JPH07300337A - Crystalline low-melting glass for cover coat for thick-film electronic circuit - Google Patents

Crystalline low-melting glass for cover coat for thick-film electronic circuit

Info

Publication number
JPH07300337A
JPH07300337A JP4001601A JP160192A JPH07300337A JP H07300337 A JPH07300337 A JP H07300337A JP 4001601 A JP4001601 A JP 4001601A JP 160192 A JP160192 A JP 160192A JP H07300337 A JPH07300337 A JP H07300337A
Authority
JP
Japan
Prior art keywords
weight
glass
electronic circuit
melting glass
film electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4001601A
Other languages
Japanese (ja)
Other versions
JP3105979B2 (en
Inventor
Yoshinori Okamoto
珍範 岡本
Motohiko Tsuchiya
元彦 土屋
Seiichi Nakagawa
聖一 中川
Ii Teiraa Barii
イー テイラー バリー
Dee Sumisu Jieroomu
デー スミス ジェローム
Takashi Nagasaka
長坂  崇
Yuji Otani
祐司 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont KK
Original Assignee
Du Pont KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont KK filed Critical Du Pont KK
Priority to JP04001601A priority Critical patent/JP3105979B2/en
Priority to DE69300110T priority patent/DE69300110T2/en
Priority to KR1019930000111A priority patent/KR950014693B1/en
Publication of JPH07300337A publication Critical patent/JPH07300337A/en
Application granted granted Critical
Publication of JP3105979B2 publication Critical patent/JP3105979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/253Silica-free oxide glass compositions containing germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • C03C3/072Glass compositions containing silica with less than 40% silica by weight containing lead containing boron
    • C03C3/074Glass compositions containing silica with less than 40% silica by weight containing lead containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/142Silica-free oxide glass compositions containing boron containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/01Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate comprising only passive thin-film or thick-film elements formed on a common insulating substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain the subject low-melting glass suppressed in crystallization and devitriflcation and capable of suppressing the change in the electrical resistance of the thick-film electronic circuits covered therewith, by incorporating PbZn2B2O6 crystalline low-melting glass with GeO2 or its mixture with SiO2. CONSTITUTION:This crystalline low-melting glass comprises 31-49wt.% of PbO, 35-50wt.% of ZnO, 15-20wt.% of B2O3, and 3-10-wt.% of GeO2 or 2-10wt.% of GeO2 plus SiO2. This glass may be further incorporated with <=3wt.% of SiO2 and Cr2O3. This low-melting glass can prevent developing microcracks in a print baking resistor due to the difference in thermal expansion coefficient between the resistor and substrate, resulting in resolving the problem of change in the electrical resistance of the aforementioned resistor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、厚膜電子回路のカバー
コートに適した結晶性低融点ガラスに関するものであ
り、さらに詳しくは、厚膜電子回路の抵抗値の変化を抑
制するカバーコート用結晶性低融点ガラスに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystalline low melting point glass suitable for a cover coat of a thick film electronic circuit, and more particularly to a cover coat for suppressing a change in resistance value of the thick film electronic circuit. The present invention relates to a crystalline low melting point glass.

【0002】[0002]

【従来の技術】周知のように、厚膜電子回路において
は、セラミック製の基板上に導体ペーストや抵抗体等を
印刷し、これを焼成した後、基板上の電子回路を保護す
るために基板表面にガラスカバーを形成する。
2. Description of the Related Art As is well known, in thick film electronic circuits, a conductor paste, a resistor, etc. are printed on a ceramic substrate, and after firing this, the substrate is used to protect the electronic circuit on the substrate. Form a glass cover on the surface.

【0003】従来、このような電子回路のカバーコート
用ガラスとしては、PbO−B2 3 系の非晶質低融点
ガラスが用いられてきた。
Conventionally, a cover coat for such an electronic circuit is used.
Glass for use is PbO-B2 O 3 Amorphous low melting point of the system
Glass has been used.

