JPH0729974A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0729974A
JPH0729974A JP16913593A JP16913593A JPH0729974A JP H0729974 A JPH0729974 A JP H0729974A JP 16913593 A JP16913593 A JP 16913593A JP 16913593 A JP16913593 A JP 16913593A JP H0729974 A JPH0729974 A JP H0729974A
Authority
JP
Japan
Prior art keywords
silicon substrate
substrate
region
semiconductor device
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16913593A
Other languages
Japanese (ja)
Other versions
JP3401840B2 (en
Inventor
Hayashi Nonoyama
林 野々山
Harutsugu Fukumoto
晴継 福本
Keimei Himi
啓明 氷見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP16913593A priority Critical patent/JP3401840B2/en
Publication of JPH0729974A publication Critical patent/JPH0729974A/en
Application granted granted Critical
Publication of JP3401840B2 publication Critical patent/JP3401840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To provide a protective diode which can resist large surge such as load dump and to eliminate the need for change of a size thereof. CONSTITUTION:An N<->-silicon substrate 1 and a P<->-silicon substrate 2 wherein specified treatment is carried out are laminated, and a power element 10 and a control circuit 24 are formed on a surface of the N<->-silicon substrate 1. The silicon substrate 1 is divided into regions 10, 14, 19 which are subjected to dielectric isolation by the use of an oxide film 3 and a region 9 of direct junction. A PN junction 5 which becomes a Zener diode is formed in the silicon substrate 2 of the region 9 of direct junction. A surface electrode 6 of the direct junction region 9 of the substrate 1 and a rear electrode 7 of the substrate 2 become a cathode electrode and an anode electrode of a diode, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置に関し、特
に高耐圧デバイスと低耐圧デバイスとを集積化した絶縁
分離基板を用いた半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device using an insulating separation substrate in which a high breakdown voltage device and a low breakdown voltage device are integrated.

【0002】[0002]

【従来技術】従来、モータやソレノイド等の駆動に使わ
れるパワーICとして、図2に示すように、各種のサー
ジに対してIC部を保護する保護ダイオードを有する回
路が知られている。この回路は制御回路32にパワーM
OS33が接続され、パワーMOS33のソースとGN
D37の間に負荷34を接続したハイサイドスイッチの
構成となっている。パワーMOS33のソース・ドレイ
ン間には寄生のダイオード36が出来るが、このダイオ
ードの耐圧は通常60V以上と高く、このダイオードで
は耐圧が高々30Vの制御回路を保護することができな
い。そこで、ツェナーダイオード35をVDD−GND間
に接続するようにしていた。従来はこのダイオードを半
導体チップ表面に形成していたが、チップ表面に形成す
るとチップサイズが大きくなりコストが増加するという
問題点があった。
2. Description of the Related Art Conventionally, as a power IC used for driving a motor, a solenoid, etc., as shown in FIG. 2, a circuit having a protection diode for protecting the IC portion against various surges is known. This circuit uses a power M for the control circuit 32.
OS33 is connected, the source of power MOS33 and GN
The configuration is a high-side switch in which the load 34 is connected between D37. A parasitic diode 36 is formed between the source and drain of the power MOS 33, but the withstand voltage of this diode is usually as high as 60 V or higher, and this diode cannot protect a control circuit with a withstand voltage of 30 V at most. Therefore, the Zener diode 35 is connected between V DD and GND. Conventionally, this diode is formed on the surface of a semiconductor chip, but if it is formed on the surface of the chip, there is a problem that the chip size increases and the cost increases.

【0003】そこで、上記問題点を解決する方法とし
て、特願平4−79076号に示す構成が挙げられる。
これは図15に示すように、P型シリコン基板21上に
絶縁分離層11を成膜し、絶縁分離層11を成膜しない
部分には、N型多結晶層13を形成するようにして、絶
縁分離層11によりP型シリコン基板21と絶縁分離さ
れたバイポーラトランジスタ8を形成し、絶縁分離層1
1のない部分に保護ダイオードを形成したものでる。こ
の構成によれば、縦方向に保護ダイオードを形成し、そ
のブレイクダウンをP型シリコン基板21の不純物濃度
により設定することができるため、保護ダイオードをそ
の寸法を大きくすることなく形成できる。
Therefore, as a method for solving the above problems, there is a configuration disclosed in Japanese Patent Application No. 4-79076.
As shown in FIG. 15, the insulating separation layer 11 is formed on the P-type silicon substrate 21, and the N-type polycrystalline layer 13 is formed in the portion where the insulating separation layer 11 is not formed. A bipolar transistor 8 is formed so as to be insulated and separated from the P-type silicon substrate 21 by the insulating separation layer 11.
A protection diode is formed in the part where there is no 1. According to this structure, since the protection diode is formed in the vertical direction and the breakdown thereof can be set by the impurity concentration of the P-type silicon substrate 21, the protection diode can be formed without increasing its size.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、サージ
でも特に自動車用途ではロードダンプといわれる50〜
100Vの電源サージに対しては、比較的大きな電流を
流す必要からPN接合面積が数mm2 以上の比較的大き
なダイオードが必要となる。従って、上述の特願平4−
79076号に示す構成では、PN接合面積を数mm2
以上確保しようとすると、保護ダイオードの大きさをあ
る程度確保するためにその基板上での占有面積を大きく
取らなければならず、半導体装置としての大きさが大き
くなってしまうといった問題が発生する。
However, even in the case of a surge, it is said to be 50 to 50 which is called a load dump especially for automobile applications.
For a power surge of 100 V, it is necessary to pass a relatively large current, so a relatively large diode having a PN junction area of several mm 2 or more is required. Therefore, the above-mentioned Japanese Patent Application No. 4-
In the configuration shown in No. 79076, the PN junction area is several mm 2
In order to secure the size as described above, in order to secure the size of the protection diode to some extent, a large occupied area on the substrate must be taken, which causes a problem that the size of the semiconductor device becomes large.

【0005】従って、本発明は上記問題点に鑑み、ロー
ドダンプといった大きなサージにも耐えうるような保護
ダイオードを有し、且つその大きさを変える必要のない
半導体装置を提供することを目的とする。
Therefore, in view of the above problems, it is an object of the present invention to provide a semiconductor device which has a protection diode capable of withstanding a large surge such as a load dump and does not need to change its size. .

【0006】[0006]

【課題を解決するための手段】上記問題点を解決するた
めになされた本発明による半導体装置は、一導電型を有
する半導体基板と、該半導体基板上に形成され、絶縁分
離層により底部および側壁部を囲われた絶縁分離領域
と、前記半導体基板上に形成され、その底部が前記絶縁
分離領域の底部の絶縁分離層よりも下方に形成された逆
導電型の半導体層とを有することを特徴としている。
SUMMARY OF THE INVENTION A semiconductor device according to the present invention, which has been made to solve the above problems, has a semiconductor substrate having one conductivity type, a bottom portion and a sidewall formed by an insulating separation layer. And an insulating isolation region surrounded by a portion, and a semiconductor layer of a reverse conductivity type formed on the semiconductor substrate, the bottom of which is formed below the insulating isolation layer at the bottom of the insulating isolation region. I am trying.

【0007】[0007]

【作用】本発明によると、一導電型を有する半導体基板
上に形成され、前記半導体基板とは逆導電型を有する半
導体層の底部を、前記半導体基板上に形成された絶縁分
離領域の底部の絶縁分離層よりも下方に形成するように
しているため、前記一導電型を有する半導体基板と前記
逆導電型を、有する半導体層から形成される保護ダイオ
ードのPN接合面積を該半導体層の前記半導体基板上で
の占有領域を広げることなく該半導体層の底部を広げる
のみで任意に大きくすることができる。
According to the present invention, the bottom of the semiconductor layer formed on the semiconductor substrate having one conductivity type and having the conductivity type opposite to that of the semiconductor substrate is formed on the bottom of the insulating isolation region formed on the semiconductor substrate. Since it is formed below the insulating separation layer, the PN junction area of the protection diode formed from the semiconductor substrate having the one conductivity type and the semiconductor layer having the opposite conductivity type has the PN junction area of the semiconductor layer of the semiconductor layer. It can be arbitrarily enlarged by simply expanding the bottom of the semiconductor layer without expanding the occupied area on the substrate.

【0008】[0008]

【実施例】本発明の第1の実施例を図1に示す。所定の
処理を施したN- 型シリコン基板1とP- 型シリコン基
板2とを貼り合わせ、シリコン基板1の表面上にパワー
素子10や制御回路24を形成する。半導体基板1は酸
化膜3で絶縁分離された領域10、14、19と、直接
接合の領域9とに分かれている。高耐圧のパワー部10
と低耐圧の制御回路部24は、各々酸化膜3で絶縁分離
されている。また、半導体基板2には図中に模式的に描
かれたツェナーダイオードとなるPN接合5が形成さ
れ、基板1の直接接合領域9の表面電極6と基板2の裏
面電極7が各々ダイオードのカソード電極、アノード電
極となる。
FIG. 1 shows a first embodiment of the present invention. The N type silicon substrate 1 and the P type silicon substrate 2 which have been subjected to a predetermined process are bonded to each other, and the power element 10 and the control circuit 24 are formed on the surface of the silicon substrate 1. The semiconductor substrate 1 is divided into regions 10, 14, 19 which are insulated and separated by the oxide film 3 and regions 9 of direct junction. High breakdown voltage power unit 10
The low breakdown voltage control circuit section 24 is insulated and isolated by the oxide film 3. Further, a PN junction 5 which is a Zener diode schematically drawn in the figure is formed on the semiconductor substrate 2, and a front surface electrode 6 of a direct junction region 9 of the substrate 1 and a back surface electrode 7 of the substrate 2 are respectively cathodes of the diode. It becomes an electrode and an anode electrode.

【0009】以上のような構造とする事でPN接合5
は、酸化膜3で分離された領域の下にも形成できるた
め、比較的大きな面積のPN接合を形成できる。さら
に、より大きなサージに対しても、酸化膜3下に形成す
るN+ 層領域を大きくするのみで任意にPN接合面積を
大きくすることができるため、直接接合部の領域を大き
くする必要はなく、半導体装置としての大きさを大きく
する必要がなくなる。
With the above structure, the PN junction 5
Can be formed under the region separated by the oxide film 3, so that a PN junction having a relatively large area can be formed. Further, even for a larger surge, the PN junction area can be arbitrarily increased only by increasing the N + layer region formed under the oxide film 3, so that it is not necessary to increase the region of the direct junction portion. Therefore, it is not necessary to increase the size of the semiconductor device.

【0010】以下に、第一実施例の製造工程を図3〜1
1を用いて説明する。まず、図3に示すように、N-
のシリコン基板1を鏡面研磨し、化学エッチングあるい
は反応性イオンエッチング(以下、RIEという)によ
り凸部6aを形成する。次に、図4に示すように、レジ
スト等のマスクにより凸部6aおよび将来DMOS領域
となる部分11aにイオン注入しN+ 領域を形成する。
The manufacturing process of the first embodiment will be described below with reference to FIGS.
This will be described using 1. First, as shown in FIG. 3, the N type silicon substrate 1 is mirror-polished, and a convex portion 6a is formed by chemical etching or reactive ion etching (hereinafter referred to as RIE). Next, as shown in FIG. 4, ions are implanted into the convex portion 6a and a portion 11a which will be a DMOS region in the future by using a mask such as a resist to form an N + region.

【0011】次に、図5に示すように、酸素導入溝1a
をダイシングあるいは化学エッチングあるいはRIEに
よって形成する。なお、この酸素導入溝1aはシリコン
基板1の端部に連通するように形成されている。次に、
図6に示すように、P- 型シリコン基板2の鏡面研磨し
た貼り合わせ面側に部分的にイオン注入しN+ 層を形成
する。さらに、その反対側の面に全面にイオン注入しP
+ 層を形成する。
Next, as shown in FIG. 5, the oxygen introducing groove 1a is formed.
Are formed by dicing, chemical etching or RIE. The oxygen introducing groove 1a is formed so as to communicate with the end of the silicon substrate 1. next,
As shown in FIG. 6, ions are partially implanted into the mirror-polished bonding surface side of the P type silicon substrate 2 to form an N + layer. Further, by ion-implanting the entire surface on the opposite surface, P
+ Form a layer.

