 20% by weight of (A).
In particular, 1 to 15% by weight and (B) 10 to 50% by weight, especially 15 to 40% by weight, and (A) + (B)
in the range of 20 to 60% by weight, especially 25 to 45% by weight. Although such copolymers have excellent impact resistance and tear resistance, their transparency is not so good. The amounts insoluble in boiling n-heptane and soluble in p-xylene at room temperature are determined by the Soxhlet extraction method. The catalyst used in the present invention to produce the copolymer having the above performance is a catalyst consisting of a titanium-based solid catalyst supported on a hydrocarbon-insoluble solid support and an organoaluminum compound. The catalyst is a titanium-type catalyst supported on a compound containing magnesium halide, especially magnesium chloride or magnesium oxide, with a Cl/Ti (weight ratio) of preferably 5.
to 150, Ti/Mg (molar ratio) is preferably in the range of 3 to 90, and the surface area is 70 m 2 /g or more, preferably 150 m 2 /g or more. It is preferable to use the catalysts described in JP-A No. 50-95382. In addition, as an organoaluminum compound, an experimental formula of RnAlX 3-o (where R is a hydrocarbon group such as an alkyl group, 1≦n≦3, and X is hydrogen, chlorine, or an alkoxy group having 2 to 4 carbon atoms) is used. An organoaluminum compound of the formula is used as a cocatalyst. A mixture of two or more may be used as long as the average composition satisfies these empirical formulas. Among these, polymers with excellent transparency can be obtained from alkyl aluminum sesquichlorides and/or dialkyl aluminum halides, particularly alkyl aluminum halides and mixtures thereof with dialkyl aluminum halides. When other organoaluminum compounds, such as trialkylaluminum, dialkylaluminum hydride, dialkylaluminum alkoxide, and alkylaluminum alkoxyhalide, are used as cocatalysts, copolymers with a wide compositional distribution and therefore with less good transparency can be obtained. As mentioned above, the effect of the composition of the present invention is particularly effective for such copolymers whose transparency is not very good. In order to obtain the copolymer used in the present invention, selection of copolymerization conditions is important. The polymerization is preferably carried out under conditions in which a hydrocarbon solvent coexists or the monomer itself is used as a solvent, at a temperature higher than the melting point of the copolymer, preferably 140°C or higher, and preferably under conditions in which the solvent and copolymer form a homogeneous phase. There is a need to do. It is preferable to carry out continuous polymerization while keeping the monomer concentration constant. The range in which the solvent and copolymer form a homogeneous phase varies depending on the type of solvent, the concentration (pressure) of monomers and hydrogen in the solution, polymerization temperature, molecular weight of the copolymer (intrinsic viscosity), etc. Therefore, the range must be determined in advance through preliminary experiments. The polymerization is preferably carried out under pressure, for example 2
from 100Kg/cm 2 , preferably from 15 to 70Kg/cm 2
It is better to The polymerization conditions for producing the ethylene-α-olefin random copolymer used in the present invention as described above are detailed in the patent application filed on January 27, 1972 by the applicant of the present invention. The high-pressure polyethylene used in the present invention preferably has a melt index (at 190°C) of 0.1 to 10, particularly preferably 1.0 to 5.0, and a density of preferably 0.915 to 0.935 g/cm 3 , particularly 0.920 to 0.920. A content in the range of 0.925 g/cm 3 has an excellent transparency improvement effect. In addition, the high-pressure polyethylene referred to in the present invention is
Not only a homopolymer of ethylene, but also a copolymer of ethylene with a small amount of other polymerizable monomers, for example, 10% by weight or less, such as vinyl acetate, acrylic ester, etc., within a range that does not impair the purpose of the present invention. It may be hot. The present invention aims to improve the transparency and moldability of the above-mentioned specific ethylene-α-olefin copolymer,
It is characterized by mixing a small amount of high-pressure polyethylene. Normally, when two polymers are mixed, the resulting composition exhibits average performance or performance below that of both polymers. By mixing a small amount of processed polyethylene, it was possible to improve transparency and moldability without substantially reducing the excellent properties of the ethylene-α-olefin copolymer, such as impact resistance, tear resistance, and rigidity. This is truly unexpected. The blending ratio of the ethylene-α-olefin copolymer and high-pressure polyethylene in the composition of the present invention is as follows:
99 parts by weight to 1 part by weight to 60 parts by weight to 40 parts by weight,
Preferably 95 parts by weight to 5 parts by weight to 70 parts by weight
30 parts by weight, especially 90 parts by weight to 10 parts by weight to 80 parts by weight to 20 parts by weight. If the amount of high-pressure polyethylene blended is less than 1 part by weight per 100 parts by weight of the composition, the effect of improving moldability and transparency will be insufficient, while if it exceeds 40 parts by weight, the transparency of the composition will deteriorate. Due to reduced stiffness, tear resistance, and impact resistance,
Cannot be hired. The composition of the present invention includes a weather-resistant stabilizer, a heat-resistant stabilizer,
Antistatic agents, antifogging agents, antiblocking agents, slip agents, lubricants, pigments, dyes, etc. may be added in amounts comparable to those added to ordinary polyolefins. The composition of the present invention has better transparency, tear resistance, and impact resistance than high-pressure polyethylene, while moldability is as good as high-pressure polyethylene,
It can be easily molded using a regular high-pressure polyethylene molding machine. Therefore, it is particularly suitable for film applications such as packaging films, and can also be used to take advantage of its properties in applications such as hollow molded products such as infusion containers, and composite films laminated with other films. Example 1 <Polymerization of copolymer> Using 200 continuous polymerization reactors, the solvent hexane was 80/hr and the mixture of diethylaluminium chloride and triethylaluminum 2:3 was 20 mmol/hr.
hr, a catalyst prepared by dropping 10 moles of anhydrous magnesium chloride in hexane with 60 moles of ethanol, 27 moles of diethylaluminium chloride, and 100 moles of titanium tetrachloride, converted to titanium, is 0.28 mmol/hr.
13.5Kg/hr of ethylene and 4-methyl-1-pentene were simultaneously supplied in the polymerization vessel.
Continuously supplies hydrogen at a rate of 14.4Kg/hr and hydrogen 60/hr.
Polymerization temperature 145℃, total pressure 30Kg/cm 2 G, residence time 1 hour, concentration of polymer with respect to solvent hexane 119g/
Copolymerization was carried out under the following conditions. The obtained copolymer has a melt index (190℃) of 2.3 and a density of
0.926 g/cm 3 , ethylene content 96.9 mol%, 14.6 isobutyl groups per 1000 carbon atoms, boiling n-
The content insoluble in heptane was 31% by weight, and the content soluble in p-xylene at room temperature was 2.8% by weight. <Production of Composition> A heat-resistant stabilizer was blended into the above copolymer and then melt-extruded to form pellets. High-pressure polyethylene (melt index 3.2, density
0.921 g/cm 3 ) 5 parts by weight of pellets were blended and mixed in a V-type blender. <Film Molding> A film having a width of 180 mm and a thickness of 0.03 mm was molded using a commercially available tubular film molding machine for polyolefin. The resin temperature during molding was 180°C, the screw rotation speed of the extruder was 60 rpm, and the die diameter was 100 mm.
φ, die slit width 0.5 mm, and one stage cooling air ring. <Film evaluation> The tensile properties of the molded film are ASTM-D-
882 method, impact strength according to ASTM-D-3420 method, tear strength according to ASTM-D-1004 method,
Transparency was determined according to the method of ASTM-D-1003. The results are shown in Table 1. Example 2 The blending ratio of the composition was changed to ethylene-4-methyl-1-
The same procedure as in Example 1 was conducted except that 90 parts by weight of the pentene copolymer and 10 parts by weight of high-pressure polyethylene were used. The results are shown in Table 1. Example 3 The blending ratio of the composition was changed to ethylene-4-methyl-1-
The same procedure as in Example 1 was carried out except that 80 parts by weight of the pentene copolymer and 20 parts by weight of high-pressure polyethylene were used. The results are shown in Table 1. Example 4 The blending ratio of the composition was changed to ethylene-4-methyl-1-
The same procedure as in Example 1 was conducted except that 70 parts by weight of the pentene copolymer and 30 parts by weight of high-pressure polyethylene were used. The results are shown in Table 1. Comparative Example 1 The same procedure as in Example 1 was carried out except that a film was formed using only the ethylene-4-methyl-1-pentene copolymer produced by the method of Example 1. Results first
Shown in the table. Comparative Example 2 The blending ratio of the composition was changed to ethylene-4-methyl-1-
The same procedure as in Example 1 was conducted except that 50 parts by weight of the pentene copolymer and 50 parts by weight of high-pressure polyethylene were used. The results are shown in Table 1. Comparative Example 3 High-pressure polyethylene was formed into a film in the same manner as in Example 1 and evaluated. The results are shown in Table 1. Comparative Examples 11, 12 Ethylene-4 used in Example 2 and Example 4
- Melt index (190℃) 2.0, density 0.920g/instead of methyl-1-pentene copolymer
The same procedure as in Example 2 and Example 4 was carried out except that an ethylene-1-butene copolymer having an ethylene content of 95.8 mol % and an ethyne content of 95.8 mol % was used. The results are shown in Table 1.

【表】 実施例 5〜8 フイルム成形において、フイルム冷却用エアー
リングを2段とする以外は実施例1〜4と同様に
行つた。結果を第2表に示す。 比較例 4〜6 フイルム成形において、フイルム冷却用エアー
リングを2段とする以外は比較例1〜3と同様に
行つた。結果を第2表に示す。
[Table] Examples 5 to 8 Film molding was carried out in the same manner as Examples 1 to 4 except that the film cooling air ring was provided in two stages. The results are shown in Table 2. Comparative Examples 4 to 6 Film molding was carried out in the same manner as Comparative Examples 1 to 3 except that the film cooling air ring was provided in two stages. The results are shown in Table 2.

【表】【table】

【表】 実施例9、比較例7 エチレンと4−メチル−1−ペンテンの供給比
を変えることによつて得られたメルトインデツク
ス(190℃)2.2、密度0.922g/cm3、エチレン含
有率95.9モル%、炭素原子1000個当りのイソブチ
ル基19.0個、沸騰n−ヘプタン不溶分が26重量
%、常温p−キシレン可溶分7.5重量%のエチレ
ン−4−メチル−1−ペンテン共重合体を用いる
以外は、実施例2および比較例1と同様に行つ
た。結果を第3表に示す。 実施例10、比較例8 エチレンと4−メチル−1−ペンテンの供給比
を変えることによつて得られたメルトインデツク
ス(190℃)2.2、密度0.935g/cm3、エチレン含
有率98.2モル%(炭素原子1000個当りのイソブチ
ル基8.9個)沸騰n−ヘプタン不溶分が39重量
%、常温p−キシレン可溶分0.9重量%のエチレ
ン−4−メチル−1−ペンテン共重合体を用いる
以外は、実施例2および比較例1と同様に行つ
た。結果を第3表に示す。
[Table] Example 9, Comparative Example 7 Melt index (190°C) 2.2, density 0.922 g/cm 3 , ethylene content obtained by changing the supply ratio of ethylene and 4-methyl-1-pentene Ethylene-4-methyl-1-pentene copolymer with 95.9 mol%, 19.0 isobutyl groups per 1000 carbon atoms, 26% by weight insoluble content in boiling n-heptane, and 7.5% by weight soluble content in p-xylene at room temperature. The same procedure as in Example 2 and Comparative Example 1 was carried out except for the use. The results are shown in Table 3. Example 10, Comparative Example 8 Melt index (190°C) 2.2, density 0.935 g/cm 3 , ethylene content 98.2 mol% obtained by changing the supply ratio of ethylene and 4-methyl-1-pentene (8.9 isobutyl groups per 1000 carbon atoms) Except for using an ethylene-4-methyl-1-pentene copolymer with a content insoluble in boiling n-heptane of 39% by weight and a content soluble in p-xylene at room temperature of 0.9% by weight. , in the same manner as in Example 2 and Comparative Example 1. The results are shown in Table 3.

【表】 実施例11、比較例9 エチレン−4−メチル−1−ペンテン共重合体
の重合において、有機アルミニウム化合物とし
て、トリエチルアルミニウム20mmol/hrの割合
で供給する以外は実施例2と同様にして得られた
メルトインデツクス4.65、密度0.920g/cm3、エ
チレン含有率96.1モル%、炭素数1000個当りのイ
ソブチル基18.0個、沸騰n−ヘプタン不溶分22重
量%、常温p−キシレン可溶分14重量%のエチレ
ン−4−メチル−1−ペンテン共重合体を用いる
以外は実施例2、比較例1と同様に行つた。結果
を第4表に示す。 実施例12、比較例10 エチレン−4−メチル−1−ペンテン共重合体
の重合において、有機アルミニウム化合物とし
て、トリエチルアルミニウム1モルに対して0.5
モルのエチルアルコールを反応させて得た
AlEt3-o(OEt)oを20mmol/hrの割合で供給する
以外は実施例1と同様にして得られたメルトイン
デツクス5.2、密度0.926g/cm、エチレン含有率
96.8モル%(炭素数1000個当りのイソブチル基
15.0個)、沸騰n−ヘプタン不溶分28重量%、常
温p−キシレン可溶分7.6重量%のエチレン−4
−メチル−1−ペンテン共重合体を用いる以外
は、実施例2および比較例1と同様に行つた。結
果を第4表に示す。
[Table] Example 11, Comparative Example 9 In the polymerization of ethylene-4-methyl-1-pentene copolymer, the same procedure as Example 2 was carried out except that triethylaluminum was supplied at a rate of 20 mmol/hr as an organoaluminum compound. The resulting melt index was 4.65, density 0.920 g/cm 3 , ethylene content 96.1 mol%, 18.0 isobutyl groups per 1000 carbon atoms, boiling n-heptane insolubles 22% by weight, room temperature p-xylene solubles. The same procedure as in Example 2 and Comparative Example 1 was conducted except that 14% by weight of ethylene-4-methyl-1-pentene copolymer was used. The results are shown in Table 4. Example 12, Comparative Example 10 In the polymerization of ethylene-4-methyl-1-pentene copolymer, as an organoaluminum compound, 0.5
Obtained by reacting moles of ethyl alcohol
Melt index 5.2, density 0.926 g/cm, ethylene content obtained in the same manner as in Example 1 except that AlEt 3-o (OEt) o was supplied at a rate of 20 mmol/hr.
96.8 mol% (isobutyl group per 1000 carbon atoms)
15.0 pieces), 28% by weight of boiling n-heptane insoluble content, 7.6% of room temperature p-xylene soluble content of ethylene-4
The same procedure as in Example 2 and Comparative Example 1 was conducted except for using the -methyl-1-pentene copolymer. The results are shown in Table 4.

【表】 比較例 13、14 塩化マグネシウム2Kgと、四塩化チタン0.4Kg
とを内容積100の振動ミルを用いて24時間共粉
砕し、Ti触媒を得た。次いで、内容積200のオ
ートクレーブにイソブタン65および4−メチル
−1−ペンテン35をいれた後水素を180N系
内に添加し、系を70℃に昇温した後、エチレンを
分圧で、5.3Kg/cm2になるよう添加した。次い
で、系内にトリエチルアルミニウム100mmolお
よび前記のTi触媒成分を1mmol添加し、70℃で
エチレン分圧5.3Kg/cm2を維持するよう、エチレ
ンを連続的に供給しながら2時間重合を行つた
後、イソブタン、未反応モノマーをフラツシユに
より除去し、共重合体22.3Kgを得た。得られた共
重合体はメルトインデツクス1.9、密度0.918g/
cm3、エチレン含有率96.0モル%、炭素原子1000個
当りのイソブチル基18.6個、沸騰n−ヘプタン不
溶分19重量%、常温p−キシレン可溶分23重量%
であつた。該共重合体に耐熱安定剤を配合後溶融
押出してペレツト化した後、実施例2及び比較例
1の4−メチル−1−ペンテン共重合体の代わり
に本共重合体を用い、以下実施例2、比較例1と
同様に行つた。結果を第5表に示す。
[Table] Comparative examples 13, 14 Magnesium chloride 2Kg and titanium tetrachloride 0.4Kg
and were co-pulverized for 24 hours using a vibration mill with an internal volume of 100 to obtain a Ti catalyst. Next, 65 pieces of isobutane and 35 pieces of 4-methyl-1-pentene were put into an autoclave with an internal volume of 200 mm, hydrogen was added to the 180N system, and the temperature of the system was raised to 70°C, and 5.3 kg of ethylene was added at partial pressure. / cm2 . Next, 100 mmol of triethylaluminum and 1 mmol of the Ti catalyst component described above were added to the system, and polymerization was carried out for 2 hours while continuously supplying ethylene to maintain an ethylene partial pressure of 5.3 Kg/cm 2 at 70°C. , isobutane, and unreacted monomers were removed by flashing to obtain 22.3 kg of copolymer. The obtained copolymer had a melt index of 1.9 and a density of 0.918 g/
cm3 , ethylene content 96.0 mol%, 18.6 isobutyl groups per 1000 carbon atoms, boiling n-heptane insolubles 19% by weight, room temperature p-xylene solubles 23% by weight
It was hot. After blending a heat-resistant stabilizer with the copolymer and melt-extruding it into pellets, this copolymer was used in place of the 4-methyl-1-pentene copolymer of Example 2 and Comparative Example 1, and the following examples were prepared. 2. The same procedure as in Comparative Example 1 was carried out. The results are shown in Table 5.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 炭化水素不溶性の固体担体に担持されたチタ
ン系固体触媒と有機アルミニウム化合物とからな
る触媒を用い、共重合体の融点以上の温度で重合
して得られる、メルトインデツクス(190℃)0.1
ないし20、密度0.910ないし0.940g/cm2、エチレ
ン含有率99.5ないし90モル%、常温p−キシレン
可溶分(A)が0.1ないし20重量%で、かつ沸騰n−
ヘプタン不溶液(B)が10ないし50重量%で、しかも
(A)+(B)が20ないし60重量%のエチレンと炭素数5
ないし10のα−オレフインとのランダム共重合体
99ないし60重量部と、高圧法ポリエチレン1ない
し40重量部とからなるポリオレフイン組成物。
1 Melt index (190°C) 0.1 obtained by polymerizing at a temperature higher than the melting point of the copolymer using a catalyst consisting of a titanium-based solid catalyst and an organoaluminum compound supported on a hydrocarbon-insoluble solid support.
to 20, density 0.910 to 0.940 g/cm 2 , ethylene content 99.5 to 90 mol%, normal temperature p-xylene soluble content (A) 0.1 to 20% by weight, and boiling n-
Heptane insoluble solution (B) is 10 to 50% by weight, and
(A) + (B) is 20 to 60% by weight of ethylene and carbon number is 5
Random copolymer with 1 to 10 α-olefins
A polyolefin composition comprising 99 to 60 parts by weight of high-pressure polyethylene and 1 to 40 parts by weight.
JP3996477A 1977-04-09 1977-04-09 Polyolefin composition Granted JPS53125452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3996477A JPS53125452A (en) 1977-04-09 1977-04-09 Polyolefin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3996477A JPS53125452A (en) 1977-04-09 1977-04-09 Polyolefin composition

Publications (2)

Publication Number Publication Date
JPS53125452A JPS53125452A (en) 1978-11-01
JPS623177B2 true JPS623177B2 (en) 1987-01-23

Family

ID=12567634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3996477A Granted JPS53125452A (en) 1977-04-09 1977-04-09 Polyolefin composition

Country Status (1)

Country Link
JP (1) JPS53125452A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008001314T5 (en) 2007-05-18 2010-04-22 Sumitomo Chemical Company, Limited Ethylene-based polymer composition and film
DE112008001313T5 (en) 2007-05-18 2010-04-22 Sumitomo Chemical Co., Ltd. Ethylene-based polymer composition and film
DE112009002246T5 (en) 2008-09-19 2011-07-28 Sumitomo Chemical Company, Limited Ethylene-based resin and film

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152853A (en) * 1980-04-30 1981-11-26 Nippon Oil Co Ltd Polyethylene resin composition
JPS5734145A (en) * 1980-08-07 1982-02-24 Mitsui Petrochem Ind Ltd Ethylene-alpha-olefin copolymer composition
US4339507A (en) * 1980-11-26 1982-07-13 Union Carbide Corporation Linear low density ethylene hydrocarbon copolymer containing composition for extrusion coating
JPS57123053A (en) * 1981-01-23 1982-07-31 Mitsui Petrochemical Ind Composite film
JPS57128729A (en) * 1981-02-02 1982-08-10 Sekisui Chem Co Ltd Olefinic resin composition
JPS57174329A (en) * 1981-04-21 1982-10-27 Du Pont Mitsui Polychem Co Ltd Resin composition for extrusion molding
JPS581558A (en) * 1981-06-26 1983-01-06 旭化成株式会社 Laminated film
JPS58120654A (en) * 1982-01-13 1983-07-18 Mitsui Petrochem Ind Ltd Ethylene-alpha-olefin copolymer composition
JPS58173653A (en) * 1982-04-07 1983-10-12 富士写真フイルム株式会社 Packing material for photosensitive substance
ZA832777B (en) 1982-04-27 1984-11-28 Bp Chem Int Ltd Polyethylene blend and film
FR2528055B1 (en) * 1982-06-03 1986-01-24 Charbonnages Ste Chimique COMPOSITIONS OF RADICAL POLYETHYLENE AND ETHYLENE / A-OLEFIN COPOLYMERS AND THEIR APPLICATION TO THE MANUFACTURE OF FILMS
FR2528054B1 (en) * 1982-06-03 1986-05-16 Charbonnages Ste Chimique COMPOSITIONS OF ETHYLENE / A-OLEFIN COPOLYMERS AND RADICAL POLYETHYLENE AND THEIR APPLICATION TO THE MANUFACTURE OF FILMS
JPS58216061A (en) * 1982-06-07 1983-12-15 テルモ株式会社 Medical container
JPS59149941A (en) * 1983-02-15 1984-08-28 Sumitomo Chem Co Ltd Resin composition for inflation film
JPS6032625A (en) * 1983-08-01 1985-02-19 Keiwa Shoko Kk Manufacture of linear low-density polyethylene extruded laminate base sheet
JPS6067546A (en) * 1983-09-26 1985-04-17 Toyo Soda Mfg Co Ltd Polyethylene composition for extrusion coating
SE450756B (en) * 1983-10-05 1987-07-27 Tetra Pak Int PACKAGING Laminate INCLUDING A PAPER BEARER, AN ALUMINUM LAYER AND LAYER OF THE LAYER DENSITY POLYETTE
JPH0614952B2 (en) * 1985-12-04 1994-03-02 株式会社新素材総合研究所 Medical liquid container
JP2567248B2 (en) * 1987-08-10 1996-12-25 住友化学工業株式会社 Resin composition for film molding
JP2978498B2 (en) * 1988-12-03 1999-11-15 昭和電工株式会社 Medical bag
EP0461848B1 (en) * 1990-06-12 1996-04-10 Mitsui Petrochemical Industries, Ltd. Ethylene-pentene-1 copolymer compositions and their use
US5378764A (en) * 1992-10-08 1995-01-03 Phillips Petroleum Company Polyethylene blends
FI101546B (en) * 1994-12-16 1998-07-15 Borealis Polymers Oy Polyeteenikompositio
SG97919A1 (en) 1999-08-31 2003-08-20 Sumitomo Chemical Co Ethylene-alpha-olefin copolymer and polyethylene composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008001314T5 (en) 2007-05-18 2010-04-22 Sumitomo Chemical Company, Limited Ethylene-based polymer composition and film
DE112008001313T5 (en) 2007-05-18 2010-04-22 Sumitomo Chemical Co., Ltd. Ethylene-based polymer composition and film
DE112009002246T5 (en) 2008-09-19 2011-07-28 Sumitomo Chemical Company, Limited Ethylene-based resin and film

Also Published As

Publication number Publication date
JPS53125452A (en) 1978-11-01

Similar Documents

Publication Publication Date Title
JPS623177B2 (en)
JP3113549B2 (en) Extruded films from in situ blends of ethylene copolymers
JP4805430B2 (en) Method for producing a composition comprising an ethylene polymer
US4304890A (en) Method for producing propylene copolymers using a catalyst activated prior to copolymerization
CA2158729C (en) Highly processable polymeric compositions based on lldpe
JPS6210532B2 (en)
JP2022505078A (en) Olefin polymerization catalyst
US4511704A (en) Process for producing polyolefin
JP3072031B2 (en) Extruded films from in situ blends of ethylene copolymers
JPH0448804B2 (en)
JP2022505072A (en) Olefin polymer
EP0057352B1 (en) Process for producing polyolefin
US4308361A (en) Propylene copolymers
CA2277259C (en) Heavy duty packaging film
JPS647096B2 (en)
JPH0366341B2 (en)
JP3290293B2 (en) Polypropylene resin and stretched film
JPS61213244A (en) Packaging film
JP3610377B2 (en) Medical container comprising a resin composition for blow molding
JPS631327B2 (en)
JPS5922946A (en) Ethylene-alpha-olefin copolymer type resin composition of high quality for casting film and preparation thereof
JPS6259129B2 (en)
CN115232236B (en) Propylene-based copolymer, preparation method and application thereof, and polypropylene composition
JPH0377806B2 (en)
JP4774142B2 (en) Polyolefin resin