【0004】しかし、近年、厚膜電子回路は高密度化の
傾向にあるため、各抵抗体や導体も小さくなりつつあ
る。その為、基板の熱膨張率と印刷焼成抵抗体の熱膨張
率との差により印刷焼成抵抗体中に応力が発生し、焼成
した後、抵抗体にマイクロクラックを生じ、その結果、
抵抗体の抵抗値が変化してしまうという問題が生じてい
る。
However, in recent years, thick film electronic circuits have tended to have higher densities, so that the resistors and conductors are becoming smaller. Therefore, a stress is generated in the printed firing resistor due to the difference between the coefficient of thermal expansion of the substrate and the coefficient of thermal expansion of the printed firing resistor, and after firing, microcracks occur in the resistor, and as a result,
There is a problem that the resistance value of the resistor changes.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、厚膜
電子回路の抵抗値の変化を抑制することを特徴とする厚
膜電子回路のカバーコートに適したガラスを提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a glass suitable for a cover coat of a thick film electronic circuit, which is characterized by suppressing a change in resistance value of the thick film electronic circuit.

【0006】[0006]

【課題を解決するための手段】本発明では、前記課題を
解決するために、PbO 31〜49重量%、ZnO
35〜50重量%、B23 15〜20重量%を
有し、さらにGeO2単独で3〜10重量%もしくはG
eO2 とSiO2 の混合系で2〜10重量%を含む組成
を主成分とする結晶性低融点ガラスを用いた。
According to the present invention, in order to solve the above-mentioned problems, 31 to 49% by weight of PbO, ZnO
35 to 50% by weight, B 2 O 3 15 to 20% by weight, and GeO 2 alone 3 to 10% by weight or G
A crystalline low melting point glass whose main component is a composition containing 2 to 10% by weight of a mixed system of eO 2 and SiO 2 .

【0007】PbZn226 の結晶相を持つ低融点
ガラスを得るために必要な酸化物組成は、PbO:4
8.98重量%、ZnO:35.71重量%、B2
3 :15.30重量%となる。このような結晶相を得る
ためには、本質的に上記組成比が望ましい。しかし、前
記三元素だけでは、カバーコートガラスとして用いた際
に、ガラスの失透が起こり、下部の抵抗体のレーザトリ
ム時に支障を生じる。この失透を抑制するため、ガラス
ネットワークを強化して、過度の結晶化を抑制する元素
が必要となる。
The oxide composition required for obtaining a low melting point glass having a crystal phase of PbZn 2 B 2 O 6 is PbO: 4.
8.98 wt%, ZnO: 35.71 wt%, B 2 O
3 : It becomes 15.30% by weight. In order to obtain such a crystal phase, the above composition ratio is essentially desirable. However, when only the above three elements are used, devitrification of the glass occurs when it is used as a cover coat glass, and an obstacle occurs during laser trimming of the resistor below. In order to suppress this devitrification, an element that strengthens the glass network and suppresses excessive crystallization is required.

【0008】これに対して、本発明では、GeO2 を用
いて結晶化ならびに失透を抑制することに成功した。ま
た、同様の効果をGeO2 とSiO2 の混合系において
も確認した。前記4元素(SiO2 とGeO2 の混合系
の場合は5元素)を主成分とし、必要に応じて、ガラス
の着色の為にCr23 等の顔料を添加し、耐水性の向
上のためにSnO2 等を添加する。また、一般に結晶化
ガラスの融点は、非晶質ガラスの融点に比べて高温度で
ある。しかし、PbO−ZnO−B23 −GeO2
のガラス粉末の結晶化速度を示差熱分析により測定し、
GeO2 の増加に伴う結晶化温度の上昇を観察したとこ
ろ、ガラス組成を本発明の組成に限定することにより5
00−600℃で焼成可能であることを見出した。
On the other hand, the present invention succeeded in suppressing crystallization and devitrification by using GeO 2 . The same effect was also confirmed in a mixed system of GeO 2 and SiO 2 . The above 4 elements (5 elements in the case of a mixed system of SiO 2 and GeO 2 ) are the main components, and if necessary, a pigment such as Cr 2 O 3 is added for coloring the glass to improve the water resistance. Therefore, SnO 2 or the like is added. Further, the melting point of crystallized glass is generally higher than the melting point of amorphous glass. However, the crystallization rate of the glass powder of PbO-ZnO-B 2 O 3 -GeO 2 system was measured by differential thermal analysis,
Observation of an increase in crystallization temperature with an increase in GeO 2 revealed that the glass composition was limited to the composition of the present invention.
It has been found that firing is possible at 00-600 ° C.

【0009】前記組成中のZnOは、ガラスの結晶化の
必須元素であるが、その反応性のため、ZnSnO3
Zn2 SnO4 のような結晶相も生成する。その結果、
目的とするPbZn226 結晶相を確実に得るため
には、計算値(35.71重量%)以上が必要となる。
しかし、50重量%付近より結晶化が極端に促進される
ので、35〜50重量%を使用範囲とする。
ZnO in the above composition is an essential element for crystallization of glass, but due to its reactivity, it also forms a crystalline phase such as ZnSnO 3 or Zn 2 SnO 4 . as a result,
The calculated value (35.71% by weight) or more is required to reliably obtain the desired PbZn 2 B 2 O 6 crystal phase.
However, since crystallization is extremely accelerated from around 50% by weight, the range of use is 35 to 50% by weight.

【0010】また、PbOは、ZnOがPbZn22
6 以外の結晶相にも使用されるため、計算値よりも少
ない量で使用可能である。ただし31重量%以下では、
ガラスの結晶化温度が高くなりすぎて好ましくない。
As for PbO, ZnO is PbZn 2 B 2
Since it is also used for a crystal phase other than O 6 , it can be used in an amount smaller than the calculated value. However, below 31% by weight,
The crystallization temperature of glass becomes too high, which is not preferable.

【0011】また、B23 は、ガラス中にあっても水
と容易に反応する為、耐湿性の向上のためには少ない方
が望ましい。しかし、融点を下げるフラックスとしても
作用するため、本発明のガラス使用温度範囲では15〜
20重量%が好ましい。
Further, since B 2 O 3 easily reacts with water even in the glass, it is desirable that the amount is small in order to improve the moisture resistance. However, since it also acts as a flux for lowering the melting point, it is 15 to 15 in the glass operating temperature range of the present invention.
20% by weight is preferred.

【0012】また、GeO2 は、結晶化抑制効果を持っ
ており、適正な結晶化度合、ならびに透明度を得るため
には3−10重量%の重量比が必要となる。この重量比
はモル数に換算すると、0.03mole−0.10m
oleに相当する(100gのガラスの場合)。そし
て、GeO2 とSiO2 の混合系においても、総量が同
モル数の範囲での使用が可能であり、これを重量%で示
すと、使用可能総量は2〜10重量%である。
GeO 2 has an effect of suppressing crystallization, and a weight ratio of 3 to 10% by weight is required to obtain an appropriate degree of crystallization and transparency. This weight ratio is 0.03 mole-0.10 m when converted to the number of moles.
Corresponds to ole (for 100 g of glass). Even in a mixed system of GeO 2 and SiO 2 , the total amount can be used within the range of the same number of moles. When this is expressed in weight%, the total usable amount is 2 to 10 weight%.

【0013】本発明にかかる厚膜電子回路のカバーコー
ト用ガラスを製造するに当たっては、各成分の原料を配
合してバッチとし、1000−1400℃で1−2時間
加熱、溶融し、得られた溶融ガラスを水砕した後、粉砕
機により平均粒径2μm程度に微紛砕して粉末ガラスと
した。得られた粉末ガラスを溶媒およびビヒクルと混練
し、ペースト状として厚膜電子回路にスクリーン印刷
し、乾燥後、500−600℃で焼成し、溶解,結晶化
させた。
In producing the glass for a cover coat of a thick film electronic circuit according to the present invention, raw materials of each component were blended into a batch, which was obtained by heating and melting at 1000-1400 ° C. for 1-2 hours. The molten glass was water-pulverized and then finely pulverized with a pulverizer to an average particle size of about 2 μm to obtain powder glass. The powder glass thus obtained was kneaded with a solvent and a vehicle, screen-printed as a paste on a thick film electronic circuit, dried and then baked at 500-600 ° C. for dissolution and crystallization.

【0014】[0014]

【作用】厚膜電子回路における抵抗値変化の抑制は、抵
抗体のマイクロクラックを防止することにより実現でき
る。非晶質ガラスに比べ、本発明の結晶化ガラスは熱膨
張率が小さいため、本発明の結晶化ガラスを用いて厚膜
電子回路をカバーすれば、基板の熱膨張により生ずる応
力の集中を抑制することができ、抵抗体のマイクロクラ
ックを防止することが可能となる。
The suppression of the resistance change in the thick film electronic circuit can be realized by preventing the microcracks of the resistor. Since the crystallized glass of the present invention has a smaller coefficient of thermal expansion than the amorphous glass, covering the thick film electronic circuit with the crystallized glass of the present invention suppresses the concentration of stress caused by the thermal expansion of the substrate. Therefore, it is possible to prevent the microcracks of the resistor.

【0015】[0015]

【実施例】【Example】

(結晶生成状態の観察)表1に示す12種の組成(実施
例1〜9、比較例1〜3)をもつ平均粒径2μmのガラ
ス粉末と、エチルセルロースとα−ターピネオールから
成る有機バインダーを混合、分散させたペーストを作成
し、Al23 基板(熱膨張係数約60×10-7-1
(50−350℃))上にスクリーン印刷した。そし
て、その乾燥片を500−600℃の焼成温度にて焼成
し、走査形電子顕微鏡にて結晶の生成状態を観察し、そ
の失透の有無を表1に示した。
(Observation of Crystal Formation State) Glass powder having an average particle diameter of 2 μm having 12 kinds of compositions shown in Table 1 (Examples 1 to 9 and Comparative Examples 1 to 3) and an organic binder composed of ethyl cellulose and α-terpineol were mixed. , A dispersed paste is prepared, and an Al 2 O 3 substrate (coefficient of thermal expansion of about 60 × 10 -7-1
(50-350 ° C)). Then, the dried pieces were fired at a firing temperature of 500 to 600 ° C., and the state of crystal formation was observed with a scanning electron microscope, and the presence or absence of devitrification is shown in Table 1.

【0016】(抵抗値の変化率測定)導体ペーストを印
刷、焼成したAl23 基板上に抵抗体を印刷、焼成し
た後、PbO 37.27重量%、B23 16.8
5重量%、ZnO 37.18重量%、SnO 2.8
3重量%、Cr23 1.10重量%、GeO2 1.
89重量%、SiO2 1.39重量%から本質的に成
るガラスペーストをスクリーン印刷し、試験片とした
(実施例2と同組成)。
(Measurement of Rate of Change of Resistance Value) After printing and firing a conductor paste on which an Al 2 O 3 substrate was printed and fired, 37.27% by weight of PbO and 16.8 of B 2 O 3 were added.
5% by weight, ZnO 37.18% by weight, SnO 2.8
3% by weight, Cr 2 O 3 1.10% by weight, GeO 2 1.
A glass paste essentially consisting of 89% by weight and 1.39% by weight of SiO 2 was screen-printed to give a test piece (same composition as in Example 2).

【0017】また、これと比較するために、PbO 6
0.4重量%、B23 11.4重量%、SiO2
18.2重量%から本質的に成るガラスペーストを用い
て同様に試験片を作成した(比較例4)。
For comparison with this, PbO 6
0.4% by weight, B 2 O 3 11.4% by weight, SiO 2
A test piece was likewise prepared with a glass paste consisting essentially of 18.2% by weight (Comparative Example 4).

【0018】抵抗体は、0.8×0.8mm、1.0×
1.0mm,2.0×2.0mmの3種類の大きさのも
のを、各測定抵抗値に対して各10個使用した。測定抵
抗値は、厚膜抵抗の一般的範囲である1.5Ωから1M
Ωまでとし、その間の値として、3.0Ω、10Ω、1
00Ω、1KΩ、10KΩ、100KΩを採用した。
The resistor is 0.8 × 0.8 mm, 1.0 ×
Ten pieces of three sizes of 1.0 mm and 2.0 × 2.0 mm were used for each measured resistance value. The measured resistance value is 1.5Ω which is a general range of thick film resistance to 1M.
Up to Ω, and values in between are 3.0Ω, 10Ω, 1
00Ω, 1KΩ, 10KΩ and 100KΩ were adopted.

【0019】それぞれの試験片を−40℃〜150℃の
冷熱サイクル中に1000サイクル放置し、抵抗値の変
化率を測定した。測定結果は、表2に示すように、抵抗
値の変化率が1%以上であった抵抗体の数で表した。
Each test piece was allowed to stand for 1000 cycles during a cooling / heating cycle of -40 ° C. to 150 ° C., and the rate of change in resistance value was measured. As shown in Table 2, the measurement results are represented by the number of resistors whose resistance change rate was 1% or more.

【0020】同様に作成した試験片を、150℃の条件
下に1000時間放置した場合と、85℃、湿度85%
の条件下に1000時間放置した場合についても抵抗値
の変化率を測定し、それぞれ表3,表4に示した。
A test piece prepared in the same manner was left under the condition of 150 ° C. for 1000 hours and at 85 ° C. and a humidity of 85%.
The rate of change in resistance value was measured also when the sample was left for 1000 hours under the conditions described in Table 3 and Table 4, respectively.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【発明の効果】本発明の結晶性低融点ガラスを厚膜電子
回路のカバーガラスとして用いることによって、厚膜電
子回路の抵抗値の変化を抑制することができるようにな
り、厚膜電子回路の高密度化に対応できる。
By using the crystalline low melting point glass of the present invention as a cover glass for a thick film electronic circuit, it becomes possible to suppress a change in the resistance value of the thick film electronic circuit. It can handle high density.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中川 聖一 神奈川県横浜市港北区新吉田町4997 デュ ポン ジャパン リミテッド 中央技術研 究所内 (72)発明者 バリー イー テイラー 神奈川県横浜市港北区新吉田町4997 デュ ポン ジャパン リミテッド 中央技術研 究所内 (72)発明者 ジェローム デー スミス 神奈川県横浜市港北区新吉田町4997 デュ ポン ジャパン リミテッド 中央技術研 究所内 (72)発明者 長坂 崇 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 大谷 祐司 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seiichi Nakagawa 4997 Shinyoshida-cho, Kohoku-ku, Yokohama-shi, Kanagawa Prefecture DuPont Japan Limited Central Research Institute (72) Inventor Barry E. Taylor Shinyoshida, Kohoku-ku, Yokohama-shi, Kanagawa Prefecture Machi 4997 DuPont Japan Limited Central Technical Research Laboratory (72) Inventor Jerome Day Smith 4997 Shinyoshida-cho, Kohoku Ward, Yokohama City, Kanagawa Prefecture 4997 DuPont Japan Limited Central Technical Research Laboratory (72) Inventor Takashi Nagasaka Showa, Kariya City, Aichi Prefecture 1-chome, Nihon Denso Co., Ltd. (72) Inventor Yuji Otani 1-1, Showa-cho, Kariya city, Aichi Nihon Denso Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 PbO 31〜49重量% ZnO 35〜50重量% B23 15〜20重量% GeO2 3〜10重量% を主成分とする厚膜電子回路のカバーコート用結晶性低
融点ガラス。
1. A crystalline low melting point for a cover coat of a thick film electronic circuit, which is mainly composed of PbO 31 to 49% by weight ZnO 35 to 50% by weight B 2 O 3 15 to 20% by weight GeO 2 3 to 10% by weight. Glass.
【請求項2】 PbO 31〜49重量% ZnO 35〜50重量% B23 15〜20重量% GeO2 とSiO2 との混合物 2〜10重量% を主成分とする厚膜電子回路のカバーコート用結晶性低
融点ガラス。
2. A cover for a thick film electronic circuit containing PbO 31-49% by weight ZnO 35-50% by weight B 2 O 3 15-20% by weight a mixture of GeO 2 and SiO 2 2-10% by weight as a main component. Crystalline low melting point glass for coating.
【請求項3】 さらに、3重量%以下のSnO2 と3重
量%以下のCr23 とを含有することを特徴とする請
求項1または2に記載の厚膜電子回路のカバーコート用
結晶性低融点ガラス。
3. The crystal for cover coat of a thick film electronic circuit according to claim 1, further comprising 3 wt% or less of SnO 2 and 3 wt% or less of Cr 2 O 3. Low melting point glass.
JP04001601A 1992-01-08 1992-01-08 Crystalline low melting point glass for cover coating of thick film electronic circuits Expired - Fee Related JP3105979B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP04001601A JP3105979B2 (en) 1992-01-08 1992-01-08 Crystalline low melting point glass for cover coating of thick film electronic circuits
DE69300110T DE69300110T2 (en) 1992-01-08 1993-01-06 Partially crystallizable low-melting glass composition.
KR1019930000111A KR950014693B1 (en) 1992-01-08 1993-01-07 Partially crystallizable low melting glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04001601A JP3105979B2 (en) 1992-01-08 1992-01-08 Crystalline low melting point glass for cover coating of thick film electronic circuits