【0012】次に、図7に示すように、シリコン基板1
およびシリコン基板2のそれぞれN + 層を形成した面を
貼り合わせて接合させる。このとき、凸部6aは、シリ
コン基板2に接触することになる。その後、酸素導入溝
1aより酸素を導入し、溝壁に酸化膜3を形成する。こ
のとき、溝は酸化膜によりすべて埋設されず、空洞4a
が残るようにする。
Next, as shown in FIG. 7, the silicon substrate 1
And N of the silicon substrate 2 respectively +The layered surface
Laminate and bond. At this time, the convex portion 6a is
It comes into contact with the control board 2. After that, oxygen introduction groove
Oxygen is introduced from 1a to form the oxide film 3 on the groove wall. This
At this time, the groove is not completely filled with the oxide film and the cavity 4a
To remain.

【0013】次に、図9に示すように、基板1側より研
削・研磨して空洞4aを露出させる。次に、図10に示
すように多結晶シリコン4をLPCVD法などにより堆
積し、空洞4aを埋め込む。その後、図11に示すよう
に余分な多結晶シリコン4を研磨する。
Next, as shown in FIG. 9, the cavity 4a is exposed by grinding and polishing from the substrate 1 side. Next, as shown in FIG. 10, polycrystalline silicon 4 is deposited by the LPCVD method or the like to fill the cavity 4a. Thereafter, as shown in FIG. 11, excess polycrystalline silicon 4 is polished.

【0014】そして、酸化膜3により絶縁分離された領
域にDMOSやその他制御部を形成して図1に示すよう
な素子が形成される。第1の実施例において、半導体基
板2に形成されたPN接合をフォトダイオードとして利
用することもできる。この場合には裏面電極7の一部
に、発光ダイオード等から放射される光が通過できるよ
うに窓を開ける必要がある。
Then, a DMOS or other control section is formed in a region insulated and separated by the oxide film 3 to form an element as shown in FIG. In the first embodiment, the PN junction formed on the semiconductor substrate 2 can also be used as a photodiode. In this case, it is necessary to open a window in a part of the back surface electrode 7 so that light emitted from a light emitting diode or the like can pass through.

【0015】また、半導体基板1の酸化膜3で分離され
た領域に形成される素子はMOSトランジスタに限ら
ず、バイポーラ素子やサイリスタ等でも良い。さらに、
図1ではパワー素子10は酸化膜3で分離された領域に
形成し、且つ、ダイオードのカソードを単独で取り出し
ていたが、図12に示す第2の実施例では、パワーMO
Sのドレインとダイオードのカソードを共通としたこと
以外は第1の実施例と同じである。図2に示した回路構
成のようにパワーMOSのドレインとカソードが共通で
あるような場合には、図6の構造でも同様の効果が得ら
れる。
The element formed in the region of the semiconductor substrate 1 separated by the oxide film 3 is not limited to the MOS transistor, but may be a bipolar element or a thyristor. further,
In FIG. 1, the power element 10 is formed in a region separated by the oxide film 3 and the cathode of the diode is taken out independently, but in the second embodiment shown in FIG.
The same as the first embodiment except that the drain of S and the cathode of the diode are shared. When the drain and cathode of the power MOS are common as in the circuit configuration shown in FIG. 2, the same effect can be obtained with the structure of FIG.

【0016】第2の実施例の製造工程において、第1の
実施例の製造工程と異なる点は、図13に示すようにN
- 型のシリコン基板1の鏡面研磨した面の全面にイオン
注入してN+ 層を形成し、その後、図14に示すように
選択エッチングにより保護ダイオード領域およびDMO
S領域となる部分Aを形成する点である。それ以後の工
程は、図5〜図11を踏襲する。
The manufacturing process of the second embodiment differs from the manufacturing process of the first embodiment in that, as shown in FIG.
- ion-implanted into the entire surface of the mirror-polished surface of the silicon substrate 1 of type to form a N + layer, then the protective diode region and DMO by selective etching as shown in FIG. 14
This is the point where the portion A which becomes the S region is formed. The subsequent steps follow FIGS. 5 to 11.

【0017】[0017]

【発明の効果】以上のように本発明によると、一導電型
を有する半導体基板と前記逆導電型を有する半導体層か
ら形成される保護ダイオードのPN接合面積を該半導体
層の前記半導体基板上での占有領域を広げることなく該
半導体層の底部を広げるのみで任意に大きくすることが
できるため、大きなサージに対する保護ダイオードを前
記半導体基板上に形成しても、前記半導体領域を大きく
取る必要はなく、半導体装置としての大きさを大きくす
る必要はない。
As described above, according to the present invention, a PN junction area of a protection diode formed from a semiconductor substrate having one conductivity type and a semiconductor layer having the opposite conductivity type is provided on the semiconductor substrate of the semiconductor layer. It is possible to arbitrarily increase the size by simply expanding the bottom of the semiconductor layer without expanding the occupied area of the semiconductor layer. Therefore, even if a protection diode against a large surge is formed on the semiconductor substrate, it is not necessary to make the semiconductor region large. It is not necessary to increase the size of the semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の半導体装置を表す断面図である。FIG. 1 is a cross-sectional view showing a semiconductor device of a first embodiment.

【図2】第1実施例の半導体装置の製造工程を表す断面
図である。
FIG. 2 is a cross-sectional view showing a manufacturing process of the semiconductor device of the first embodiment.

【図3】第1実施例の半導体装置の製造工程を表す断面
図である。
FIG. 3 is a cross-sectional view showing a manufacturing process of the semiconductor device of the first embodiment.

【図4】第1実施例の半導体装置の製造工程を表す断面
図である。
FIG. 4 is a cross-sectional view showing a manufacturing process of the semiconductor device of the first embodiment.

【図5】第1実施例の半導体装置の製造工程を表す断面
図である。
FIG. 5 is a cross-sectional view showing a manufacturing process of the semiconductor device of the first embodiment.

【図6】第1実施例の半導体装置の製造工程を表す断面
図である。
FIG. 6 is a cross-sectional view showing a manufacturing process of the semiconductor device of the first embodiment.

【図7】第1実施例の半導体装置の製造工程を表す断面
図である。
FIG. 7 is a cross-sectional view showing a manufacturing process of the semiconductor device of the first embodiment.

【図8】第1実施例の半導体装置の製造工程を表す断面
図である。
FIG. 8 is a cross-sectional view showing a manufacturing process of the semiconductor device of the first embodiment.

【図9】第1実施例の半導体装置の製造工程を表す断面
図である。
FIG. 9 is a cross-sectional view showing a manufacturing process of the semiconductor device of the first example.

【図10】第1実施例の半導体装置の製造工程を表す断
面図である。
FIG. 10 is a cross-sectional view showing a manufacturing process of the semiconductor device of the first example.

【図11】第1実施例の半導体装置の製造工程を表す断
面図である。
FIG. 11 is a cross-sectional view showing a manufacturing process of the semiconductor device of the first example.

【図12】第2実施例の半導体装置を表す断面図であ
る。
FIG. 12 is a sectional view showing a semiconductor device according to a second embodiment.

【図13】第2実施例の半導体装置の製造工程を表す断
面図である。
FIG. 13 is a cross-sectional view showing a manufacturing process of a semiconductor device of a second example.

【図14】第2実施例の半導体装置の製造工程を表す断
面図である。
FIG. 14 is a cross-sectional view showing a manufacturing process of a semiconductor device of a second embodiment.

【図15】従来の半導体装置の断面図である。FIG. 15 is a cross-sectional view of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 N- 型シリコン基板 2 P- 型シリコン基板 3 酸化膜 5 PN接合面1 N type silicon substrate 2 P type silicon substrate 3 oxide film 5 PN junction surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一導電型を有する半導体基板と、 該半導体基板上に形成され、絶縁分離層により底部およ
び側壁部を囲われた絶縁分離領域と、 前記半導体基板上に形成され、その底部が前記絶縁分離
領域の底部の絶縁分離層よりも下方に形成された逆導電
型の半導体層と、 を有することを特徴とした半導体装置。
1. A semiconductor substrate having one conductivity type, an insulating isolation region formed on the semiconductor substrate and having a bottom portion and a side wall portion surrounded by an insulating isolation layer, and a semiconductor substrate having a bottom portion formed on the semiconductor substrate. And a semiconductor layer of a reverse conductivity type formed below the insulating separation layer at the bottom of the insulating separation region.
JP16913593A 1993-07-08 1993-07-08 Semiconductor device Expired - Fee Related JP3401840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16913593A JP3401840B2 (en) 1993-07-08 1993-07-08 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16913593A JP3401840B2 (en) 1993-07-08 1993-07-08 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0729974A true JPH0729974A (en) 1995-01-31
JP3401840B2 JP3401840B2 (en) 2003-04-28

Family

ID=15880937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16913593A Expired - Fee Related JP3401840B2 (en) 1993-07-08 1993-07-08 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3401840B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0981163A1 (en) * 1998-08-14 2000-02-23 STMicroelectronics S.r.l. Semiconductor power device with insulated circuit and process for its manufacture
EP1302984A1 (en) * 2001-10-09 2003-04-16 STMicroelectronics S.r.l. Protection structure against electrostatic discharges (ESD) for an electronic device integrated on a SOI substrate and corresponding integration process
JP2009021622A (en) * 2008-09-04 2009-01-29 Fuji Electric Device Technology Co Ltd Semiconductor device
FR2986373A1 (en) * 2012-01-31 2013-08-02 St Microelectronics Crolles 2 Electronic circuit, has generator generating grid voltage, and two bias voltages, where grid and one bias voltage change values simultaneously while other bias voltage is constituted such that junction of doped areas is blocked

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0981163A1 (en) * 1998-08-14 2000-02-23 STMicroelectronics S.r.l. Semiconductor power device with insulated circuit and process for its manufacture
US6525392B1 (en) 1998-08-14 2003-02-25 Stmicroelectronics S.R.L. Semiconductor power device with insulated circuit
EP1302984A1 (en) * 2001-10-09 2003-04-16 STMicroelectronics S.r.l. Protection structure against electrostatic discharges (ESD) for an electronic device integrated on a SOI substrate and corresponding integration process
US6891208B2 (en) 2001-10-09 2005-05-10 Stmicroelectronics S.R.L. Protection structure against electrostatic discharges (ESD) for an electronic device integrated on a SOI substrate, and corresponding integration process
JP2009021622A (en) * 2008-09-04 2009-01-29 Fuji Electric Device Technology Co Ltd Semiconductor device
FR2986373A1 (en) * 2012-01-31 2013-08-02 St Microelectronics Crolles 2 Electronic circuit, has generator generating grid voltage, and two bias voltages, where grid and one bias voltage change values simultaneously while other bias voltage is constituted such that junction of doped areas is blocked

Also Published As

Publication number Publication date
JP3401840B2 (en) 2003-04-28

Similar Documents

Publication Publication Date Title
KR100656973B1 (en) Semiconductor device and method for producing same
US4908328A (en) High voltage power IC process
KR100457413B1 (en) Semiconductor device having insulated gate bipolar transistor with dielectric isolation structure and method for manufacturing the same
EP1453094A1 (en) Surge protection semiconductor device
CN1396662A (en) Low voltage triggered SCR containing Si in insulating layer and protecting circuit for electrostatic discharge
US5426320A (en) Integrated structure protection device for protecting logic-level power MOS devices against electro-static discharges
JPH08139319A (en) Semiconductor device and its manufacture
US7719077B2 (en) Method for the production of a semiconductor component
JPH07130963A (en) Monolithic integrated circuit and protective device
JP2822961B2 (en) Semiconductor device
US5530271A (en) Integrated structure active clamp for the protection of power semiconductor devices against overvoltages
US5077590A (en) High voltage semiconductor device
JP3254431B2 (en) Semiconductor device having decoupling capacitance and method of manufacturing the same
JP3217554B2 (en) High voltage semiconductor device
US6525392B1 (en) Semiconductor power device with insulated circuit
JPH0729974A (en) Semiconductor device
JPH11145277A (en) Dielectric isolation type semiconductor device
JP3275850B2 (en) High breakdown voltage diode and its manufacturing method
US5442219A (en) Semiconductor device for controlling electric power
US5122855A (en) Semiconductor device with latch-up prevention structure
JP3217552B2 (en) Horizontal high voltage semiconductor device
US20010002717A1 (en) Protection device and protection method for semiconductor device
JPH06151740A (en) Power semiconductor device
KR100800252B1 (en) Method of manufacturing diode using cmos process
JPS61174672A (en) Vmos transistor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees