JPH07297026A - Superconducting coil - Google Patents

Superconducting coil

Info

Publication number
JPH07297026A
JPH07297026A JP8353894A JP8353894A JPH07297026A JP H07297026 A JPH07297026 A JP H07297026A JP 8353894 A JP8353894 A JP 8353894A JP 8353894 A JP8353894 A JP 8353894A JP H07297026 A JPH07297026 A JP H07297026A
Authority
JP
Japan
Prior art keywords
radial
resin
duct
winding
ducts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8353894A
Other languages
Japanese (ja)
Inventor
Masanobu Nozawa
正信 野澤
Takaaki Bono
敬昭 坊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP8353894A priority Critical patent/JPH07297026A/en
Publication of JPH07297026A publication Critical patent/JPH07297026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulating Of Coils (AREA)

Abstract

PURPOSE:To prevent a resin lump from being generated in each radial duct when winding bundles are impregnated with a resin. CONSTITUTION:In a superconducting coil formed into a structure, wherein a superconductive wire is wound on a cylinder part 1A, which is provided with flange parts 1B projecting outward of the radical direction on both ends of the cylinder part 1A, of a spool 1, axial ducts 4A and 4B, which come into contact closely to winding bundles 3A and 3B of this superconductive wire and are turned to the axial direction of the part 1A, and radial ducts 2A and 2B, which come into contact closely to both ends in the axial directions of the bundles 3A and 3B and are turned to the radial direction of the part 1A, are provided in such a way that the ducts 4A and 4B and 2A and 2B are communicated with each other and the winding bundles 3a and 3B are impregnated with a resin, the inner wall, which is located on the opposite side to the bundles, of the duct 2B is slanted to the opposite side to the winding bundles as the inner wall goes outward of the radial direction of the part 1A.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、エネルギー貯蔵用超
電導コイルや超電導変圧器などに用いられる交流用超電
導コイルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an AC superconducting coil used for energy storage superconducting coils and superconducting transformers.

【0002】[0002]

【従来の技術】超電導コイルが超電導状態を維持するた
めには、温度、電流、発生磁束密度がそれぞれ臨界値よ
り小さいことが条件であり、これら臨界値はそれぞれ臨
界温度、臨界電流、臨界磁束密度と呼ばれている。温
度、電流、発生磁束密度のいずれもがそれぞれの臨界値
以下にある場合に限り超電導状態が維持され、一つでも
臨界値を越えると超電導状態から常電導状態へと転移し
てしまう、いわゆるクエンチが発生する。クエンチが発
生すると超電導コイルに蓄積されていた磁気エネルギー
は常電導状態になったとき超電導線の抵抗によるジュー
ル熱として放出され、冷媒である高価な液体ヘリウムの
大量の蒸発を引き起こす。また、前述のジュール熱のた
めに超電導コイルを構成する超電導線の温度が上昇し、
焼損する恐れもある。このような理由でクエンチは超電
導コイルにとって有害なものであることが良く知られて
いる。
2. Description of the Related Art In order for a superconducting coil to maintain a superconducting state, temperature, current, and generated magnetic flux density are required to be smaller than their respective critical values. These critical values are critical temperature, critical current, and critical magnetic flux density, respectively. It is called. The superconducting state is maintained only when all of the temperature, current, and generated magnetic flux density are below their respective critical values, and if even one exceeds the critical value, the superconducting state transitions to the normal conducting state. Occurs. When the quench occurs, the magnetic energy stored in the superconducting coil is released as Joule heat due to the resistance of the superconducting wire when it is in the normal conducting state, causing a large amount of evaporation of expensive liquid helium as a refrigerant. In addition, the temperature of the superconducting wire forming the superconducting coil rises due to the Joule heat described above,
There is also a risk of burning. For this reason, it is well known that quench is harmful to superconducting coils.

【0003】近年では、超電導コイルの交流応用、特に
パルス応用が各地に盛んに実施されている。超電導コイ
ルに交流(パルス)電流を通電すると、交流損失により
発熱し、温度が上昇する。この交流損失は、ヒステリシ
ス損失、結合損失、渦電流損失からなり、ヒステリシス
損失は発生磁束密度の大きさに比例し、発生磁束密度の
変化速度に依存しないものである。これに対して結合損
失は発生磁束密度の変化速度の2乗に比例し、発生電流
密度の大きさには依存しないものである。これらの交流
損失による温度上昇は、超電導コイルのクエンチを引き
起こすため、交流損失を低減するために種々の対策が施
されている。
In recent years, AC applications of superconducting coils, especially pulse applications, have been actively carried out in various places. When an alternating current (pulse) current is applied to the superconducting coil, heat is generated due to AC loss and the temperature rises. The AC loss is composed of hysteresis loss, coupling loss, and eddy current loss. The hysteresis loss is proportional to the magnitude of the generated magnetic flux density and does not depend on the changing speed of the generated magnetic flux density. On the other hand, the coupling loss is proportional to the square of the changing speed of the generated magnetic flux density and does not depend on the magnitude of the generated current density. Since the temperature rise due to these AC losses causes quenching of the superconducting coil, various measures have been taken to reduce the AC losses.

【0004】まず、ヒステリシス損失は、前記発生磁束
密度の大きさの他に、超電導線を構成する超電導素線の
線径に比例する。つまり、超電導素線を細くする程ヒス
テリシス損失を低減できる。次に結合損失は、発生磁束
密度の変化の他に、超電導素線のツイストピッチに比例
する。そこで、極力ツイストピッチを小さくすれば、結
合損失を小さくすることができる。
First, the hysteresis loss is proportional to the wire diameter of the superconducting element wire constituting the superconducting wire, in addition to the magnitude of the generated magnetic flux density. That is, the thinner the superconducting wire, the more the hysteresis loss can be reduced. Next, the coupling loss is proportional to the twist pitch of the superconducting wire in addition to the change in the generated magnetic flux density. Therefore, the coupling loss can be reduced by reducing the twist pitch as much as possible.

【0005】また、超電導線は、クエンチした際に電流
がバイパスするために超電導素線が安定化材に埋め込ま
れた構造をしているのが一般的であるが、結合損失およ
び渦電流損失はこの素線間の安定化材の電気抵抗率にも
比例する。そこで、結合損失および渦電流損失を低減す
るために、電気抵抗率の高い(例えば、銅ニッケル合金
等)金属を安定化材として使用すればよい。しかしなが
ら、あまり電気抵抗率が高い金属を安定化材として構成
すると、超電導線がクエンチして電流がバイパスしたと
きに、抵抗値が高い故に温度上昇が大きく、焼損する恐
れがあるため、安易に電気抵抗率を高くすることはでき
ない。とくに、通電電流値が大きい(1kA以上)時
は、安定化材として銅もしくはアルミニウムに限定され
る。そこで、超電導素線の周りを銅で覆い、銅で覆われ
た素線間に銅ニッケル合金等の比較的電気抵抗率の高い
金属でバリアする。いわゆる3層構造を有する構成にす
る事で、結合損失および渦電流損失を低減できる。
Further, the superconducting wire generally has a structure in which the superconducting element wire is embedded in a stabilizing material in order to bypass the current when it is quenched, but the coupling loss and the eddy current loss are It is also proportional to the electrical resistivity of the stabilizer between the strands. Therefore, in order to reduce the coupling loss and the eddy current loss, a metal having a high electric resistivity (for example, copper-nickel alloy or the like) may be used as the stabilizing material. However, if a metal having a too high electrical resistivity is used as a stabilizing material, when the superconducting wire is quenched and the current is bypassed, the temperature rise is large due to the high resistance value and there is a risk of burning, so it is easy The resistivity cannot be increased. In particular, when the energizing current value is large (1 kA or more), the stabilizing material is limited to copper or aluminum. Therefore, the superconducting wires are covered with copper, and the wires covered with copper are covered with a metal having a relatively high electric resistivity such as a copper-nickel alloy. By having a so-called three-layer structure, coupling loss and eddy current loss can be reduced.

【0006】現在では、交流用超電導コイルの超電導線
として、この3層構造を有する超電導線を使用するのが
一般的となっている。しかしながら、超電導素線の線径
を細くしたり、高抵抗の金属バリアを挿入するにしても
限界がある。そこで、大きく、変化の速い磁束密度を発
生出来る超電導コイルを実現するために、超電導巻線の
層間にFRP等の絶縁材を間隔をおいて設置することに
より巻線内部に液体ヘリウムが流入出来るための通路、
いわゆる冷却ダクトを設け、積極的に超電導コイル内部
を冷却し交流損失による発熱を除去するという方法が施
されている。
At present, it is common to use a superconducting wire having this three-layer structure as a superconducting wire of an AC superconducting coil. However, there is a limit even if the diameter of the superconducting element wire is reduced or a high resistance metal barrier is inserted. Therefore, in order to realize a superconducting coil that can generate a large and rapidly changing magnetic flux density, liquid helium can flow into the winding by installing insulating materials such as FRP between the layers of the superconducting winding at intervals. The passage of
A method of providing a so-called cooling duct and actively cooling the inside of the superconducting coil to remove heat generation due to AC loss is used.

【0007】図3は、従来の超電導コイルの構成を示す
片側断面図である。図3の左端に軸中心をもつ円筒部1
Aの上下両端に半径方向外方へ突出するつば部1Bを備
えた巻枠1に超電導線の巻き束3A,3Bが巻回されて
いる。この巻き束3A,3Bに樹脂を含浸することによ
って超電導線を固定している。巻き束3A,3Bの内周
側に密接して軸方向ダクト4A,4Bが設けられ、さら
に、巻き束3A,3Bの上端面,下端面に密接して半径
方向ダクト20A,20Bが設けられている。
FIG. 3 is a one-sided sectional view showing the structure of a conventional superconducting coil. Cylindrical part 1 having an axial center at the left end of FIG.
The superconducting wire winding bundles 3A and 3B are wound around a winding frame 1 having flange portions 1B protruding outward in the radial direction at both upper and lower ends of A. The superconducting wire is fixed by impregnating the wound bundles 3A and 3B with resin. Axial ducts 4A, 4B are provided in close contact with the inner circumferential sides of the winding bundles 3A, 3B, and further radial ducts 20A, 20B are provided in close contact with the upper and lower end surfaces of the winding bundles 3A, 3B. There is.

【0008】図4は、図3の装置の構成を示す要部斜視
図である。図4は、内部構成が分かるように巻き束が取
り除かれ、装置の下部だけが示されている。絶縁体70
Bを等ピッチで溝加工することによって半径方向ダクト
20Bが形成される。一方、軸方向ダクトは、絶縁性の
ダクトピース4AA,4BBを等ピッチで巻き束間、ま
たは、巻き束と巻き枠1間に介装することによって形成
される。
FIG. 4 is a main part perspective view showing the structure of the apparatus shown in FIG. FIG. 4 shows the lower part of the device with the wraps removed for clarity of internal construction. Insulator 70
The radial duct 20B is formed by grooving B at an equal pitch. On the other hand, the axial duct is formed by interposing insulating duct pieces 4AA and 4BB between the winding bundles at equal pitches or between the winding bundle and the winding frame 1.

【0009】図3に戻り、絶縁体70Aも絶縁体70B
と同様に等ピッチで溝加工され、装置の上部と下部とは
全く対称に反転した構成となっている。そのために、軸
方向ダクト4A,4Bと半径方向ダクト20A,20B
とは互いに連通している。液体ヘリウムは、下部から半
径方向ダクト20B、軸方向ダクト4A,4B、半径方
向ダクト20Aの順路で矢印5の方向に流され、巻き束
3A,3Bが冷却される。
Returning to FIG. 3, the insulator 70A is also the insulator 70B.
Similarly to the above, grooves are formed at an equal pitch, and the upper and lower parts of the device are completely symmetrically inverted. To that end, the axial ducts 4A, 4B and the radial ducts 20A, 20B
And are in communication with each other. Liquid helium is made to flow from the bottom in the direction of arrow 5 along the route of radial duct 20B, axial ducts 4A and 4B, and radial duct 20A, and bundles 3A and 3B are cooled.

【0010】超電導線に電流を流すと、巻き束3A,3
Bには電磁力として半径を大きくしようとする半径方向
力と、軸方向に収縮しようとする軸方向力とが働く。そ
のために、樹脂を巻き束3A,3Bに含浸させ、超電導
線が動かないようにしている。図3の装置は樹脂含浸す
るために、一旦、その全体が樹脂で真空含浸される。そ
の後、装置の中心軸を垂直にした状態で樹脂が抜かれ
る。半径方向ダクト20A,20B内および軸方向ダク
ト4A,4B内にあった樹脂は矢印6A,6Bの方向に
流れて下部へ抜け、そこに冷却ダクトが形成される。一
方、巻き束3A,3B内に含浸された樹脂は、超電導線
のすき間が狹いためにすぐには流れ出ない。その状態で
装置を加熱処理すれば、樹脂が硬化し巻き束3A,3B
がしっかりと固められる。
When a current is applied to the superconducting wire, the winding bundles 3A, 3
As the electromagnetic force, a radial force for increasing the radius and an axial force for contracting in the axial direction act on B. Therefore, the winding bundles 3A and 3B are impregnated with resin to prevent the superconducting wire from moving. Since the apparatus shown in FIG. 3 is impregnated with resin, the entire apparatus is once vacuum-impregnated with resin. After that, the resin is removed with the central axis of the device being vertical. The resin in the radial ducts 20A, 20B and the axial ducts 4A, 4B flows in the directions of the arrows 6A, 6B and escapes to the lower portion, where cooling ducts are formed. On the other hand, the resin impregnated in the winding bundles 3A and 3B does not immediately flow out due to the narrow gap in the superconducting wire. If the device is heat-treated in that state, the resin is cured and the winding bundles 3A, 3B
Is firmly solidified.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、前述し
たような従来の装置は、樹脂含浸したときに、下部の半
径方向ダクトに樹脂溜まりができるという問題があっ
た。図3において、含浸された樹脂を抜くと、軸方向ダ
クト4A,4Bを下方に向かって樹脂が流れる。その
後,下部の半径方向ダクト20Bに樹脂が落下し、半径
方向外方へ流れるようになっている。しかし、半径方向
ダクト20Bが水平配置であるために、樹脂の流れが極
めて悪い。そのために、図3または図4のように軸方向
ダクト4A,4Bの下部付近に樹脂溜まり9が形成しや
すい。この樹脂溜まり9をそのまま大量に残して装置全
体を加熱すると、冷却ダクトがつぶされたことになる。
そのために、液体ヘリウムによる装置の冷却効率が低下
し、クエンチを引き起こす要因ともなりかねなかった。
However, the conventional apparatus as described above has a problem that when the resin is impregnated with the resin, the resin is accumulated in the lower radial duct. In FIG. 3, when the impregnated resin is removed, the resin flows downward in the axial ducts 4A and 4B. After that, the resin falls in the lower radial duct 20B and flows outward in the radial direction. However, since the radial duct 20B is horizontally arranged, the resin flow is extremely bad. Therefore, as shown in FIG. 3 or 4, the resin reservoir 9 is likely to be formed near the lower portions of the axial ducts 4A and 4B. When a large amount of this resin reservoir 9 is left as it is and the entire apparatus is heated, the cooling duct is crushed.
As a result, the cooling efficiency of the device with liquid helium decreases, which may be a cause of quenching.

【0012】この発明の目的は、装置内に樹脂溜まりが
出来ないようにすることにある。
An object of the present invention is to prevent resin accumulation in the device.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、この発明によれば、円筒部の両端に半径方向外方ヘ
突出するつば部を備えた巻枠の円筒部に超電導線が巻回
され、この超電導線の巻き束に密接し円筒部の軸方向へ
向く軸方向ダクトと、前記巻き束の軸方向の両端に密接
し円筒部の半径方向へ向く半径方向のダクトとが互いに
連通して設けられ、前記巻き束が樹脂含浸されてなるも
のにおいて、すくなくとも一方の半径方向ダクトの反巻
き束側内壁が半径方向外方へ行くにしたがって反巻き束
側へ傾斜してなるものとする。
In order to achieve the above object, according to the present invention, a superconducting wire is wound around a cylindrical portion of a bobbin provided with flange portions projecting radially outward at both ends of the cylindrical portion. The axial duct that is in close contact with the winding bundle of the superconducting wire and faces in the axial direction of the cylindrical portion and the radial duct that is in close contact with both axial ends of the winding bundle and that faces in the radial direction of the cylindrical portion communicate with each other. And the winding bundle is impregnated with resin, at least the inner wall of the radial duct on the side opposite to the side of the winding bundle is inclined toward the side of the non-winding bundle as it goes outward in the radial direction. .

【0014】また、かかる構成において、双方の半径方
向ダクトの反巻き束側内壁が半径方向外方へ行くにした
がって反巻き束側へ傾斜してなるものとしてもよい。
Further, in such a structure, the inner walls of the both side ducts on the non-winding bundle side may be inclined toward the non-winding bundle side as they go outward in the radial direction.

【0015】[0015]

【作用】この発明の構成によれば、すくなくとも一方の
半径方向ダクトの反巻き束側内壁を半径方向外方へ行く
にしたがって反巻き束側へ傾斜させる。装置に含浸させ
た樹脂を抜くときに、装置が置かれる方向をその中心軸
が垂直になるようにするとともに、内壁を傾斜させた方
の半径方向ダクトが巻き束の下部に来るようにする。こ
れによって、軸方向ダクト内の樹脂が下部の半径方向ダ
クトに落下しても、半径方向ダクトに傾斜があるので、
半径方向外方へスムーズに流れる。そのために、半径方
向ダクト内に樹脂溜まりが出来なくなり、冷却効率が大
幅に向上する。
According to the structure of the present invention, at least one inner wall of the radial duct on the side opposite to the winding bundle is inclined toward the side opposite to the winding bundle as it goes outward in the radial direction. When the resin impregnated into the device is removed, the central axis of the device is set to be vertical, and the radial duct with the inner wall inclined is located at the bottom of the bundle. As a result, even if the resin in the axial duct falls to the lower radial duct, the radial duct has an inclination,
Smoothly flows radially outward. Therefore, the resin is not accumulated in the radial duct, and the cooling efficiency is significantly improved.

【0016】かかる構成において、双方の半径方向ダク
トの反巻き束側内壁が半径方向外方へ行くにしたがって
反巻き束側へ傾斜するようにする。装置に含浸させた樹
脂を抜くときに装置が置かれる方向は、その中心軸が垂
直になるようにする必要かあるが、半径方向ダクトの上
下関係は何の制約もない。すなわち、いずれの半径方向
ダクトを下部にしても内壁が傾斜しているので樹脂溜ま
りができることはない。そのために、樹脂抜きのときに
装置の上下関係を気にする必要が全くなく間違いも起き
ない。また、上下の半径方向ダクトを形成するための絶
縁物も同じ形状のものが使え、部品の共通化もはかれ
る。
In such a structure, the inner walls of the two radial ducts on the non-winding bundle side are inclined toward the non-winding bundle side as they go outward in the radial direction. The direction in which the device is placed when removing the resin impregnated into the device must be such that its central axis is vertical, but there is no restriction on the vertical relationship of the radial ducts. That is, even if any of the radial ducts is located at the lower part, the inner wall is inclined, so that the resin is not accumulated. Therefore, there is no need to worry about the vertical relationship of the device when removing the resin, and no error occurs. In addition, the same shape of insulator can be used for forming the upper and lower radial ducts, and parts can be shared.

【0017】[0017]

【実施例】以下、この発明を実施例に基づいて説明す
る。図1は、この発明の実施例にかかる超電導コイルの
片側断面図である。上下の半径方向ダクト2A,2Bが
ともに半径方向外方へ行くにしたがって反巻き束3A,
3B側へ傾く斜面8A,8Bを備えている。図2は、図
1の装置の構成を示す要部斜視図である。図2は内部構
成が分かるように巻き束が取り除かれ、装置の下部だけ
が示されている。絶縁体7Bを等ピッチで溝加工するこ
とによって半径方向ダクト2Bが形成されている。
EXAMPLES The present invention will be described below based on examples. FIG. 1 is a one-sided sectional view of a superconducting coil according to an embodiment of the present invention. As the upper and lower radial ducts 2A and 2B both go outward in the radial direction, the unwinding bundle 3A,
It has slopes 8A and 8B that are inclined toward the 3B side. FIG. 2 is a perspective view of an essential part showing the configuration of the apparatus shown in FIG. FIG. 2 shows the interior of the device with the wraps removed for clarity and only the bottom of the device is shown. The radial duct 2B is formed by grooving the insulator 7B at an equal pitch.

【0018】図1に戻り、絶縁体7Aも絶縁体7Bと同
様に等ピッチで溝加工され、装置の上部と下部とは全く
対称に反転した構成になっている。その他の構成は、図
3,図4で説明された従来の構成と同じである。同じ部
分には、同一参照符号を付けることにより,詳細な説明
を繰り返すことは省略する。図1において、装置の中心
軸を垂直にした状態で含浸された樹脂を抜くと、樹脂が
矢印6A,6Bの方向に流れるが、半径方向ダクト2B
に斜面8Bがあるので、樹脂はスムーズに右方へ流れ出
る。そのために、半径方向ダクト2Bには全く樹脂溜ま
りが生じない。
Returning to FIG. 1, the insulator 7A is also grooved at an equal pitch like the insulator 7B, and the upper and lower parts of the device are completely symmetrically inverted. The other structure is the same as the conventional structure described in FIGS. The same portions will be denoted by the same reference numerals, and repeated description will be omitted. In FIG. 1, when the impregnated resin is removed with the central axis of the device vertical, the resin flows in the directions of arrows 6A and 6B, but the radial duct 2B
Since there is a slope 8B, the resin smoothly flows out to the right. Therefore, no resin accumulation occurs in the radial duct 2B.

【0019】なお、図1における上部の半径方向ダクト
2Aにも斜面8Aがある。半径方向ダクト2Bが下部に
あるときは、斜面8Aは何の働きもしない。しかし装置
の上下を反転させ、半径方向ダクト2Aを下部に配した
場合は、斜面8Aが樹脂をスムーズに流し出す働きをす
る。半径方向ダクト内壁面の斜面を下部だけに設けると
万一、傾面の有る方の半径方向ダクトを上部にして樹脂
抜きを行うと樹脂溜まりが出来、不良品ができてしまう
可能性がある。装置の上下の半径方向ダクト2A,2B
に同じ斜面8A,8Bを形成しておくことにより含浸さ
れた樹脂を抜くときに装置の方向をいちいち確認する必
要がなく間違いも決して起きない。また、上下が同じ形
状の絶縁体7A,7Bで構成されるので部品も共通化さ
れコストも低減される。
The upper radial duct 2A in FIG. 1 also has a slope 8A. When the radial duct 2B is at the bottom, the slope 8A has no function. However, when the device is turned upside down and the radial duct 2A is arranged in the lower part, the slope 8A functions to smoothly flow out the resin. If the slope of the inner wall surface of the radial duct is provided only in the lower portion, if the radial duct having the inclined surface is set as the upper portion and the resin is removed, a resin pool may be formed and a defective product may be produced. Radial ducts 2A, 2B above and below the device
By forming the same slopes 8A and 8B on the first and second sides, it is not necessary to check the direction of the device when removing the impregnated resin, and a mistake never occurs. Further, since the upper and lower parts are composed of the insulators 7A and 7B having the same shape, the parts are made common and the cost is reduced.

【0020】また、図1において斜面8Bの角度(半径
方向外方に向かって下方へ開く角度)が大きいほど樹脂
が流れ易くなるので、樹脂溜まりが発生しにくくなる。
しかし、絶縁体7Bの加工性を考慮すると、その角度は
15〜45度が適当である。
Further, in FIG. 1, the larger the angle of the slope 8B (the angle which opens downward in the radial direction), the easier the resin flows, so that the resin accumulation is less likely to occur.
However, considering the workability of the insulator 7B, the angle is preferably 15 to 45 degrees.

【0021】[0021]

【発明の効果】この発明は前述のように、すくなくとも
一方の半径方向ダクトの反巻き束側内壁を半径方向外方
へ行くにしたがって反巻き束側へ傾斜させる。これによ
り、半径方向ダクトに樹脂溜まりができなくなり、装置
の冷却効率が大幅に向上する。また、かかる構成におい
て、双方の半径方向ダクトの反巻き束側内壁が半径方向
外方へ行くにしたがって反巻き束側へ傾斜するようにす
る。これにより、樹脂抜きのときに装置の上下関係を気
にする必要が全くなく間違いも起きない。また、上下の
半径方向ダクトを形成するための絶縁物も同じ形状のも
のが備え、部品の共通化もはかれ、コストダウンもはか
れる。
As described above, according to the present invention, the inner wall of the at least one radial duct on the side opposite to the winding bundle is inclined toward the side opposite to the winding bundle as it goes outward in the radial direction. As a result, the resin is not accumulated in the radial duct, and the cooling efficiency of the device is significantly improved. Further, in such a configuration, the inner wall of each of the radial ducts on the non-winding bundle side is inclined toward the non-winding bundle side as it goes outward in the radial direction. As a result, there is no need to worry about the vertical relationship of the device when removing the resin, and no error occurs. In addition, the insulators for forming the upper and lower radial ducts are also provided with the same shape, so that the parts can be shared and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例にかかる超電導コイルの片側
断面図
FIG. 1 is a side sectional view of a superconducting coil according to an embodiment of the present invention.

【図2】図1の装置の構成を示す要部斜視図FIG. 2 is a perspective view of a main part showing the configuration of the apparatus shown in FIG.

【図3】従来の超電導コイルの片側断面図FIG. 3 is a sectional view of one side of a conventional superconducting coil.

【図4】図3の装置の構成を示す要部斜視図FIG. 4 is a perspective view of a main part showing the configuration of the apparatus shown in FIG.

【符号の説明】[Explanation of symbols]

1:巻枠、1A:円筒部、1B:つば部、2A,2B:
半径方向ダクト、3A,3B:巻き束、4A,4B:軸
方向ダクト
1: winding frame, 1A: cylindrical portion, 1B: brim portion, 2A, 2B:
Radial duct, 3A, 3B: Winding bundle, 4A, 4B: Axial duct

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】円筒部の両端に半径方向外方ヘ突出するつ
ば部を備えた巻枠の円筒部に超電導線が巻回され、この
超電導線の巻き束に密接し円筒部の軸方向へ向く軸方向
ダクトと、前記巻き束の軸方向の両端に密接し円筒部の
半径方向へ向く半径方向のダクトとが互いに連通して設
けられ、前記巻き束が樹脂含浸されてなるものにおい
て、すくなくとも一方の半径方向ダクトの反巻き束側内
壁が半径方向外方へ行くにしたがって反巻き束側へ傾斜
してなることを特徴とする超電導コイル。
1. A superconducting wire is wound around a cylindrical portion of a bobbin having a collar portion projecting outward in the radial direction at both ends of the cylindrical portion, and the superconducting wire is closely contacted with a bundle of the superconducting wire in the axial direction of the cylindrical portion. The axial duct that faces and a radial duct that closely contacts the axial ends of the winding bundle and that faces the radial direction of the cylindrical portion are provided in communication with each other, and the winding bundle is resin-impregnated, at least A superconducting coil characterized in that the inner wall of the one radial duct on the side opposite to the winding bundle is inclined toward the side opposite to the winding bundle as it goes radially outward.
【請求項2】請求項1記載のものにおいて、双方の半径
方向ダクトの反巻き束側内壁が半径方向外方へ行くにし
たがって反巻き束側へ傾斜してなることを特徴とする超
電導コイル。
2. The superconducting coil according to claim 1, wherein the inner walls of the radial ducts on the non-winding bundle side are inclined toward the non-winding bundle side as they go outward in the radial direction.
JP8353894A 1994-04-22 1994-04-22 Superconducting coil Pending JPH07297026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8353894A JPH07297026A (en) 1994-04-22 1994-04-22 Superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8353894A JPH07297026A (en) 1994-04-22 1994-04-22 Superconducting coil

Publications (1)

Publication Number Publication Date
JPH07297026A true JPH07297026A (en) 1995-11-10

Family

ID=13805289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8353894A Pending JPH07297026A (en) 1994-04-22 1994-04-22 Superconducting coil

Country Status (1)

Country Link
JP (1) JPH07297026A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234692A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Resin impregnation method for superconducting coil
JP2008060290A (en) * 2006-08-31 2008-03-13 Hitachi Ltd Method for impregnating superconducting coil with resin
WO2010107080A1 (en) * 2009-03-18 2010-09-23 株式会社神戸製鋼所 Superconducting magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234692A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Resin impregnation method for superconducting coil
JP2008060290A (en) * 2006-08-31 2008-03-13 Hitachi Ltd Method for impregnating superconducting coil with resin
WO2010107080A1 (en) * 2009-03-18 2010-09-23 株式会社神戸製鋼所 Superconducting magnet

Similar Documents

Publication Publication Date Title
US4336420A (en) Superconducting cable
US7034648B2 (en) Amorphous metal core transformer
US6376775B1 (en) Conductor for high-voltage windings and a rotating electric machine comprising a winding including the conductor
US5171941A (en) Superconducting strand for alternating current
KR100536487B1 (en) Amorphous metal transformer having a generally rectangular coil
JP4558517B2 (en) Superconducting coil
JP4928565B2 (en) Superconducting cable
KR20170047253A (en) A metal assembly comprising a superconductor
JPS61278109A (en) Conical impregnation-free winding for magnetic resonance
US3142809A (en) Cooling arrangement for electrical apparatus having at least one multilayer winding
US4234862A (en) Robust polyphase transformer
JPH07297026A (en) Superconducting coil
JP2656687B2 (en) Electric winding and manufacturing method thereof
CN115579184A (en) Superconducting conductor
JP4358119B2 (en) Amorphous iron core transformer
JP3840819B2 (en) Superconducting coil for induction equipment
JP3147577B2 (en) Superconducting magnet
JPH04116904A (en) Coil
JP2720565B2 (en) Permanent current switch
EP3635849A1 (en) Electrical machine with a conductor arrangement and insulation therefore
JP2001244108A (en) Superconducting coil of induction apparatus
JPS6136690B2 (en)
JP4432281B2 (en) Induction winding
JP2549695B2 (en) Superconducting stranded wire and manufacturing method thereof
JPH06260335A (en) High temperature superconducting magnet