Publications (2)

Publication Number Publication Date
JPH07300337A true JPH07300337A (en) 1995-11-14
JP3105979B2 JP3105979B2 (en) 2000-11-06

Family

ID=11506024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04001601A Expired - Fee Related JP3105979B2 (en) 1992-01-08 1992-01-08 Crystalline low melting point glass for cover coating of thick film electronic circuits

Country Status (3)

Country Link
JP (1) JP3105979B2 (en)
KR (1) KR950014693B1 (en)
DE (1) DE69300110T2 (en)

Also Published As

Publication number Publication date
KR930016361A (en) 1993-08-26
KR950014693B1 (en) 1995-12-13
DE69300110T2 (en) 1995-10-26
JP3105979B2 (en) 2000-11-06
DE69300110D1 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
EP0095775B1 (en) Compositions for conductive resistor phases and methods for their preparation including a method for doping tin oxide
KR100992976B1 (en) Electrnic device having lead and cadmium free electronic overglaze applied thereto
US5051381A (en) Powdery coating glass material, coating glass paste using the same and coating glass composition prepared thereby
US8133413B2 (en) Resistor compositions using a Cu-containing glass frit
JPH08253342A (en) Thick film paste composition containing no cadmium and lead
JPH0567576B2 (en)
JPS6339082B2 (en)
US4175061A (en) Method of manufacturing resistor paste
EP0132810A1 (en) Borosilicate glass composition
US4537703A (en) Borosilicate glass compositions
JPH05175005A (en) Thick-film resistor composition
KR870001760B1 (en) Borosilicate glass composition
JPH07300337A (en) Crystalline low-melting glass for cover coat for thick-film electronic circuit
US4613539A (en) Method for doping tin oxide
JPH07291656A (en) Insulating glass composition
US5387559A (en) Resistive paste
US5494864A (en) Resistive paste
JPS6310104B2 (en)
US5643841A (en) Resistive paste
JPH0645102A (en) Thick-film resistor composition
JP3079578B2 (en) Glass composition for coating
JP3192417B2 (en) Composition for coating chip resistors
JPH03183640A (en) Resistor paste and ceramic substrate
JPH0740521B2 (en) Method for forming glass layer for resistor protection
JPH0416420B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070901

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees