JP2008060290A - Method for impregnating superconducting coil with resin - Google Patents

Method for impregnating superconducting coil with resin Download PDF

Info

Publication number
JP2008060290A
JP2008060290A JP2006234839A JP2006234839A JP2008060290A JP 2008060290 A JP2008060290 A JP 2008060290A JP 2006234839 A JP2006234839 A JP 2006234839A JP 2006234839 A JP2006234839 A JP 2006234839A JP 2008060290 A JP2008060290 A JP 2008060290A
Authority
JP
Japan
Prior art keywords
resin
coil
superconducting coil
impregnation
resin impregnation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006234839A
Other languages
Japanese (ja)
Other versions
JP4899727B2 (en
Inventor
Hisamichi Inoue
久道 井上
Masaya Otsuka
雅哉 大塚
Masanori Takahashi
正典 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006234839A priority Critical patent/JP4899727B2/en
Publication of JP2008060290A publication Critical patent/JP2008060290A/en
Application granted granted Critical
Publication of JP4899727B2 publication Critical patent/JP4899727B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for impregnating a superconducting coil with a resin capable of avoiding the remainder of a void in the superconducting coil, and inhibiting the generation of a quenching. <P>SOLUTION: In the method for impregnating the superconducting coil with the resin; the annular superconducting coil is housed in a housing vessel with an annular housing, the resin is injected to the housing, and the superconducting coil is impregnated with the resin. In the method, a trench inclined to a horizontal plane is formed to the top face of the housing, and the resin in the housing is pressed and vibrated after the completion of the injection of the resin to the housing. The remaining of the void in the superconducting coil is avoided, and the generation of the quenching can be inhibited. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は超伝導コイルの樹脂含浸方法に係り、特に、医療機器であるMRI(MagneticResonance Imaging )装置(以下「MRI装置」という。)の超伝導コイルに適用するのに好適な樹脂含浸方法に関する。   The present invention relates to a resin impregnation method for a superconducting coil, and more particularly to a resin impregnation method suitable for application to a superconducting coil of an MRI (Magnetic Resonance Imaging) apparatus (hereinafter referred to as “MRI apparatus”) which is a medical device.

超電導コイルは、大きな電磁力が作用すること、また、コイル線間の絶縁を確保するために、超電導コイルを樹脂で固める方法が採用されている。超電導コイルへの樹脂の含浸は、クエンチ(超電導状態から常電導状態への移行)の原因となるコイル内の残留ボイドをできるだけ少なくする必要がある。   The superconducting coil employs a method of hardening the superconducting coil with a resin so that a large electromagnetic force acts and insulation between the coil wires is ensured. The impregnation of the superconducting coil with the resin needs to minimize the residual voids in the coil that cause a quench (transition from the superconducting state to the normal conducting state).

従来のコイルへの樹脂含浸方法としては、一般的に、真空・加圧含浸法(以下「VIP法」という。)が採用されている。VIP法は、通常、真空状態(10〜50Pa)で脱気後、コイル内に樹脂を充填し、コイル内に残存するボイド(樹脂注入時に樹脂に同伴されて流入するボイド,コイル内の真空度の影響により発生するボイド)を加圧する。これにより、ボイドの容積を小さくして、その影響を回避する。   As a conventional resin impregnation method for coils, a vacuum / pressure impregnation method (hereinafter referred to as “VIP method”) is generally employed. In the VIP method, after deaeration is normally performed in a vacuum state (10 to 50 Pa), the coil is filled with a resin, and the void remaining in the coil (the void that flows along with the resin when the resin is injected, the degree of vacuum in the coil) Pressurize voids generated under the influence of This reduces the void volume and avoids its effects.

VIP法では、超電導コイルで重要となるコイル内に残存するボイドを皆無とすることが困難であることから、以下に示す方法が提案されている。   In the VIP method, since it is difficult to eliminate voids remaining in the coil, which is important in the superconducting coil, the following method has been proposed.

特許文献1には、ガラス繊維で覆われたNb3Snの超電導線で構成されるコイルへの樹脂の含浸方法として、VIP法をベースにコイル下側中央から樹脂を注入する方法について記載されている。しかし、この方法では、脱気容器と含浸容器の真空度調整・管理がなされていないことにより、脱気容器と弁との配管内に残る残留ガスが、コイルへの樹脂注入時に最初に注入されコイル内に残存する。また、含浸樹脂の減圧により発生するボイドが混在した樹脂を注入することから、コイル内にそのボイドが残存してしまう。さらに、真空状態の継続により、コイル内に含浸された樹脂からボイドが発生する可能性がある。また、巻枠,栓体,コイル外側,容器の狭小隙間に樹脂が入り込み固化するため、コイルの取り出しが困難になるという問題がある。 Patent Document 1 describes a method of injecting resin from the lower center of the coil based on the VIP method as a method for impregnating resin into a coil composed of Nb 3 Sn superconducting wires covered with glass fiber. Yes. However, in this method, since the degree of vacuum of the deaeration container and the impregnation container is not adjusted and controlled, the residual gas remaining in the piping between the deaeration container and the valve is injected first when resin is injected into the coil. It remains in the coil. Moreover, since the resin in which the void generated by the pressure reduction of the impregnating resin is mixed is injected, the void remains in the coil. Furthermore, voids may be generated from the resin impregnated in the coil due to the continuation of the vacuum state. In addition, since the resin enters and solidifies in the narrow gaps of the winding frame, the plug, the outside of the coil, and the container, there is a problem that it is difficult to take out the coil.

特許文献2には、多量の絶縁層を有するコイルにおいて、その絶縁層に含浸経路を生成し、樹脂注入速度をコイル内絶縁物に樹脂が浸透する速度以下にするVIP法をベースとした樹脂含浸方法が記載されている。しかし、この方法では、コイル内絶縁物に樹脂が浸透する時間が長時間かかることになり、樹脂の経時変化に伴うゲル化が進行してしまう。従って、樹脂粘性が大きくなり、コイル内への樹脂の浸透が損なわれる可能性がある。また、撹拌脱泡槽と注入弁の間の配管にある樹脂は撹拌されていないので、これをコイル内に注入すると固化しないゲル状になる問題もある。   Patent Document 2 discloses a resin impregnation based on the VIP method in which a coil having a large amount of an insulating layer generates an impregnation path in the insulating layer, and a resin injection speed is set to be equal to or less than a speed at which the resin penetrates the insulator in the coil. A method is described. However, in this method, it takes a long time for the resin to permeate the insulator in the coil, and the gelation with the aging of the resin proceeds. Therefore, the resin viscosity increases, and the penetration of the resin into the coil may be impaired. In addition, since the resin in the pipe between the stirring defoaming tank and the injection valve is not stirred, there is a problem that when it is injected into the coil, it does not solidify.

特許文献3には、基本的にはVIP法を用いるが、脱気槽には撹拌機はなく、真空中で樹脂を含浸槽に滴下して、超電導コイル内への樹脂含浸を行う方法が記載されている。その際、未含浸領域(ボイド)を回避するため、超電導コイルに回転力,軸方向振動,振動+圧縮力を加え、また、超電導コイルに交流電源,超音波発生装置を接続した含浸装置が記載されている。しかし、この方法では、脱気槽には撹拌機がないため、脱気が不十分ある。さらに、脱気槽下端の樹脂は、樹脂の高さ分の圧を受けており、その樹脂が真空中の第2含浸容器に滴下されると、その時点で樹脂中の溶存気体等が析出し、ボイドとなり樹脂中に存在することになる。このような樹脂をコイルに含浸した場合、コイル内に多量のボイドが入ることになる。また、脱気が不十分な樹脂に回転力,振動等を加えると、さらに樹脂中の溶存気体が析出し易いことになる等の問題がある。   Patent Document 3 basically uses the VIP method, but there is no stirrer in the deaeration tank, and a method is described in which resin is dropped into the impregnation tank in a vacuum and the resin is impregnated into the superconducting coil. Has been. At that time, in order to avoid the non-impregnated region (void), the impregnation device is described in which rotational force, axial vibration, vibration + compression force is applied to the superconducting coil, and AC power source and ultrasonic generator are connected to the superconducting coil. Has been. However, in this method, since there is no stirrer in the degassing tank, degassing is insufficient. Furthermore, the resin at the lower end of the deaeration tank is subjected to a pressure corresponding to the height of the resin, and when the resin is dropped into the second impregnation vessel in vacuum, dissolved gas or the like in the resin is deposited at that time. It becomes a void and exists in the resin. When such a resin is impregnated in the coil, a large amount of voids enter the coil. Further, when a rotational force, vibration, or the like is applied to a resin that is not sufficiently degassed, there is a problem that dissolved gas in the resin is likely to precipitate.

特許文献4には、基本的にはVIP法を用いるが、脱気槽には撹拌機がなく、巻胴に設けた孔から吸引し、コイル部の内外に圧力差を付け外周部から樹脂をコイル内に吸引含浸、硬化させる製法と製造装置が記載されている。しかし、この方法では、コイル部の内外に圧力差があり、吸引管接続部への樹脂流れが多く、コイル上部角部分に未含浸エリアが発生する可能性がある。また、注入される樹脂の溶存気体の飽和状態より吸引側が低い圧力となることから、コイル内に注入された樹脂から吸引側の圧力の飽和溶存気体との差分の気体が析出し、コイル内に残存する問題がある。また、脱気槽には撹拌機がないため、脱気が不十分となる問題もある。   In Patent Document 4, the VIP method is basically used, but the deaeration tank does not have a stirrer, and is sucked from a hole provided in the winding drum, and a pressure difference is applied to the inside and outside of the coil portion to introduce resin from the outer peripheral portion. A manufacturing method and a manufacturing apparatus for suction impregnation and curing in a coil are described. However, in this method, there is a pressure difference between the inside and outside of the coil portion, the resin flow to the suction pipe connecting portion is large, and an unimpregnated area may occur in the upper corner portion of the coil. In addition, since the suction side is at a lower pressure than the saturated state of the dissolved gas of the injected resin, a difference gas from the saturated dissolved gas of the suction side pressure is precipitated from the resin injected into the coil, There are remaining issues. Moreover, since there is no stirrer in the degassing tank, there is a problem that degassing becomes insufficient.

熱硬化性の樹脂を用いた場合、コイル内含浸が完了後に、温度を上昇させ、樹脂を硬化させる。したがって、樹脂含浸時間を知ることが重要となる。コイルへの樹脂含浸時間が不明のままに樹脂を含浸すると、コイルの構造によっては、未含浸領域がある状態で硬化したり、また、真空含浸状態を長時間維持し、樹脂中のボイド発生リスクを大きくするなどの問題がある。特許文献1〜4には、樹脂含浸時間を知るための記載がない。したがって、樹脂硬化工程への移行は曖昧となり、量産体制での樹脂含浸では問題が残る。   When a thermosetting resin is used, after the impregnation in the coil is completed, the temperature is raised and the resin is cured. Therefore, it is important to know the resin impregnation time. If the resin is impregnated without knowing the resin impregnation time in the coil, depending on the coil structure, the resin may be cured in a state where there is an unimpregnated region, or the vacuum impregnation state is maintained for a long time, resulting in the risk of void formation in the resin. There are problems such as increasing the size. In Patent Documents 1 to 4, there is no description for knowing the resin impregnation time. Therefore, the transition to the resin curing process becomes ambiguous, and problems remain with resin impregnation in a mass production system.

特開平11−154607号公報Japanese Patent Laid-Open No. 11-154607 特開2001−189226号公報JP 2001-189226 A 特開平5−152118号公報JP-A-5-152118 特開平9−283326号公報JP-A-9-283326

課題1:最近のMRI装置では、高解像度を達成するため、高磁場を発生させることができる密巻きコイルの開発が急務となっている。密巻きコイルとすると、コイル線間の隙間が非常に狭く、流動抵抗も大きくなる。したがって、VIP法である真空含浸では、コイル全体が含浸するまでの時間が長時間必要となり、未含浸およびボイドの残留が問題になる。この密巻きコイルでは、コイルに作用する電磁力も大きいため、コイル線間の隙間に微小ボイドが残留すると、そのボイドが発端で割れが発生し、コイルの移動に伴う摩擦熱によりクエンチが発生することになる。また、注入樹脂の主剤と硬化剤との混合が十分行われていないと、樹脂が固化しないために十分な強度を得ることができず、クエンチが発生することになる。したがって、コイル内樹脂強度が十分にあり、ボイドの残留を抑制した樹脂含浸法を構築する必要がある。特許文献1〜4もコイル内にボイドまたは未含浸領域を無くすための樹脂含浸法と考えられるが、幾つかの問題もあり、樹脂含浸技術が確立されていない。熱硬化性樹脂を用いる超電導コイルの樹脂含浸においては、樹脂含浸完了時間が重要となる。この樹脂含浸完了時間を知ることで、次の樹脂硬化工程に移行できることになる。この樹脂含浸完了時間が不明であると、コイル内での樹脂未含浸領域の発生および樹脂中でのボイドの発生を誘発することになる。   Problem 1: In recent MRI apparatuses, in order to achieve high resolution, there is an urgent need to develop a densely wound coil that can generate a high magnetic field. When a closely coiled coil is used, the gap between the coil wires is very narrow and the flow resistance is increased. Therefore, in the vacuum impregnation which is the VIP method, a long time is required until the entire coil is impregnated, and unimpregnation and voids remain a problem. In this tightly wound coil, the electromagnetic force acting on the coil is also large, so if a minute void remains in the gap between the coil wires, the void will crack at the beginning, and quenching will occur due to frictional heat accompanying the movement of the coil become. Further, if the main component of the injected resin and the curing agent are not sufficiently mixed, the resin is not solidified, so that sufficient strength cannot be obtained, and quenching occurs. Therefore, it is necessary to construct a resin impregnation method in which the resin strength in the coil is sufficient and the residual voids are suppressed. Although Patent Documents 1 to 4 are also considered as resin impregnation methods for eliminating voids or unimpregnated regions in the coil, there are some problems, and no resin impregnation technique has been established. In resin impregnation of a superconducting coil using a thermosetting resin, the resin impregnation completion time is important. By knowing the resin impregnation completion time, it is possible to shift to the next resin curing step. If the resin impregnation completion time is unknown, generation of a resin non-impregnated region in the coil and generation of voids in the resin are induced.

課題2:特許文献1〜4には、個々のコイルへの樹脂含浸方法の記載があるが、1台のMRIに使用する俵積み密巻きコイルには、メインコイル,シールドコイル等大きさの異なるコイルがあり、これらを個々に製作すると、膨大な時間と費用が必要となる。すなわち、量産化に向けて、樹脂含浸時間の短縮及びコスト低減の対策が成されていないという課題もある。また、樹脂含浸装置の扱い易さ,分解・清掃のし易さ等の対策が成されていない課題もある。   Problem 2: In Patent Documents 1 to 4, there is a description of a resin impregnation method for each coil. However, a main coil, a shield coil, and the like are different in size in a densely wound coil used for one MRI. There are coils, and if these are manufactured individually, enormous time and cost are required. That is, there is a problem that measures for shortening the resin impregnation time and cost are not taken for mass production. In addition, there are problems in which measures such as ease of handling, disassembly and cleaning of the resin impregnation apparatus have not been taken.

本発明の目的は、超電導コイル内のボイドの残留を回避しクエンチの発生を抑制することができる超伝導コイルの樹脂含浸方法を提供することにある。   An object of the present invention is to provide a resin impregnation method for a superconducting coil that can prevent the void from remaining in the superconducting coil and suppress the occurrence of quenching.

環状の収納部を備える収納容器に環状の超伝導コイルを収納し、その後、収納部に樹脂を注入して超伝導コイルに樹脂を含浸させる超電導コイルの樹脂含浸方法であって、収納部の上面は、水平面に対して傾斜した溝を有し、収納部への樹脂の注入が完了した後、収納部内の前記樹脂に圧力振動を加える。   A superconducting coil resin impregnation method in which an annular superconducting coil is housed in a housing container having an annular housing portion, and then the resin is injected into the housing portion to impregnate the superconducting coil with the resin. Has a groove inclined with respect to the horizontal plane, and applies pressure vibration to the resin in the storage section after the injection of the resin into the storage section is completed.

本発明によれば、本発明の目的は、超電導コイル内のボイドの残留を回避しクエンチの発生を抑制することができる超伝導コイルの樹脂含浸方法を提供することができる。   According to the present invention, an object of the present invention is to provide a resin impregnation method for a superconducting coil that can prevent the void from remaining in the superconducting coil and suppress the occurrence of quenching.

課題1,2には、それぞれ幾つかの異なる課題があるので、まず、それぞれの課題および解決手段を列記する。   Since the issues 1 and 2 have several different issues, first, each issue and solving means are listed.

課題1−1:超電導コイルに含浸する樹脂中に溶存気体を発生源とするボイドが混在する。この樹脂を超電導コイルに含浸すると、コイル内にボイドが残留する。   Problem 1-1: Voids using dissolved gas as a source are mixed in the resin impregnated in the superconducting coil. When this resin is impregnated into the superconducting coil, voids remain in the coil.

課題1−1の解決手段:樹脂中の水分および溶剤中に含まれる溶存気体の析出は、溶存気体の飽和状態で規定される。つまり、樹脂温度を一定とし、樹脂含浸前の真空脱気での真空度より、コイルへの樹脂含浸時の真空度を真空脱気同等か若干下げることで不飽和状態とし、注入樹脂中の溶存気体の析出を抑える。しかし、この対策でも、真空度を真空脱気同等か若干下げることで、コイル内樹脂含浸領域には若干の気体が混在する可能性がある。この気体をコイル外に排出する手段として、コイル上部のFRPスペーサ(コイルを収納する収納容器内部の上部)に傾斜を有する溝を設け、ボイドがコイル外に排出し易くする。さらに、コイル内樹脂含浸完了後に加圧・減圧の変化を加え、圧力差により残留ボイドに変化を加え、ボイドをコイル外に排出する。これによって、コイル内のボイドの残留を抑制する。   Solution to Problem 1-1: Precipitation of water in the resin and dissolved gas contained in the solvent is defined by the saturated state of the dissolved gas. In other words, the resin temperature is kept constant, and the degree of vacuum at the time of resin impregnation into the coil is reduced to the same level or slightly lower than the degree of vacuum at the time of resin degassing before resin impregnation, so that it is unsaturated and dissolved in the injected resin. Suppresses gas precipitation. However, even with this measure, there is a possibility that a slight amount of gas may be mixed in the resin-impregnated region in the coil by reducing the degree of vacuum to a level equivalent to or slightly lowering the vacuum. As a means for discharging this gas out of the coil, a groove having an inclination is provided in the FRP spacer (upper part inside the storage container for storing the coil) above the coil so that the void is easily discharged out of the coil. Further, after the resin impregnation in the coil is completed, the pressure is changed and the pressure is reduced, the residual void is changed due to the pressure difference, and the void is discharged out of the coil. This suppresses residual voids in the coil.

課題1−2:密巻きコイルは、コイル線間の隙間が非常に狭く、流動抵抗も大きくなる。したがって、VIP法である真空含浸では、コイル全体を含浸するまでの時間が長時間となり、未含浸および減圧により発生する溶存気体の析出によるボイドの残留が問題になる。   Problem 1-2: The closely wound coil has a very narrow gap between the coil wires and a large flow resistance. Therefore, in the vacuum impregnation that is the VIP method, it takes a long time until the entire coil is impregnated, and the remaining of voids due to unimpregnation and precipitation of dissolved gas generated by decompression becomes a problem.

課題1−2の解決手段:含浸容器への樹脂注入時は真空を保つが、できるだけ早く樹脂液位をコイル上部の規定液位とし、即加圧含浸に移行する樹脂注入法を採用する。これによって、コイル内の真空保持時間が短くなり、コイル内部での減圧によるボイド発生のリスクを小さくできる。   Solution for Problem 1-2: A resin injection method is adopted in which a vacuum is maintained at the time of resin injection into the impregnation container, but the resin liquid level is set to the specified liquid level at the top of the coil as soon as possible and the process immediately shifts to pressure impregnation. Thereby, the vacuum holding time in the coil is shortened, and the risk of void generation due to the reduced pressure in the coil can be reduced.

課題1−3:コイルの樹脂含浸に使用される樹脂である熱硬化性樹脂は、コイル内が樹脂含浸されてから、温度を上げ、硬化工程に入るが、コイル内含浸時間を把握していないと、何時硬化のための温度・圧力変化をさせてよいかが分からないことになる。このことから、早めに硬化工程に以降し、未含浸領域がある状態で固化してしまう可能性がある。   Problem 1-3: The thermosetting resin, which is a resin used for resin impregnation of the coil, increases the temperature after the resin is impregnated in the coil and enters the curing process, but does not know the impregnation time in the coil And it is unclear when the temperature and pressure change for curing can be performed. For this reason, there is a possibility that after the curing process, the solidification occurs in a state where there is an unimpregnated region.

課題1−3の解決手段:未含浸領域を無くすために重要となるのは、コイル内含浸時間を把握することである。密巻き俵積みコイルでは、3本のコイル線の中央にできる隙間の流路に樹脂が流入する。この流路に流入する流量Qは、管内層流摩擦損失の式(1)をベースに、発明者の検討により新たに発明した(2)式で導出することができる。   Solution for Problem 1-3: It is important to grasp the impregnation time in the coil in order to eliminate the unimpregnated region. In the closely wound coiled coil, the resin flows into a flow path in a gap formed at the center of the three coil wires. The flow rate Q flowing into the flow path can be derived from the formula (2) newly invented by the inventors based on the formula (1) of the laminar friction loss in the pipe.

ΔP=64/Re×L/D×(ρV2/2g) …(1)
Q={√(1/(64/Re×L/(D×α)×1/2g×ρ/ΔP))×A}×β…(2)
ΔP:流路の圧力損失,Re:レイノルズ数,L:流路長さ,D:流路径(等価直径),ρ:流体密度,V:流速,g:重力の加速度,A:流路面積,β:コイル流入口数,α:巻き線張力で変わる等価直径の補正係数
(2)式を用いて、時々刻々変わる樹脂含浸状態での樹脂流入量Qを計算し、樹脂流入量Qの積算値がコイルの樹脂含浸容積と同等になったら樹脂含浸が終了したことになる。この樹脂含浸の終了時間が樹脂含浸時間となる。この樹脂含浸時間は樹脂含浸工程のベースとなるものであり、樹脂含浸時間が分かると、樹脂の温度,圧力管理ができることになる。その結果、矛盾のない樹脂含浸工程を組むことができる。
ΔP = 64 / Re × L / D × (ρV 2 / 2g) ... (1)
Q = {√ (1 / (64 / Re × L / (D × α) × 1/2 g × ρ / ΔP)) × A} × β (2)
ΔP: pressure loss of the flow path, Re: Reynolds number, L: flow path length, D: flow path diameter (equivalent diameter), ρ: fluid density, V: flow velocity, g: acceleration of gravity, A: flow path area, β: Number of coil inlets, α: Equivalent diameter correction coefficient that changes with winding tension Using equation (2), the resin inflow amount Q in the resin impregnation state that changes from time to time is calculated, and the integrated value of the resin inflow amount Q is The resin impregnation is completed when the volume is equal to the resin impregnation volume of the coil. The resin impregnation time is the resin impregnation time. This resin impregnation time is a base of the resin impregnation process, and if the resin impregnation time is known, the temperature and pressure of the resin can be controlled. As a result, a resin impregnation step without contradiction can be assembled.

課題1−4:密巻きコイルでは、コイル内の樹脂含浸隙間が非常に狭く樹脂含浸時の圧力損失が大きい。そのため、流入量が制限され、含浸時間が長時間となる。さらに、含浸する熱硬化性樹脂は、時間経過と共に短い時間で粘性が大きくなり、ゲル化する。これによって、コイル内での流動抵抗が増え、流入量が減少する。したがって、コイル内含浸時間を短くし、ゲル化前にコイル内への樹脂含浸を完了させる必要がある。   Problem 1-4: In a closely wound coil, the resin impregnation gap in the coil is very narrow and the pressure loss during resin impregnation is large. Therefore, the inflow amount is limited and the impregnation time is long. Furthermore, the thermosetting resin to be impregnated becomes viscous and gels in a short time with time. This increases the flow resistance in the coil and reduces the inflow. Therefore, it is necessary to shorten the impregnation time in the coil and complete the resin impregnation into the coil before gelation.

課題1−4の解決手段:(2)式を用いて、含浸時間に影響を及ぼす因子である巻き線張力、注入口数について解析し、これらをコイル体系に反映させ、樹脂硬化工程との矛盾の回避を行い、一連の樹脂含浸工程を決定する。たとえば、樹脂含浸時間が長くなる場合は、コイル上下部のFRPスペーサに樹脂注入口である溝を多数設けることで、コイルへの樹脂含浸時間を短くする。また、コイル張力を小さくしてコイル線間をルーズにすることにより、等価直径も大きくなり、樹脂が流入し易くなる。   Solution for Problem 1-4: Using equation (2), analyze the winding tension and the number of inlets, which are factors affecting the impregnation time, reflect these in the coil system, and contradict the resin curing process. Avoiding and determining a series of resin impregnation steps. For example, when the resin impregnation time becomes long, the resin impregnation time for the coil is shortened by providing a large number of grooves serving as resin injection ports in the FRP spacers at the upper and lower portions of the coil. Moreover, by reducing the coil tension to loosen the space between the coil wires, the equivalent diameter increases and the resin easily flows.

課題1−5:真空脱気容器下方の樹脂注入配管には、注入樹脂の主剤,硬化剤の混合が十分行われていない樹脂液が溜まる可能性がある。この樹脂液がコイル内に注入されると、樹脂が固化しないため十分な強度が得られず、クエンチ現象の発生原因となる。   Problem 1-5: There is a possibility that a resin liquid in which the main component of the injected resin and the curing agent are not sufficiently mixed is accumulated in the resin injection pipe below the vacuum deaeration container. When this resin liquid is injected into the coil, the resin is not solidified, so that sufficient strength cannot be obtained, causing a quench phenomenon.

課題1−5の解決手段:真空脱気後にコイル含浸容器へ樹脂を注入するとき、真空脱気容器下方の樹脂注入配管に設けてある弁の直上にある上流側ドレーン管の弁を開け、真空脱気容器下方の樹脂注入配管内部に溜まっている未脱気の樹脂剤をドレーンタンクに排出する。これによって、樹脂注入配管内部には、真空脱気後の樹脂が入れ替わり溜まることになる。   Solution for Problem 1-5: When injecting resin into the coil impregnation vessel after vacuum deaeration, the valve on the upstream drain pipe immediately above the valve provided in the resin injection pipe below the vacuum deaeration vessel is opened and vacuum is applied. Undeaerated resin agent accumulated in the resin injection pipe below the deaeration container is discharged to the drain tank. As a result, the resin after vacuum deaeration is exchanged and accumulated in the resin injection pipe.

課題2−1:MRI装置に使用するコイルには、メインコイル,シールドコイル等大きさの異なるコイルがあり、これらを個々に1台の樹脂含浸装置で製作すると、膨大な時間と費用が必要となる。すなわち、量産化に向けて、樹脂含浸時間の短縮及びコスト低減の対策が成されていない。   Problem 2-1: Coils used in the MRI apparatus include coils having different sizes such as a main coil and a shield coil, and if these are individually manufactured by one resin impregnation apparatus, enormous time and cost are required. Become. That is, no measures for shortening the resin impregnation time and cost are taken for mass production.

課題2−1の解決手段:1台のMRI装置に使用するメインコイル,シールドコイル等、大きさの異なるコイルをその形状に合わせた複数のダッチオーブン型樹脂含浸容器を用いるとともに、それぞれのコイルの樹脂含浸時間を(2)式で計算して含浸工程を決定し、それぞれの樹脂含浸を同時に行う樹脂含浸装置とする。この装置では、注入樹脂の真空脱気部を共通とする。これによって、各種コイルの樹脂含浸時間の短縮及び電熱費等のコスト削減ができる。   Solution for Problem 2-1: Using a plurality of Dutch oven type resin impregnated containers in which different sizes of coils, such as a main coil and a shield coil used in one MRI apparatus, are matched to the shape thereof, and resin for each coil The impregnation time is determined by the equation (2) to determine the impregnation step, and the resin impregnation apparatus performs the respective resin impregnation simultaneously. In this apparatus, a common vacuum deaeration part of the injected resin is used. As a result, the resin impregnation time of various coils can be shortened and costs such as electric heating costs can be reduced.

課題2−2:樹脂含浸装置の扱い易さ,分解・清掃のし易さ等の対策が成されていない。   Problem 2-2: Measures such as ease of handling and disassembly / cleaning of the resin impregnation apparatus are not taken.

課題2−2の解決手段:本発明による樹脂含浸装置では、配管類や容器間の接続は、取り外しが簡単なフランジ及びねじ込み継ぎ手等で構成しており、真空脱気容器及び樹脂注入配管は、含浸容器に樹脂注入後、即取り外しができる構成となっている。従って、樹脂が固まらない状態で各部品を取り外して洗浄することができる。また、樹脂含浸真空容器と樹脂含浸容器とを別ものとすることで、樹脂硬化後のコイルを簡単に取り出すことができる。したがって、次の樹脂含浸工程への移行がスムーズにでき、時間,コスト削減に寄与することができる。   Solution for Problem 2-2: In the resin impregnation apparatus according to the present invention, the connection between the pipes and the container is constituted by a flange and a screwed joint that can be easily removed, and the vacuum deaeration container and the resin injection pipe are After the resin is poured into the impregnation container, it can be removed immediately. Therefore, each part can be removed and cleaned in a state where the resin does not harden. Moreover, the coil after resin hardening can be easily taken out by making a resin impregnation vacuum container and a resin impregnation container different. Therefore, the transition to the next resin impregnation step can be performed smoothly, which can contribute to time and cost reduction.

上記課題1,2及び解決手段1,2を纏めると以下のようになる。つまり、課題1は、1)真空含浸時に発生する溶存気体によるボイドがコイル内に混入すること、2)密巻きコイルのようにコイル線管の隙間が非常に狭く圧力損失も大きいものでは、真空条件で樹脂含浸する場合、樹脂の含浸に長時間を必要とし、コイル内での樹脂未含浸および減圧により発生する溶存気体の析出によるボイドの残留が生じること、3)含浸する熱硬化性樹脂は、時間経過と共に短い時間で粘性が大きくなり、ゲル化すること、4)コイルの樹脂含浸に使用される樹脂である熱硬化性樹脂は、コイル内が樹脂含浸されてから、温度を上げ、硬化工程に入るが、コイル内含浸完了時間が把握できていないと、5)樹脂混合・脱気装置からの樹脂注入管内の樹脂は、樹脂の主剤,硬化剤の混合・脱気が十分行われないことである。   The problems 1 and 2 and the solving means 1 and 2 are summarized as follows. That is, the problem 1 is that 1) a void caused by dissolved gas generated during vacuum impregnation is mixed in the coil, and 2) a coil wire tube with a very narrow gap and a large pressure loss, such as a closely wound coil, When the resin is impregnated under the conditions, it takes a long time for the resin to be impregnated, and the voids remain due to the unimpregnated resin in the coil and precipitation of dissolved gas generated by the reduced pressure. 3) The thermosetting resin to be impregnated is 4) The thermosetting resin that is used for resin impregnation of the coil is heated and cured after the coil is impregnated with the resin. 5) If the completion time of impregnation in the coil is not grasped, 5) The resin in the resin injection tube from the resin mixing / degassing device is not sufficiently mixed / degassed with the resin main agent and curing agent. Is that .

課題1を解決ためのする解決手段1は、以下の通りである。つまり、1)コイル上部のFRPスペーサに傾斜の付いた溝を多数設け、ボイドを排出し易くする。さらに、コイル内樹脂含浸完了後に加圧・減圧の急激な変化を加え、その圧力差で残留ボイドに変化を加え、コイル外に排出する。加圧・減圧の変化を加えるために、樹脂含浸容器をできるだけ小さな容器とし、加圧・減圧の急激な変化をもたらすことができるようにする。2)VIP法である真空含浸をメインとするのではなく、含浸容器への樹脂注入時は真空を保つが、できるだけ早く樹脂液位をコイル上部の規定液位とし、即加圧含浸に移行する樹脂注入法を採用する。3)コイル上下部のFRPスペーサに樹脂注入口である溝を多数設けることで、コイルへの樹脂含浸時間を短くする。4)コイル内に流入する流量を(2)式により導出して樹脂含浸時間を決定する。5)樹脂含浸装置として、真空脱気容器下方の樹脂注入配管に設けてある弁の直上にある上流側ドレーン管の弁を開け、真空脱気容器下方の樹脂注入配管内部に溜まっている未脱気の樹脂剤をドレーンタンクに排出する構成とする。   Solution means 1 for solving Problem 1 is as follows. That is, 1) A large number of inclined grooves are provided in the FRP spacer at the top of the coil to facilitate the discharge of voids. Furthermore, after the resin impregnation in the coil is completed, a sudden change of pressurization / depressurization is applied, and the residual void is changed by the pressure difference, and discharged outside the coil. In order to apply a change in pressure and pressure, the resin impregnated container is made as small as possible so that a sudden change in pressure and pressure can be brought about. 2) Instead of using vacuum impregnation, which is the VIP method, the vacuum is maintained when the resin is poured into the impregnation vessel, but the resin liquid level is set to the specified liquid level at the top of the coil as soon as possible, and the process immediately shifts to pressure impregnation. Adopt resin injection method. 3) The resin impregnation time for the coil is shortened by providing a large number of grooves as resin injection ports in the FRP spacers at the upper and lower portions of the coil. 4) Determining the resin impregnation time by deriving the flow rate flowing into the coil by the equation (2). 5) As a resin impregnation device, open the valve on the upstream drain pipe immediately above the valve provided in the resin injection pipe below the vacuum degassing container, and keep the undegassed inside the resin injection pipe below the vacuum degassing container. The resin composition is discharged to the drain tank.

課題2は、1)MRI装置に使用する密巻きコイルは、メインコイル,シールドコイル等大きさの異なる多種多様なコイルがあり、これらのコイルを1台の樹脂含浸装置で個々に製作すると、膨大な時間と費用を必要とすること、2)樹脂含浸装置の扱い易さ,分解・清掃のし易さ等の対策が成されていないことである。   Problem 2 is: 1) The closely wound coils used in the MRI apparatus include a wide variety of coils such as a main coil and a shield coil, and if these coils are individually manufactured with a single resin impregnating apparatus, it is enormous. 2) The measures for handling the resin impregnating device and the ease of disassembling / cleaning are not taken.

課題2を解決するための解決手段2は、以下の通りである。つまり、1)大きさの異なる多種多様なコイル形状に合わせたダッチオーブン型樹脂含浸容器を用いて、それぞれのコイルの樹脂含浸を同時に行う樹脂含浸装置とする。この装置では、注入樹脂の真空脱気部を共通とする。2)樹脂含浸装置の配管類や容器間の接続は、取り外しが簡単なフランジ,ねじ込み継ぎ手等で構成する。真空脱気容器及び樹脂注入配管は、含浸容器に樹脂注入後、即取り外しができる構成とする。樹脂含浸真空容器と樹脂含浸容器とを別ものとすることで、樹脂硬化後のコイルの取り出しを簡単にできる構造とする。   Solution means 2 for solving Problem 2 is as follows. That is, 1) A resin impregnation apparatus that simultaneously impregnates each coil with a resin by using a Dutch oven type resin impregnation container having various coil shapes with different sizes. In this apparatus, a common vacuum deaeration part of the injected resin is used. 2) The pipes and containers of the resin impregnation equipment are connected with flanges, screwed joints, etc. that are easy to remove. The vacuum deaeration container and the resin injection pipe are configured so that they can be removed immediately after the resin is injected into the impregnation container. By making the resin-impregnated vacuum container and the resin-impregnated container different from each other, a structure in which the coil after the resin is cured can be easily taken out.

本発明によれば、超電導材を用いた超電導コイルにおいて、コイル未含浸を回避した高性能なクエンチレスコイルとすることができ、かつ、超電導コイルの量産化に適した樹脂含浸装置を提供することができる。   According to the present invention, a superconducting coil using a superconducting material can be a high-performance quenchless coil that avoids coil non-impregnation, and provides a resin impregnation apparatus suitable for mass production of superconducting coils. Can do.

図1に本発明による超電導コイルへの樹脂含浸装置の全体構成を示す。樹脂含浸方法は、基本的には、加圧含浸法によるオートクレイブ成形である。まず、超電導コイルへの樹脂含浸装置の概要を構成を説明する。超電導コイルへの樹脂含浸装置は、樹脂の混合・脱気を行う1つの混合・脱気装置1と、混合・脱気が完了した樹脂をコイルに含浸する複数のダッチオーブン型樹脂含浸装置2a,2bと、これらの装置の真空・加圧を行う真空配管系統3,加圧配管系統4及び各装置の状態を把握するための計測系とから構成される。   FIG. 1 shows the overall configuration of a resin impregnation apparatus for superconducting coils according to the present invention. The resin impregnation method is basically autoclave molding by a pressure impregnation method. First, the configuration of the outline of the resin impregnation apparatus for the superconducting coil will be described. The resin impregnation device for the superconducting coil includes one mixing / degassing device 1 for mixing and degassing the resin, and a plurality of Dutch oven type resin impregnation devices 2a and 2b for impregnating the coil with the mixed and degassed resin. And a vacuum piping system 3 that performs vacuum and pressurization of these devices, a pressure piping system 4, and a measurement system for grasping the state of each device.

ここで、配管系設置機器の記号について説明する。弁類でVV−nは真空系の弁、PV−nは加圧系の弁、IV−nは樹脂注入系の弁、DV−nはドレーン弁、AV−nは空気開放系の弁である。計測計としては、PGが歪み式圧力計、PB−nがブルドン管式圧力計(負圧表示有)、VGが真空計、Tnが熱電対温度計である。ヒータの制御系としては、TCは温度コントローラ、LCは出力電力コントローラである。   Here, the symbols of the piping system installation equipment will be described. VV-n is a vacuum system valve, PV-n is a pressurization system valve, IV-n is a resin injection system valve, DV-n is a drain valve, and AV-n is an air release system valve. . As a measuring meter, PG is a strain pressure gauge, PB-n is a Bourdon tube pressure gauge (with negative pressure display), VG is a vacuum gauge, and Tn is a thermocouple thermometer. As a heater control system, TC is a temperature controller, and LC is an output power controller.

真空・加圧配管系統について説明する。真空系は、真空ポンプ5により真空を維持され、その系統は、真空弁VV−3を経由して混合・脱気装置1の真空容器6に接続されているもの、真空弁VV−4,5を経由してダッチオーブン型樹脂含浸装置2a,2bのダッチオーブン型樹脂含浸容器7a,7bに接続されているもの、真空弁VV−6を経由して他のダッチオーブン型樹脂含浸装置(図示せず)に接続されているものがある。   The vacuum / pressure piping system will be described. The vacuum system is maintained at a vacuum by a vacuum pump 5, and the system is connected to the vacuum vessel 6 of the mixing / degassing device 1 via the vacuum valve VV-3, vacuum valves VV-4, 5 Connected to the Dutch oven type resin impregnation vessel 7a, 7b of the Dutch oven type resin impregnation device 2a, 2b, to another Dutch oven type resin impregnation device (not shown) via the vacuum valve VV-6. Some are connected.

加圧配管系は、高圧乾燥空気ボンベ8(コンプレッサでも可)から供給される気体により加圧するもので、その系統は、加圧弁PV−3を経由して、混合・脱気装置1の真空容器6に供給されているもの、加圧弁PV−4,5を経由してダッチオーブン型樹脂含浸装置2a,2bのダッチオーブン型樹脂含浸容器7a,7bに供給されているもの、加圧弁PV−6を経由して他のダッチオーブン型樹脂含浸装置(図示せず)に供給されているものがある。   The pressurization piping system pressurizes with a gas supplied from a high-pressure dry air cylinder 8 (which may be a compressor), and the system is a vacuum container of the mixing / deaeration device 1 via a pressurization valve PV-3. 6, supplied through the pressurizing valves PV-4, 5 to the Dutch oven type resin impregnation apparatuses 7a, 7b of the Dutch oven type resin impregnating apparatuses 2a, 2b, via the pressurizing valve PV-6 Some of them are supplied to other Dutch oven type resin impregnation apparatuses (not shown).

混合・脱気装置1からダッチオーブン型樹脂含浸容器7a,7bへの樹脂供給系統は、樹脂注入弁IV−3を経由して樹脂供給弁IV−4によりダッチオーブン型樹脂含浸装置2aへの樹脂を供給する系統,樹脂供給弁IV−5によりダッチオーブン型樹脂含浸装置2bへの樹脂を供給する系統,樹脂供給弁IV−6により他のダッチオーブン型樹脂含浸装置(図示せず)に樹脂を供給する系統がある。この系統は、スウェージロック継手を使用しており、取り付け・取り外しが簡単にできるものである。この系統の弁であるIV−3,IV−4,IV−5,IV−6には、弁の上流かつ弁の近傍に、ドレーン弁(DV−1,DV−2,DV−3)が設けられる。ここで、ドレーン弁DV−1は、混合・脱気装置1で混合・脱気された樹脂を注入する際、樹脂供給系統配管に最初に残留する混合・脱気が不十分な樹脂を抜き出すのに使用する。また、ドレーン弁DV−1は、ダッチオーブン型樹脂含浸容器7a,7bへの樹脂注入が完了した後に、混合・脱気装置1で余った樹脂をドレーンするのに使用する。さらに、注入樹脂の粘性をチェックするサンプリング管も備える。ダッチオーブン型樹脂含浸容器7a,7bへの樹脂注入が完了して樹脂供給弁IV−4,IV−5を閉止した後、樹脂供給弁IV−4,IV−5の上流近傍にあるドレーン弁DV−2,DV−3を開放して、まだ樹脂が液体の状態の時に管内に溜まった樹脂をドレーンする。なお、この樹脂注入系統の管外側には、ヒータ9及び熱電対温度計10が設けられており、管を通過する樹脂の温度を規定の温度に制御する。   The resin supply system from the mixing / degassing apparatus 1 to the Dutch oven type resin impregnation containers 7a and 7b supplies the resin to the Dutch oven type resin impregnation apparatus 2a through the resin injection valve IV-3 and the resin supply valve IV-4. A system for supplying resin to the Dutch oven type resin impregnation apparatus 2b by the resin supply valve IV-5, and a system for supplying resin to another Dutch oven type resin impregnation apparatus (not shown) by the resin supply valve IV-6. is there. This system uses a swage lock joint and can be easily attached and detached. Drain valves (DV-1, DV-2, DV-3) are provided upstream of the valve and in the vicinity of the valve in IV-3, IV-4, IV-5, IV-6, which are valves of this system. It is done. Here, when the drain valve DV-1 injects the resin mixed and degassed by the mixing and degassing device 1, the drain valve DV-1 first extracts the resin that is insufficiently mixed and degassed first in the resin supply system piping. Used for. The drain valve DV-1 is used for draining excess resin in the mixing / degassing apparatus 1 after the resin injection into the Dutch oven type resin impregnation containers 7a and 7b is completed. Furthermore, a sampling tube for checking the viscosity of the injected resin is also provided. After the resin injection into the Dutch oven type resin impregnated containers 7a and 7b is completed and the resin supply valves IV-4 and IV-5 are closed, the drain valve DV- in the vicinity of the upstream of the resin supply valves IV-4 and IV-5 is provided. 2, DV-3 is opened, and the resin accumulated in the pipe is drained when the resin is still in a liquid state. In addition, the heater 9 and the thermocouple thermometer 10 are provided in the pipe | tube outer side of this resin injection | pouring system, and the temperature of the resin which passes a pipe | tube is controlled to regulation temperature.

このような注入系統構成とすることで、樹脂注入時の温度管理,樹脂注入初期の混合・脱気不足の樹脂の排出ができる。また、樹脂が液体で付着している状態での解体、つまり、樹脂供給弁IV−4,IV−5を閉止後、その上流側の解体をすぐに行うことがきる。したがって、付着している樹脂を固化させることがない。また、加圧含浸に移行したとき、大気圧状態で樹脂供給弁IV−4,IV−5を外し、その下流の配管に閉止栓を取り付けることで、樹脂供給弁IV−4,IV−5を洗浄することができる。したがって、樹脂が液体の状態で洗浄することができるので、溶剤による洗浄を容易に行うことができる等の効果がある。   By adopting such an injection system configuration, it is possible to control the temperature at the time of resin injection, and discharge the resin that is insufficiently mixed and degassed at the initial stage of resin injection. Further, the disassembly in a state where the resin is attached as a liquid, that is, the upstream disassembly can be performed immediately after the resin supply valves IV-4 and IV-5 are closed. Therefore, the adhering resin is not solidified. Moreover, when it transfers to pressurization impregnation, resin supply valve IV-4, IV-5 is removed by removing resin supply valve IV-4, IV-5 in an atmospheric pressure state, and attaching a stopper plug to the downstream piping. Can be washed. Therefore, since the resin can be washed in a liquid state, there is an effect that washing with a solvent can be easily performed.

つぎに、熱硬化性樹脂の特性について説明する。図2に樹脂含浸工程での温度と樹脂粘性との関係を示す。図2において、横軸は脱気過程からの経過時間を、縦軸は温度と粘性を示す。熱硬化性樹脂を用いた通常のコイル樹脂含浸では、樹脂の混合(主剤・硬化剤)・脱気後、温度を含浸温度に維持し、コイルへの含浸を行う。その後、第一硬化温度,第二硬化温度に上昇させ、樹脂を硬化させる。熱硬化性樹脂は、コイルへの含浸温度に維持した状態でも経時変化によりゲル化が起こり、粘性が上昇する。そのため、樹脂含浸時において、コイル内の圧力損失が大きくなり、流入量が制限される。このように含浸時間が長くなると、コイル内に未含浸領域が発生することになる。   Next, the characteristics of the thermosetting resin will be described. FIG. 2 shows the relationship between temperature and resin viscosity in the resin impregnation step. In FIG. 2, the horizontal axis represents the elapsed time from the deaeration process, and the vertical axis represents temperature and viscosity. In normal coil resin impregnation using a thermosetting resin, the temperature is maintained at the impregnation temperature after resin mixing (main agent / curing agent) and deaeration, and the coil is impregnated. Thereafter, the resin is cured by raising the temperature to the first curing temperature and the second curing temperature. Even when the thermosetting resin is maintained at the temperature of impregnation into the coil, gelation occurs due to aging and the viscosity increases. Therefore, when the resin is impregnated, the pressure loss in the coil becomes large, and the inflow amount is limited. Thus, when the impregnation time becomes long, an unimpregnated region is generated in the coil.

したがって、短時間(約10時間程度)でコイルへの樹脂の含浸を完了させるのが望ましい。つまり、樹脂含浸装置においては、短時間でコイルへの樹脂含浸が完了する装置とする必要があること、さらには、最適な樹脂含浸方法が必要となる。   Therefore, it is desirable to complete the impregnation of the resin into the coil in a short time (about 10 hours). That is, the resin impregnation apparatus needs to be an apparatus that completes the resin impregnation into the coil in a short time, and furthermore, an optimum resin impregnation method is required.

このような構想の下で発明者が検討した混合・脱気装置1とダッチオーブン型樹脂含浸装置2a,2bの詳細を以下に説明する。   Details of the mixing / degassing device 1 and the Dutch oven type resin impregnation devices 2a and 2b studied by the inventors under such a concept will be described below.

まず、図3に示す混合・脱気装置1について説明する。混合・脱気装置1の構造は、主に上部がフランジ構造と成っている真空・加圧容器11と、その内部に収納する撹拌樹脂溜容器12と、その撹拌樹脂溜容器12に溜める樹脂62を撹拌する撹拌機13とからなる。ここで、真空・加圧容器11の上部フランジには、撹拌機の駆動装置13,覗き窓
14,樹脂主剤注入系15,樹脂硬化剤注入系16,真空系3,加圧系4が取り付けられている。また、真空系3,加圧系4が合流した配管には、その系統の圧力を知るためのブルドン管圧力計17が取り付けられている。樹脂主剤注入系15,樹脂硬化剤注入系16の先端は、撹拌樹脂溜容器12内に樹脂剤が流入できるように導かる構造となっている。撹拌樹脂溜容器12内には、撹拌機の羽18が設置されている。また、撹拌樹脂溜容器
12外側には、樹脂温度を維持するためのヒータ19と熱電対温度計20(T14)が設置されている。この温度は外部の温度コントローラ21及び出力電力コントロ−ラ22により制御される。ここで、熱電対(T14,T15)及びヒータ19の電線は、真空漏れを回避するため、真空を維持できる端子接続フランジ23を経由して外部に導出される。なお、熱電対(T14,T15)はデータ処理装置100に接続され、監視される。
First, the mixing / degassing apparatus 1 shown in FIG. 3 will be described. The structure of the mixing / degassing device 1 includes a vacuum / pressurized container 11 mainly having a flange structure at the top, an agitating resin reservoir 12 accommodated therein, and a resin 62 accumulated in the agitating resin reservoir 12. And an agitator 13 for agitating. Here, to the upper flange of the vacuum / pressure vessel 11, a stirrer drive device 13, a viewing window 14, a resin main agent injection system 15, a resin hardener injection system 16, a vacuum system 3, and a pressure system 4 are attached. ing. Further, a Bourdon tube pressure gauge 17 is attached to the pipe where the vacuum system 3 and the pressurizing system 4 are joined to know the pressure of the system. The leading ends of the resin main agent injection system 15 and the resin curing agent injection system 16 have a structure that guides the resin agent into the stirred resin reservoir 12. Agitator blades 18 are installed in the agitation resin reservoir 12. In addition, a heater 19 and a thermocouple thermometer 20 (T14) for maintaining the resin temperature are installed outside the stirring resin reservoir 12. This temperature is controlled by an external temperature controller 21 and an output power controller 22. Here, in order to avoid vacuum leakage, the thermocouples (T14, T15) and the wires of the heater 19 are led to the outside via the terminal connection flange 23 that can maintain a vacuum. The thermocouples (T14, T15) are connected to the data processing apparatus 100 and monitored.

また、撹拌機の駆動装置13の構造は、図3−1のA部詳細図に示すように、モータ構造であり、撹拌シャフト24をベアリング25で受け、撹拌シャフト24と回転子コイル26とが一体となったものを外部コイル27で駆動し、回転子コイル25をステンレス壁28で隔離した構造となっている。また、取付フランジ29,30は、真空漏れを回避するため、オーリング31でシールされている。混合・脱気装置1の構造は、樹脂を使用することから、分解・洗浄ができる構造とし、かつ、真空状態を維持できるものにしなければならない。つまり、撹拌樹脂溜容器12は、外部に取り出して洗浄する必要がある。   Further, the structure of the stirrer driving device 13 is a motor structure as shown in FIG. 3A, which is a detailed view of part A. The stirrer shaft 24 is received by a bearing 25, and the stirrer shaft 24 and the rotor coil 26 are connected to each other. The integrated unit is driven by an external coil 27 and the rotor coil 25 is separated by a stainless steel wall 28. The mounting flanges 29 and 30 are sealed with an O-ring 31 in order to avoid vacuum leakage. Since the structure of the mixing / degassing apparatus 1 uses a resin, it must be structured so that it can be disassembled and cleaned and can maintain a vacuum state. That is, the stirring resin reservoir 12 needs to be taken out and cleaned.

したがって、外部への樹脂注入部構造は、図3−2のB部詳細図に示す構造とする。つまり、外部への樹脂注入管32は、撹拌樹脂溜容器12底部に溶接され、断熱材33を通過し、真空・加圧容器11に溶接されたノズル管34内を通り外部に引き出され、その先端にはねじ込み継ぎ手35が取り付けられている。ノズル管34の先端には、オーリング36を収納する凹部品37,オーリング押さえ部品38,ねじ込みキャップ39で構成する真空保持機構が設置され、内部のオーリング36で樹脂注入管32外表面をシールする。これによって、真空状態の維持及び解体・組立が容易にできる。樹脂注入管32の先端のねじ込み継ぎ手35には、樹脂注入用の弁IV−3が設置され、その上流側近傍にドレーン弁DV−1が設けられている。   Therefore, the resin injection part structure to the outside is the structure shown in the B part detailed view of FIG. 3-2. That is, the resin injection pipe 32 to the outside is welded to the bottom of the agitating resin reservoir 12, passes through the heat insulating material 33, passes through the nozzle pipe 34 welded to the vacuum / pressure container 11, and is drawn to the outside. A screw joint 35 is attached to the tip. At the tip of the nozzle tube 34, a vacuum holding mechanism comprising a recessed part 37 that accommodates the O-ring 36, an O-ring holding part 38, and a screw-in cap 39 is installed, and the outer surface of the resin injection pipe 32 is covered by the internal O-ring 36. Seal. This facilitates maintenance of a vacuum state and disassembly / assembly. A resin injection valve IV-3 is provided at a screw joint 35 at the tip of the resin injection pipe 32, and a drain valve DV-1 is provided in the vicinity of the upstream side thereof.

ドレーン弁DV−1は、3つの役割がある。1つ目は樹脂注入管32にある初期の混合ができていない樹脂の排出であり、2つ目は混合された樹脂の粘性をチェックする際の試料採取であり、3つ目は撹拌樹脂溜容器12に残った樹脂の排出である。つまり、このドレーン弁DV−1によって、混合されていない樹脂のダッチオーブン型樹脂含浸容器7a,7bへの流入を防止できること、樹脂粘性のチェックにより常に一定の粘性の樹脂をダッチオーブン型樹脂含浸容器7a,7bへ送り込むことができること、さらに、撹拌樹脂溜容器12に残った樹脂の排出ができることで、撹拌樹脂溜容器12の洗浄処理が容易にできる等の効果がある。   The drain valve DV-1 has three roles. The first is the discharge of the unmixed resin in the resin injection tube 32, the second is the sampling for checking the viscosity of the mixed resin, and the third is the stirred resin reservoir. The resin remaining in the container 12 is discharged. That is, the drain valve DV-1 can prevent the unmixed resin from flowing into the Dutch oven type resin impregnated containers 7a and 7b. 7b, and the resin remaining in the stirring resin reservoir 12 can be discharged, so that the stirring resin reservoir 12 can be easily cleaned.

このような、混合・脱気装置1の構造とすることで、樹脂の混合から真空脱気までの工程をスムーズに行うことができ、時間の短縮を図ることができる。   By adopting such a structure of the mixing / degassing device 1, the steps from resin mixing to vacuum degassing can be performed smoothly, and the time can be shortened.

図4は、混合・脱気装置1による樹脂の混合・脱気工程の推移を示している。ここで、横軸は混合・脱気装置1の上部に設けた樹脂主剤注入系15,樹脂硬化剤注入系16からそれぞれの樹脂剤を注入してからの経過時間を表している。縦軸は真空・加圧容器11の圧力,樹脂温度,樹脂粘性,撹拌樹脂溜容器12での樹脂液位を表している。   FIG. 4 shows the transition of the resin mixing / degassing process by the mixing / degassing apparatus 1. Here, the horizontal axis represents the elapsed time since the respective resin agents were injected from the resin main agent injection system 15 and the resin hardener injection system 16 provided in the upper part of the mixing / degassing apparatus 1. The vertical axis represents the pressure in the vacuum / pressure vessel 11, the resin temperature, the resin viscosity, and the resin liquid level in the stirred resin reservoir 12.

本発明の混合・脱気装置1による樹脂の混合・脱気工程は、まず、真空・加圧容器11を脱気圧力であるP1になるまで真空引きする。その後、樹脂主剤注入系15,樹脂硬化剤注入系16から、使用する樹脂量分の樹脂剤(主剤,硬化剤)を真空・加圧容器11に注入し、撹拌機13により混合する。この時、樹脂の温度は、コイルに注入する含浸温度にコントロールされる。この状態で混合及び真空撹拌脱気を行うが、真空・加圧容器11上部の覗き窓14から樹脂状態を観察し、ボイドの上昇がないことを確認して、第1真空撹拌脱気を終了する。その後、一度乾燥空気で圧力を大気圧状態として、樹脂注入管32の樹脂注入用弁IV−3の上流側近傍に設けてあるドレーン弁DV−1を開けて、樹脂注入管32内に存在する混合脱気未達樹脂を外部に捨てた後、樹脂粘性のチェックを実施する。この作業が終了したら、再度、脱気圧力であるP1になるまで真空引きする。なお、乾燥空気で圧力を大気圧状態とすることによる気体の再度の溶け込みは殆どない。その後、第2撹拌脱気を行う。真空・加圧容器11上部の覗き窓14から樹脂状態を観察し、ボイドの上昇がないことを確認して、第2撹拌脱気の終了を決定する。以上の工程により、脱気が終了する。ダッチオーブン型樹脂含浸容器7a,7bへの樹脂の注入は、真空度をP2圧力まで若干低下させた状態で行う。   In the resin mixing / degassing step by the mixing / degassing apparatus 1 of the present invention, first, the vacuum / pressurized vessel 11 is evacuated until it reaches P1 which is the degassing pressure. Thereafter, a resin agent (main agent, curing agent) for the amount of resin to be used is injected into the vacuum / pressurized vessel 11 from the resin main agent injection system 15 and the resin curing agent injection system 16 and mixed by the stirrer 13. At this time, the temperature of the resin is controlled to the impregnation temperature injected into the coil. In this state, mixing and vacuum stirring and deaeration are performed, but the first vacuum stirring and degassing is finished by observing the resin state from the observation window 14 on the upper part of the vacuum / pressure vessel 11 and confirming that there is no rise in voids. To do. After that, once the pressure is brought to atmospheric pressure with dry air, the drain valve DV-1 provided in the vicinity of the upstream side of the resin injection valve IV-3 of the resin injection pipe 32 is opened and exists in the resin injection pipe 32. After throwing out the mixed degassed resin outside, check the resin viscosity. When this operation is completed, vacuuming is performed again until the deaeration pressure reaches P1. In addition, there is almost no re-dissolution of the gas by making a pressure into an atmospheric pressure state with dry air. Then, 2nd stirring deaeration is performed. The resin state is observed from the observation window 14 on the upper part of the vacuum / pressurized container 11, and it is confirmed that there is no rise in the void, and the end of the second stirring deaeration is determined. Degassing is completed by the above steps. The resin is injected into the Dutch oven type resin impregnated containers 7a and 7b in a state where the degree of vacuum is slightly reduced to P2 pressure.

この真空度をP2圧力まで若干低下させる根拠について図5を用いて説明する。樹脂中には、溶剤の揮発成分及び水分が含まれており、真空中では、それらが蒸発しボイドとなる。図5は、溶存気体の析出境界曲線を示している。樹脂の脱気注入温度をa点とした場合、溶存気体の析出境界圧はb点となる。樹脂の脱気をb点で示す真空度で行うと、溶剤の揮発成分が全て蒸発するまでボイドが出続けることになり、樹脂の硬化時特性に変化をもたらすことになる。したがって、樹脂の脱気圧は、この溶存気体の析出境界曲線より、若干高めのP1とする。ダッチオーブン型樹脂含浸容器7a,7bへの樹脂の注入圧は、このP1圧より若干高めのP2とする。コイルへの樹脂注入時のダッチオーブン型樹脂含浸容器7a,7b内圧力は、このP2圧と同等とする。これによって、超電導コイルのクエンチの課題である樹脂含浸時の樹脂中のボイドの発生を回避することができる。   The reason why the degree of vacuum is slightly reduced to the P2 pressure will be described with reference to FIG. The resin contains volatile components of the solvent and moisture, and in a vacuum, they evaporate and form voids. FIG. 5 shows a precipitation boundary curve of dissolved gas. When the resin degassing injection temperature is point a, the dissolved gas precipitation boundary pressure is point b. If the resin is degassed at a vacuum level indicated by point b, voids continue to appear until all the volatile components of the solvent are evaporated, resulting in a change in the curing characteristics of the resin. Therefore, the degassing pressure of the resin is set to P1, which is slightly higher than the precipitation boundary curve of the dissolved gas. The injection pressure of the resin into the Dutch oven type resin impregnated containers 7a and 7b is set to P2, which is slightly higher than the P1 pressure. The pressure in the Dutch oven type resin impregnated containers 7a and 7b at the time of injecting the resin into the coil is equal to the P2 pressure. As a result, generation of voids in the resin during resin impregnation, which is a problem of quenching the superconducting coil, can be avoided.

つぎに、混合・脱気装置1で混合脱気が完了した樹脂が注入されるダッチオーブン型樹脂含浸装置2aの詳細について説明する。図6にダッチオーブン型樹脂含浸装置2aの全体構成図を示す。   Next, the details of the Dutch oven type resin impregnation apparatus 2a into which the resin that has been mixed and degassed by the mixing and degassing apparatus 1 is injected will be described. FIG. 6 shows an overall configuration diagram of the Dutch oven type resin impregnation apparatus 2a.

注入樹脂は、前記した樹脂注入管32から接続されている分岐配管40を経由して、分岐樹脂注入弁IV−4,容器直上樹脂注入管41を通り、恒温槽42内のダッチオーブン型樹脂含浸容器7aの樹脂溜容器43に注入される。ここで、分岐樹脂注入弁IV−4直上に設置したドレーン弁DV−2は規定量の樹脂を樹脂溜容器43に注入した後に、分岐樹脂注入弁IV−4上流で管内に溜まった樹脂をドレーンするものである。これによって、樹脂が固まる前に分岐樹脂注入弁IV−4上流の配管を解体・洗浄できる。   The injection resin passes through the branch pipe 40 connected from the resin injection pipe 32 described above, passes through the branch resin injection valve IV-4, the resin injection pipe 41 directly above the container, and is a Dutch oven type resin impregnated container in the thermostat 42. It is poured into the resin reservoir container 43 of 7a. Here, the drain valve DV-2 installed just above the branch resin injection valve IV-4 injects a specified amount of resin into the resin reservoir 43 and then drains the resin accumulated in the pipe upstream of the branch resin injection valve IV-4. To do. Thereby, the piping upstream of the branch resin injection valve IV-4 can be disassembled and washed before the resin hardens.

このダッチオーブン型樹脂含浸容器7a上部には、樹脂注入系の他に真空・加圧系であるガス系44が圧力計PB−4を経由して接続されている。   In addition to the resin injection system, a gas system 44 as a vacuum / pressurization system is connected to the upper part of the Dutch oven type resin impregnation container 7a via a pressure gauge PB-4.

まず、ダッチオーブン型樹脂含浸容器7aの加熱・保温を行う恒温槽42の構造について図6−1を用いて説明する。恒温槽42は、円形の土台45の上に敷き詰められた保温材46を囲むように支柱47中心に観音開きする4枚の外壁48が設けられている。さらに、その上部には蓋49が設置される。なお、土台45部には、コイル本体を乗せるための熱絶縁材50が設けられている。これら、円形の土台45,外壁48,蓋49には、保温材を介してヒータ51が設置されている。ヒータ51は、恒温槽42に収納されるダッチオーブン型樹脂含浸容器7aを加熱するもので、それぞれの壁に設置されている熱電対温度計(T12〜T14等)の信号を基に外部に設置された温度コントローラ(TC)
21,出力電力コントローラ(LC)22により制御される。なお、恒温槽42上部には、恒温槽42に収納されるダッチオーブン型樹脂含浸容器7aの内部を監視するためのカメラ52,モニター80が設置されている。この恒温槽42の内側の大きさは、収納されるダッチオーブン型樹脂含浸容器7aより若干大きいものとする。これは、ヒータ加熱の熱効率を高くし、経済性の向上を図るためである。
First, the structure of the thermostatic bath 42 for heating and keeping the temperature of the Dutch oven type resin impregnation container 7a will be described with reference to FIG. The thermostatic chamber 42 is provided with four outer walls 48 that open in the center of the column 47 so as to surround a heat insulating material 46 spread on a circular base 45. Further, a lid 49 is installed on the upper part. The base 45 is provided with a heat insulating material 50 for placing the coil body. On these circular base 45, outer wall 48, and lid 49, a heater 51 is installed via a heat insulating material. The heater 51 heats the Dutch oven type resin impregnated container 7a housed in the thermostat 42, and is installed outside based on signals from thermocouple thermometers (T12 to T14, etc.) installed on the respective walls. Temperature controller (TC)
21, controlled by an output power controller (LC) 22. Note that a camera 52 and a monitor 80 for monitoring the inside of the Dutch oven type resin impregnated container 7 a housed in the thermostat 42 are installed on the thermostat 42. The inside size of the thermostatic chamber 42 is slightly larger than the Dutch oven type resin impregnated container 7a to be stored. This is to increase the thermal efficiency of the heater heating and improve the economic efficiency.

図6−2は恒温槽42の分解時の様子を示している。図6−2に示すように、恒温槽
42はダッチオーブン型樹脂含浸容器7aを設置する場合と取り出す場合に分解することができる。ここで、支柱47中心に観音開きする4枚の外壁48には観音開きする時の力を軽減するための車53が設置されており、人力で容易に開くことができる。
FIG. 6B shows a state when the thermostat 42 is disassembled. As shown in FIG. 6B, the thermostatic chamber 42 can be disassembled when the Dutch oven type resin impregnation container 7a is installed and taken out. Here, a car 53 for reducing the force when the double door is opened is installed on the four outer walls 48 which open the double door at the center of the support 47, and can be easily opened by human power.

恒温槽42を以上のような構造とすることで、簡単に分解・組立てができることから、作業の効率化を図ることができる。また、コンパクトにできることから、熱ロスを少なくでき、熱効率を高くすることができる等の効果がある。   Since the constant temperature bath 42 has the above-described structure, it can be easily disassembled and assembled, so that work efficiency can be improved. Moreover, since it can be made compact, there are effects such as a reduction in heat loss and an increase in thermal efficiency.

次に、恒温槽42に収納されるダッチオーブン型樹脂含浸容器7aとその内部構造について図6−3を用いて説明する。このダッチオーブン型樹脂含浸容器7aは、ボビン54にコイル線55が巻かれたコイルの形状とほぼ合致したコイル収納容器56とそのコイル収納容器56の蓋57からなる。コイル収納容器56と蓋57は、フランジ形式で間に高温対応のテフロン(登録商標)またはシリコン系のパッキン58を挟みボルトで固定される。これによって、真空・加圧での漏れを回避している。ここで、蓋57には、樹脂注入管41,真空・加圧系であるガス系44,ダッチオーブン型樹脂含浸容器7aの内部を観察する覗き窓59,光取り用の窓60,吊具61が設置されている。各部の外表面温度を監視するための熱電対の取付位置は、蓋57で中央部のT10,フランジ部のT9,コイル収納容器56で外側面のT8,T11,底部のT7である。各部の内表面温度を監視するための熱電対の取付位置は、蓋57で中央部のT6,コイル収納容器56で側面内側のT3,T5,底部のT4である。これらの温度計によりダッチオーブン型樹脂含浸容器7a全体の温度を監視制御する。このダッチオーブン型樹脂含浸容器7a内には、ボビン54にコイル線55を巻いたコイル1体が収納されるが、このコイルは直接コイル収納容器56に接するのではなく、薄板で構成した樹脂溜容器43を介してコイル収納容器56に接している。これは、直接樹脂がコイル収納容器56に接し、固化しないための対策で、樹脂は樹脂溜容器43に注入される。樹脂溜容器43は樹脂の固化後にコイル本体と一緒に吊り具63にワイヤーを掛け外部に搬出し、取り外さなければならないことから、取り外しが容易な薄いブリキ板、または防着シート(テフロン系(登録商標))等で構成される。このような構造のダッチオーブン型樹脂含浸容器7aに真空状態で規定量の樹脂62を注入する。この規定量の樹脂は、樹脂温度を監視する熱電対温度計T1,T2の温度変化及び覗き窓59で監視し、決定する。なお、熱電対温度計T1,T2は、樹脂が固化した場合でも上部液位近傍に位置するため、コイル本体を外部へ搬出する前に、固化樹脂を砕き取り外すことができる。   Next, the Dutch oven type resin impregnation container 7a housed in the thermostat 42 and its internal structure will be described with reference to FIG. 6-3. The Dutch oven type resin impregnated container 7 a includes a coil storage container 56 that substantially matches the shape of a coil in which a coil wire 55 is wound around a bobbin 54 and a lid 57 of the coil storage container 56. The coil storage container 56 and the lid 57 are fixed with bolts by sandwiching a Teflon (registered trademark) or silicon packing 58 corresponding to high temperature in a flange form. This avoids leakage due to vacuum and pressure. Here, the lid 57 includes a resin injection pipe 41, a gas system 44 that is a vacuum / pressurization system, a viewing window 59 for observing the inside of the Dutch oven type resin impregnation container 7a, a light extraction window 60, and a hanging tool 61. is set up. The attachment positions of the thermocouples for monitoring the outer surface temperature of each part are T10 at the center part by the lid 57, T9 at the flange part, T8 and T11 at the outer side by the coil storage container 56, and T7 at the bottom part. The attachment position of the thermocouple for monitoring the inner surface temperature of each part is T6 in the center part with the lid 57, T3, T5 inside the side surface with the coil storage container 56, and T4 at the bottom part. These thermometers monitor and control the temperature of the entire Dutch oven type resin impregnation container 7a. In this Dutch oven type resin-impregnated container 7a, one coil having a coil wire 55 wound around a bobbin 54 is accommodated. However, this coil does not directly contact the coil accommodating container 56, but a resin reservoir container constituted by a thin plate. It is in contact with the coil storage container 56 through 43. This is a measure for preventing the resin from directly contacting the coil storage container 56 and solidifying, and the resin is injected into the resin reservoir container 43. Since the resin reservoir container 43 has to be solidified with the coil body and then wired to the hanger 63 and taken out to the outside after being solidified, it is easy to remove a thin tin plate or an adhesion sheet (Teflon (registered) Trademark)). A specified amount of resin 62 is injected into the Dutch oven type resin impregnated container 7a having such a structure in a vacuum state. The specified amount of resin is determined by monitoring the temperature change of the thermocouple thermometers T1 and T2 for monitoring the resin temperature and the observation window 59. The thermocouple thermometers T1 and T2 are located in the vicinity of the upper liquid level even when the resin is solidified, so that the solidified resin can be crushed and removed before the coil body is carried out to the outside.

ダッチオーブン型樹脂含浸容器7aとその内部構造を以上のような構造とすることで、ダッチオーブン型樹脂含浸容器7aの内容積と樹脂含浸するコイル本体との容積の差が小さくなることから、注入する樹脂量を少なくすることができる。さらに、容積が小さいことで、熱容量が小さくなり、熱効率が向上する。したがって、容積はコイル容積の1.5倍以下とする。また、樹脂を樹脂溜容器43に注入することで、ダッチオーブン型樹脂含浸容器7aの内側を汚すことがないので、メンテナンスが容易である。さらに、組立式とすることで、解体が容易であること、温度,圧力,目視による内部観察ができることから、最も良く状態把握ができる等の効果がある。   By making the Dutch oven type resin impregnated container 7a and the internal structure thereof as described above, the difference in volume between the internal volume of the Dutch oven type resin impregnated container 7a and the coil body impregnated with the resin is reduced. The amount can be reduced. Furthermore, since the volume is small, the heat capacity is reduced and the thermal efficiency is improved. Accordingly, the volume is 1.5 times or less of the coil volume. Moreover, since the inside of the Dutch oven type resin impregnation container 7a is not soiled by injecting the resin into the resin reservoir container 43, maintenance is easy. Furthermore, the assembly type is advantageous in that it can be easily disassembled, temperature, pressure, and internal observation by visual observation, so that the state can be best understood.

図7は、樹脂溜容器43に収納されたコイル本体の詳細断面図を示す。ここで、符号
41は樹脂注入管を、54はコイルボビンを、55はコイル線を、64は下部スペーサを、65は下部スペーサの樹脂注入口を、66は上部スペーサを、67は上部スペーサの樹脂注入口兼ボイド排出口溝を、68はコイル内樹脂とコイル外樹脂の境として使用する剥離シートを、69はコイル内で発生したボイドを示している。
FIG. 7 shows a detailed cross-sectional view of the coil body housed in the resin reservoir container 43. Here, reference numeral 41 is a resin injection tube, 54 is a coil bobbin, 55 is a coil wire, 64 is a lower spacer, 65 is a resin injection port of the lower spacer, 66 is an upper spacer, and 67 is a resin of the upper spacer. An inlet / void outlet groove 68, a release sheet 68 used as a boundary between the resin in the coil and the resin outside the coil, and 69, a void generated in the coil.

図7は、樹脂注入管41より注入された樹脂62が規定液位に到達し、コイル内を樹脂が満たし、圧力振動(後で説明)を加えられたコイル内のボイド69がコイル外に排出される様子を示している。   FIG. 7 shows that the resin 62 injected from the resin injection tube 41 reaches the specified liquid level, the resin fills the coil, and the void 69 in the coil to which pressure vibration (described later) is applied is discharged out of the coil. It shows how it is done.

本発明によるコイル本体の特徴は、樹脂注入口とボイド排出口67を兼用した上部スペーサ66の溝67構造である。その構造は、コイル内側(内周側)より外側(外周側)が高くなるように溝が切ってあり、コイル上部に溜まった微小ボイド69が浮力により排出し易くしたものである。   The coil body according to the present invention is characterized by the groove 67 structure of the upper spacer 66 that also serves as the resin injection port and the void discharge port 67. The structure is such that a groove is cut so that the outer side (outer peripheral side) is higher than the inner side (inner peripheral side) of the coil, and the minute voids 69 accumulated on the upper part of the coil are easily discharged by buoyancy.

図7−1は、FRP製の上部スペーサ66の構造を示す。図7−1に示すように、上部スペーサ66の溝67は設けられている溝の数は、下部スペーサ64に設けられた樹脂注入口である溝65と同数とすることができる。溝65,67は、樹脂注入口でもあり、溝65,67の数が多いほど、コイルへの樹脂含浸時間が短くなる。樹脂のゲル化時間を考慮すると、溝(樹脂注入口)65,67の数は多いほど望ましい。尚、本実施例においては、コイル内側より外側が高くなるように溝を切ったが、コイル外側を内側より高くなるように溝を切っても同様の効果を得ることができる。   FIG. 7-1 shows the structure of the upper spacer 66 made of FRP. As shown in FIG. 7A, the number of grooves 67 provided in the upper spacer 66 can be the same as the number of grooves 65 that are resin injection ports provided in the lower spacer 64. The grooves 65 and 67 are also resin injection ports, and the greater the number of grooves 65 and 67, the shorter the resin impregnation time for the coil. Considering the resin gelation time, it is desirable that the number of grooves (resin inlets) 65 and 67 is larger. In this embodiment, the groove is cut so that the outside is higher than the inside of the coil. However, the same effect can be obtained by cutting the groove so that the outside of the coil is higher than the inside.

次に、コイル内への樹脂含浸時間について説明する。樹脂含浸完了後の工程を決定するために、コイル内への樹脂含浸時間を把握することは最も重要ある。樹脂含浸時間が不明であると、樹脂硬化工程である加温のスタート時間が不正確になり、コイル内に未含浸領域を作り出すことになる。   Next, the resin impregnation time in the coil will be described. In order to determine the process after completion of resin impregnation, it is most important to grasp the resin impregnation time in the coil. If the resin impregnation time is unknown, the start time of heating, which is a resin curing process, becomes inaccurate, and an unimpregnated region is created in the coil.

樹脂含浸の最も重要となる樹脂含浸時間について、本発明による予測法を以下に示す。まず、密巻きコイル内での樹脂流動状況を図8により説明する。樹脂含浸時には、樹脂
62が矢印73−0〜73−2に示すように上下スペーサの溝65,67より流入し、俵積みコイル内の狭い流路70(図8−1参照)を流れ、最終的にコイル全体を含浸する。樹脂は、コイル角から太い点線矢印71で示すように、斜方向に順次含浸する。ここでは、最初に含浸される四隅に最も近い流路70を第1周とし、細い点線72で示すように順次含浸され、コイル中心部が最終周となる。この周回路の流れは、たとえば、矢印73−1から入った樹脂の周回路は矢印73−2向かい流れ、距離はその半分となる。点線72で示す周回路は流路70が多数あっても並列流路であり、圧力損失は1流路と同等となる。この流路に流入する流量Qは、管内層流摩擦損失の式(1)をベースに新たに発明した(2)式で導出できる。
The prediction method according to the present invention will be described below with respect to the resin impregnation time which is the most important for resin impregnation. First, the resin flow situation in the closely wound coil will be described with reference to FIG. At the time of resin impregnation, the resin 62 flows in from the grooves 65 and 67 of the upper and lower spacers as indicated by arrows 73-0 to 73-2, and flows through the narrow flow path 70 (see FIG. 8-1) in the stacked coil. The entire coil is impregnated. The resin is sequentially impregnated in the oblique direction as indicated by the thick dotted arrow 71 from the coil angle. Here, the flow path 70 closest to the four corners to be impregnated first is defined as the first circumference, and is impregnated sequentially as indicated by a thin dotted line 72, and the coil center portion becomes the final circumference. As for the flow of this peripheral circuit, for example, the resin peripheral circuit entered from the arrow 73-1 flows in the direction of the arrow 73-2, and the distance is half of that. The peripheral circuit indicated by the dotted line 72 is a parallel flow path even if there are many flow paths 70, and the pressure loss is equivalent to one flow path. The flow rate Q flowing into the flow path can be derived from the newly invented equation (2) based on the in-pipe laminar friction loss equation (1).

ΔP=64/Re×L/D×(ρV2/2g) …(1)
Q={√(1/(64/Re×L/(D×α)×1/2g×ρ/ΔP))×A}×β…(2)
ΔP:流路の圧力損失,Re:レイノルズ数,L:流路長さ,D:流路径(等価直径),ρ:流体密度,V:流速,g:重力の加速度,A:流路面積,β:コイル流入口数,α:巻き線張力で変わる等価直径の補正係数
ここで、俵積みコイルの流路径Dは巻き線張力F0が同じでもコイル半径rが異なるとコイル線の押付力Frが変わるため、流路径Dは補正が必要となる。式(3)は、コイル半径rとコイル線の押付力Frの関係を示す(図9参照)。
ΔP = 64 / Re × L / D × (ρV 2 / 2g) ... (1)
Q = {√ (1 / (64 / Re × L / (D × α) × 1/2 g × ρ / ΔP)) × A} × β (2)
ΔP: pressure loss of the flow path, Re: Reynolds number, L: flow path length, D: flow path diameter (equivalent diameter), ρ: fluid density, V: flow velocity, g: acceleration of gravity, A: flow path area, β: Number of coil inlets, α: Equivalent diameter correction coefficient that changes depending on winding tension Here, the coil diameter is changed when the coil diameter r is different even if the winding diameter F0 is the same as the winding diameter F0. Therefore, the flow path diameter D needs to be corrected. Formula (3) shows the relationship between the coil radius r and the pressing force Fr of the coil wire (see FIG. 9).

Fr∝1/r …(3)
図10には、俵積みコイルにおいてコイル線の押付力Frが異なる場合の線間流路70の違いを示す。押付力Frが大きい場合、下にある2つにコイル線間が開くことになり、線間流路70の流動抵抗は小さくなる。従って、流路径Dは大きめに補正する必要がある。押付力Frが中くらいの場合、コイル線間が密接し、線間流路70の流動抵抗は大きくなる。この場合においても、設計寸法を基に求めた流路径Dではだめで、流路径Dは小さめに補正する必要がある。押付力Frが小さい場合、コイル線間がルーズとなり、線間流路70の流動抵抗は中くらいとなり、流路径Dは大きめに補正する必要がある。このように押付力Frの違いにより流路径Dが異なることから、押付力Frと補正係数(α)との関係をデータベース化し、樹脂含浸時間の導出計算で用いる。
Fr∝1 / r (3)
In FIG. 10, the difference of the flow path 70 between wires when the pressing force Fr of a coil wire differs in a stacked coil is shown. When the pressing force Fr is large, the space between the coil wires opens to the two below, and the flow resistance of the flow path 70 between the wires becomes small. Therefore, it is necessary to correct the flow path diameter D to be larger. When the pressing force Fr is medium, the coil wires are in close contact with each other, and the flow resistance of the flow path 70 between the wires is increased. Even in this case, it is necessary to correct the flow path diameter D to be smaller than the flow path diameter D obtained based on the design dimensions. When the pressing force Fr is small, the space between the coil wires becomes loose, the flow resistance of the inter-line flow path 70 becomes medium, and the flow path diameter D needs to be corrected to be large. Since the flow path diameter D varies depending on the difference in the pressing force Fr as described above, the relationship between the pressing force Fr and the correction coefficient (α) is compiled into a database and used in the calculation for calculating the resin impregnation time.

(2)式を用いて時々刻々変わる樹脂含浸状態での樹脂流入量Qを計算し、樹脂流入量Qの積算値がコイルの樹脂含浸容積と同等になったら樹脂含浸が終了したと判断し、樹脂含浸の終了時間を樹脂含浸時間とする。   (2) Calculate the resin inflow amount Q in the resin impregnated state that changes from time to time using the equation, and determine that the resin impregnation is completed when the integrated value of the resin inflow amount Q is equal to the resin impregnation volume of the coil. The resin impregnation time is defined as the resin impregnation time.

次に、樹脂含浸時間予測法の検証試験について示す。図11に試験体である模擬コイルの形状示す。図12は、樹脂含浸時間予測法の検証試験結果を示す。試験体である模擬コイルの形状は、半径φ150,模擬コイル線765ターンで、樹脂注入口溝はコイル下部に等間隔で24箇所設けた。模擬樹脂とて水を使用した。試験体は全て透明のアクリルで製作し、内部の樹脂の含浸状態を監視し、全て含浸された時の時間を計測した。   Next, a verification test of the resin impregnation time prediction method will be described. FIG. 11 shows the shape of a simulated coil that is a test body. FIG. 12 shows the verification test result of the resin impregnation time prediction method. The shape of the simulated coil as the test body was a radius of 150 and a simulated coil wire of 765 turns, and the resin inlet grooves were provided at 24 locations at equal intervals in the lower part of the coil. Water was used as a simulated resin. All test specimens were made of transparent acrylic, the internal resin impregnation state was monitored, and the time when all the impregnations were measured was measured.

試験時の目視観察について、以下に述べる。試験は、真空状態で、模擬樹脂である水を注入し、パラメータである一定水位Hでホールドする。模擬樹脂である水は、コイル下部に等間隔に設けた24箇所の溝から流入してコイル内に入り込む。コイル線隙間への含浸は、図中の点線矢印で示すように下部の2つの隅から含浸され、上部の中央部で完了となる。   The visual observation during the test will be described below. In the test, in a vacuum state, water that is a simulated resin is injected and held at a constant water level H that is a parameter. Water, which is a simulated resin, flows from 24 grooves provided at equal intervals in the lower part of the coil and enters the coil. The impregnation into the coil wire gap is impregnated from the two lower corners as indicated by the dotted arrows in the figure, and is completed at the upper central portion.

図12において、横軸はコイル中心から水面までの水頭(H)を表し、縦軸はコイル内が水で満たされるまでの時間を表している。縦横軸の目盛りは対数である。この結果から、樹脂含浸時間予測法での予測値(a)と試験結果(b)は良く一致しており、予測法が正しく評価していることが分かる。したがって、実樹脂でのコイル内への含浸時間の予測法として十分対応可能である。樹脂含浸時間は樹脂含浸工程のベースとなるものであり、樹脂含浸時間が分かると、樹脂の温度,圧力管理において、矛盾のない樹脂含浸工程を組むことができる。   In FIG. 12, the horizontal axis represents the water head (H) from the coil center to the water surface, and the vertical axis represents the time until the coil is filled with water. The scale on the vertical and horizontal axes is logarithmic. From this result, it can be seen that the predicted value (a) in the resin impregnation time prediction method and the test result (b) are in good agreement, and the prediction method correctly evaluates. Therefore, it can sufficiently be used as a method for predicting the impregnation time in the coil with the actual resin. The resin impregnation time is a base of the resin impregnation step. If the resin impregnation time is known, a resin impregnation step consistent with the temperature and pressure control of the resin can be assembled.

図13は、本発明による樹脂含浸コイル量産化装置の下で実施したボイドレス樹脂含浸方法を示している。本発明の樹脂含浸方法における樹脂含浸の手順は、従来技術(VIP法)による樹脂含浸手順とは異なる。   FIG. 13 shows a voidless resin impregnation method performed under the resin-impregnated coil mass production apparatus according to the present invention. The resin impregnation procedure in the resin impregnation method of the present invention is different from the resin impregnation procedure according to the prior art (VIP method).

従来技術(VIP法)による樹脂含浸手順は、「樹脂真空脱気→真空含浸(樹脂含浸完了)→加圧含浸(コイル内残留ボイドの体積減少)→硬化」である。従来技術(VIP法)では、真空状態で樹脂含浸が行われるため、樹脂中の溶存気体,揮発性流体の析出,蒸発が生じ、ボイド発生のリスクが大きい。さらに、樹脂含浸時間が分からないとの課題がある。樹脂のゲル化時間との兼ね合いから、短時間で樹脂含浸が完了する小さいコイル径でコイル内圧力損失が小さく、しかも、ボイドが混在しても影響を受けにくい電磁力の小さいコイルの樹脂含浸に適用するには、VIP法は有効である。しかし、コイル径が大きく、コイル内圧力損失が大きく、しかも電磁力が大きいコイルの樹脂含浸方法としては、
VIP法は、樹脂のゲル化時間と樹脂含浸時間との関係およびボイドの発生リスクにおいて不向きである。したがって、新たな樹脂含浸方法が必要である。
The resin impregnation procedure by the prior art (VIP method) is “resin vacuum degassing → vacuum impregnation (resin impregnation completion) → pressure impregnation (volume reduction of residual voids in the coil) → curing”. In the prior art (VIP method), since resin impregnation is performed in a vacuum state, dissolved gas and volatile fluid in the resin are precipitated and evaporated, and the risk of void generation is high. Furthermore, there is a problem that the resin impregnation time is unknown. In consideration of the resin gelation time, resin impregnation of coils with small electromagnetic force that is less affected by the presence of voids and small pressure loss in the coil with a small coil diameter that completes resin impregnation in a short time. The VIP method is effective for application. However, as a resin impregnation method for a coil having a large coil diameter, a large pressure loss in the coil, and a large electromagnetic force,
The VIP method is unsuitable for the relationship between the resin gelation time and the resin impregnation time and the risk of voids. Therefore, a new resin impregnation method is required.

これに対して、本発明による樹脂含浸方法による樹脂含浸手順は、「樹脂真空脱気→コイル含浸容器樹脂注入(樹脂がコイルを浸すまで)→加圧含浸→圧力振動追加→硬化」である。   On the other hand, the resin impregnation procedure by the resin impregnation method according to the present invention is “resin vacuum degassing → coil impregnation container resin injection (until the resin immerses the coil) → pressure impregnation → pressure vibration addition → curing”.

つまり、本発明による樹脂含浸方法では、コイル径が大きく、コイル内圧力損失が大きく、しかも電磁力が大きいコイルに対して好適な樹脂含浸方法であり、樹脂のゲル化時間との関係から、急速含浸が可能な加圧含浸を中心に構成するものである。   That is, the resin impregnation method according to the present invention is a resin impregnation method suitable for a coil having a large coil diameter, a large pressure loss in the coil, and a large electromagnetic force. It is mainly composed of pressure impregnation capable of impregnation.

本発明による樹脂含浸方法による樹脂含浸手順について、図13を用いて説明する。   The resin impregnation procedure by the resin impregnation method according to the present invention will be described with reference to FIG.

コイルへの樹脂含浸の準備として、まず、コイルの温度を一度、硬化温度である最大温度まで上昇させ真空脱気を十分に行い、その後、樹脂含浸温度にして待機する。樹脂は含浸温度で脱気装置により真空脱気を十分行い、ボイドの発生のない状態とする。脱気装置による樹脂の脱気,空コイル内の脱気が終了したら、樹脂を注入する。まず、脱気装置1の圧力とダッチオーブン型樹脂含浸容器7aの圧力を同圧にして、脱気装置1からダッチオーブン型樹脂含浸容器7aの樹脂溜容器43に樹脂を注入する。この注入時期を図13のa点で示す。a点における樹脂溜容器43内の圧力は、脱気装置による真空脱気より若干真空度は低いことから、樹脂溜容器43内での樹脂からのボイドの発生はない。この状態で、注入樹脂の液位をコイル上部の定位置まで急速に上昇させる。   As preparation for resin impregnation into the coil, first, the coil temperature is once increased to the maximum temperature which is the curing temperature, and vacuum deaeration is sufficiently performed, and then the resin impregnation temperature is set for standby. The resin is sufficiently degassed with a degassing device at the impregnation temperature so that no voids are generated. When the degassing of the resin by the degassing device and the degassing of the empty coil are completed, the resin is injected. First, the pressure of the deaerator 1 and the pressure of the Dutch oven type resin impregnated container 7a are set to the same pressure, and the resin is injected from the deaerator 1 into the resin reservoir container 43 of the Dutch oven type resin impregnated container 7a. This injection time is indicated by point a in FIG. The pressure in the resin reservoir container 43 at the point a is slightly lower than the vacuum deaeration by the deaerator, so that no void is generated from the resin in the resin reservoir container 43. In this state, the liquid level of the injected resin is rapidly raised to a fixed position above the coil.

本発明では、この工程の間が真空含浸となるが、密巻きコイルのように、コイル内の圧力損失が大きい場合は、コイル内への樹脂含浸量は極めて少ないことから、この時間帯をできるだけ短くする。   In the present invention, the vacuum impregnation is performed during this process. However, when the pressure loss in the coil is large as in the case of a closely wound coil, the amount of resin impregnation in the coil is extremely small. shorten.

密巻きコイルでは、従来のVIP法同様に真空含浸だけでコイル含浸を行うとすると長時間を要する。そのため、注入樹脂のゲル化によりコイル内への樹脂の流入が困難となり、未含浸領域が発生する。本発明では、この未含浸領域の発生を回避するため、樹脂液位がコイル上部の定位置になったら、ダッチオーブン型樹脂含浸容器7a内を即乾燥空気で加圧し、規定圧力まで加圧する加圧含浸を主とする方法を採用した。加圧含浸では、コイル内の未含浸領域の圧力はほぼ真空圧を保持しているため、樹脂を圧入することで高速で含浸することが可能となる。したがって、樹脂のゲル化が始まる前に、コイルの樹脂含浸を完了させることができる。   In a closely wound coil, it takes a long time to impregnate the coil only by vacuum impregnation as in the conventional VIP method. Therefore, it becomes difficult for the resin to flow into the coil due to gelation of the injected resin, and an unimpregnated region is generated. In the present invention, in order to avoid the occurrence of the unimpregnated region, when the resin liquid level reaches a fixed position on the upper part of the coil, the inside of the Dutch oven type resin impregnated container 7a is pressurized with quick dry air and pressurized to a specified pressure. A method mainly using impregnation was adopted. In the pressure impregnation, the pressure in the non-impregnated region in the coil is almost kept at the vacuum pressure, so that the resin can be impregnated at a high speed by press-fitting. Therefore, the resin impregnation of the coil can be completed before the resin gelation starts.

含浸が完了する時間は、脂含浸時間予測法により前以て判明しており、従来技術のように含浸が完了したかどうか不明で手探りの状態で次の工程に移行するのではなく、スムーズに含浸完了後の工程に移行できる。   The time to complete the impregnation is known in advance by the fat impregnation time prediction method, and it is not clear whether or not the impregnation is completed as in the prior art, and instead of moving to the next step in a groping state, it is smooth. It is possible to shift to a process after completion of impregnation.

ただし、コイル上部には、真空度が若干悪い分のボイド69が残留する可能性がある。この残留ボイド69を排出する操作として、樹脂含浸完了後に加圧空気を一度大気圧まで低下させ、さらに減圧し、大気圧と減圧状態とを繰り返す圧力振動を加えボイド追出し操作を実施する。これによって、コイル上部に残留しているボイドをコイル外に排出する。なお、コイル上部のスペーサ66には斜めの溝が設けられており、ボイドの排出をし易くする構造となっている。   However, there is a possibility that a void 69 having a slightly lower degree of vacuum remains on the upper part of the coil. As an operation for discharging the residual void 69, after the resin impregnation is completed, the pressurized air is once lowered to the atmospheric pressure, further reduced in pressure, and subjected to a void evacuation operation by applying a pressure vibration that repeats the atmospheric pressure and the reduced pressure state. As a result, the void remaining in the upper part of the coil is discharged out of the coil. The spacer 66 at the top of the coil is provided with an oblique groove so that voids can be easily discharged.

このボイド追出し操作完了後に再度規定圧力まで加圧し、樹脂硬化工程に移行する。熱硬化性樹脂の硬化工程では、圧力振動を加えボイドの追出操作完了後に一次硬化温度までコイル内樹脂温度を上昇させた後、二次硬化温度まで温度を上昇させ樹脂を完全に硬化させる。その後、温度,圧力を下降させ、常温、大気圧状態でダッチオーブン型樹脂含浸容器7aからコイルを取り出し、コイル周りに付着した余分な樹脂を削除してコイルの樹脂含浸工程が全て終了する。   After the void ejection operation is completed, the pressure is increased again to the specified pressure, and the process proceeds to the resin curing process. In the thermosetting resin curing step, pressure vibration is applied to increase the resin temperature in the coil to the primary curing temperature after completion of the void ejection operation, and then the temperature is increased to the secondary curing temperature to completely cure the resin. Thereafter, the temperature and pressure are lowered, the coil is taken out from the Dutch oven type resin impregnation container 7a at room temperature and atmospheric pressure, and the excess resin adhering around the coil is removed, and the resin impregnation process of the coil is completed.

上記した樹脂含浸法及び樹脂含浸装置を適用することで、以下の利点がある。
1)樹脂の脱気圧と含浸圧を制御することで、樹脂中からの溶存気体,蒸発気体であるボイドの発生を回避できる。
2)加圧含浸を主とすること、さらに、樹脂含浸時間予測法を確立したことで、未含浸領域の発生を回避でき、樹脂含浸工程を決定することができる。
3)樹脂含浸時間予測法を確立したことで樹脂注入口数の最適化ができる。
4)ボイド排出対策として、コイルの構造的には上部スペーサに傾斜溝を設け、さらに、樹脂含浸時の加圧過程で大気圧と減圧状態とを繰り返す圧力振動を加えることで、徹底して低真空度で発生するボイドの排出を行い、残留ボイドを無くすことができる。
By applying the above resin impregnation method and resin impregnation apparatus, there are the following advantages.
1) By controlling the degassing pressure and impregnation pressure of the resin, it is possible to avoid generation of voids which are dissolved gas and evaporated gas from the resin.
2) By mainly applying pressure impregnation, and further establishing a resin impregnation time prediction method, generation of an unimpregnated region can be avoided and a resin impregnation step can be determined.
3) The number of resin injection ports can be optimized by establishing a resin impregnation time prediction method.
4) As countermeasures against void discharge, the coil structure is provided with an inclined groove in the upper spacer, and by applying pressure vibration that repeats atmospheric pressure and reduced pressure in the pressurization process during resin impregnation, it is thoroughly reduced. Voids generated at a vacuum level can be discharged, and residual voids can be eliminated.

上記した本発明による樹脂含浸コイル量産化装置と超電導コイルのボイドレス樹脂含浸方法により、クエンチレスの超電導コイルを完成することができる。   A quenchless superconducting coil can be completed by the mass production apparatus for resin-impregnated coil according to the present invention and the voidless resin impregnation method of the superconducting coil.

本発明による樹脂含浸コイル装置の全体構成図。The whole block diagram of the resin impregnation coil device by the present invention. 樹脂含浸工程での樹脂温度と樹脂粘性の関係図。The relationship figure of the resin temperature and resin viscosity in a resin impregnation process. 本発明による樹脂脱気装置の構成全体図。The whole structure of the resin deaeration apparatus by this invention. 本発明による真空保持撹拌機のモータ側詳細図。The motor side detailed drawing of the vacuum holding stirrer by this invention. 本発明による脱気装置外部への樹脂注入部真空保持構造の詳細図。FIG. 3 is a detailed view of a structure for holding a resin injection part vacuum outside the deaeration device according to the present invention. 本発明による樹脂の混合・脱気工程図。FIG. 4 is a process diagram for mixing and degassing a resin according to the present invention. 本発明による樹脂真空注入圧と真空撹拌脱気圧の関係図。FIG. 4 is a relationship diagram of resin vacuum injection pressure and vacuum stirring deaeration according to the present invention. 本発明によるダッチオーブン型樹脂含浸装置の全体構成図。BRIEF DESCRIPTION OF THE DRAWINGS The whole block diagram of the Dutch oven type resin impregnation apparatus by this invention. 本発明によるダッチオーブン型樹脂含浸容器加熱・保温用恒温槽の構造図。1 is a structural diagram of a constant temperature bath for heating and keeping warm of a Dutch oven type resin impregnated container according to the present invention. 本発明によるダッチオーブン型樹脂含浸容器加熱・保温用恒温槽の分解状態図。The decomposition | disassembly state figure of the thermostat for heating and heat insulation of the Dutch oven type resin impregnation container by this invention. 本発明によるダッチオーブン型樹脂含浸容器とその内部構造図。The Dutch oven type resin impregnation container by this invention and its internal structure figure. 本発明による樹脂溜容器に収納されたコイル本体の詳細断面図。The detailed sectional view of the coil main part stored in the resin reservoir according to the present invention. 本発明によるFRP製の上部スペーサの構造図。FIG. 3 is a structural diagram of an FRP upper spacer according to the present invention. 本発明による密巻きコイル内での樹脂流動状況指示図。The resin flow condition instruction | indication figure in the closely wound coil by this invention. 俵積みコイル内の狭い流路指示図。Narrow flow path instruction diagram in the stacking coil. コイル半径rとコイル線の押付力Frの関係図。The relationship figure of coil radius r and pressing force Fr of a coil wire. コイル線の押付力Frが異なる場合の線間流路の違いを表す図。The figure showing the difference of the flow path between lines in case the pressing force Fr of a coil wire differs. 試験体である模擬コイルの形状図。The shape figure of the simulation coil which is a test body. 本発明による模擬コイルの含浸時間予測値と試験結果の関係。The relationship between the impregnation time prediction value and the test result of the simulated coil according to the present invention. 本発明による樹脂含浸方法による樹脂含浸手順図。The resin impregnation procedure figure by the resin impregnation method by this invention.

符号の説明Explanation of symbols

1…混合・脱気装置、2a,2b…ダッチオーブン型樹脂含浸装置、3…真空配管系統、4…加圧配管系統、5…真空ポンプ、6…真空容器、7a,7b…ダッチオーブン型樹脂含浸容器、8…高圧乾燥空気ボンベ、9,19,51…ヒータ、10,20,Tn…熱電対温度計、11…真空・加圧容器、12…撹拌樹脂溜容器、13…撹拌機の駆動装置、14,59…覗き窓、15…樹脂主剤注入系、16…樹脂硬化剤注入系、17…ブルドン管式圧力計、18…撹拌機の羽、21,TC…温度コントローラ、22,LC…出力電力コントローラ、23…端子接続フランジ、24…撹拌シャフト、25…ベアリング、26…回転子コイル、27…外部コイル、28…ステンレス壁、29,30…取付フランジ、31,36…オーリング、32…樹脂注入管、33…断熱材、34…ノズル管、35…ねじ込み継ぎ手、37…凹部品、38…オーリング押さえ部品、39…ねじ込みキャップ、40…分岐配管、41…容器直上樹脂注入管、42…恒温槽、43…樹脂溜容器、44…ガス系、45…土台、46…保温材、47…支柱、48…外壁、49,57…蓋、50…熱絶縁材、52…カメラ、53…車、54…ボビン、55…コイル線、56…コイル収納容器、58…パッキン、60…光取り用窓、61,63…吊具、62…樹脂、64…下部スペーサ、65…下部スペーサ注入口、66…上部スペーサ、67…上部スペーサ注入口兼ボイド排出口溝、68…剥離シート、69…ボイド、73−0〜73−2…矢印、70…コイル内流路、71…点線矢印、72…細い点線、80…モニター、100…データ処理装置、PB−n…ブルドン管圧力計(負圧表示あり)、VG−n…真空計、PG…歪式圧力計、VV−n…真空系弁、PV−n…加圧系弁、IV−n…樹脂注入系の弁、DV−n…ドレーン弁、AV−n…空気開放弁。

DESCRIPTION OF SYMBOLS 1 ... Mixing and deaeration apparatus, 2a, 2b ... Dutch oven type resin impregnation apparatus, 3 ... Vacuum piping system, 4 ... Pressure piping system, 5 ... Vacuum pump, 6 ... Vacuum container, 7a, 7b ... Dutch oven type resin impregnation container , 8 ... High-pressure dry air cylinder, 9, 19, 51 ... Heater, 10, 20, Tn ... Thermocouple thermometer, 11 ... Vacuum / pressurized vessel, 12 ... Stirring resin reservoir, 13 ... Stirring device drive device, 14, 59 ... Viewing window, 15 ... Resin main agent injection system, 16 ... Resin hardener injection system, 17 ... Bourdon tube pressure gauge, 18 ... Stirrer blade, 21, TC ... Temperature controller, 22, LC ... Output power Controller, 23 ... Terminal connection flange, 24 ... Stirring shaft, 25 ... Bearing, 26 ... Rotor coil, 27 ... External coil, 28 ... Stainless steel wall, 29, 30 ... Mounting flange, 31, 36 ... O-ring, 32 Resin injection pipe, 33 ... Insulating material, 34 ... Nozzle pipe, 35 ... Screwed joint, 37 ... Recessed part, 38 ... O-ring holding part, 39 ... Screwed cap, 40 ... Branch pipe, 41 ... Resin injection pipe just above the container, 42 ... constant temperature bath, 43 ... resin reservoir, 44 ... gas system, 45 ... foundation, 46 ... heat insulator, 47 ... strut, 48 ... outer wall, 49, 57 ... lid, 50 ... thermal insulation, 52 ... camera, 53 ... Car, 54 ... Bobbin, 55 ... Coil wire, 56 ... Coil storage container, 58 ... Packing, 60 ... Light extraction window, 61, 63 ... Hanger, 62 ... Resin, 64 ... Lower spacer, 65 ... Lower spacer inlet , 66 ... upper spacer, 67 ... upper spacer inlet / void discharge groove, 68 ... release sheet, 69 ... void, 73-0 to 73-2 ... arrow, 70 ... flow path in coil, 71 ... dotted arrow, 72 ... thin dotted line, 80 ... Niter, 100 ... Data processing device, PB-n ... Bourdon tube pressure gauge (with negative pressure display), VG-n ... Vacuum gauge, PG ... Strain-type pressure gauge, VV-n ... Vacuum system valve, PV-n ... Additive Pressure system valve, IV-n: resin injection system valve, DV-n: drain valve, AV-n: air release valve.

Claims (10)

環状の収納部を備える収納容器に環状の超伝導コイルを収納し、その後、前記収納部に樹脂を注入して前記超伝導コイルに樹脂を含浸させる超電導コイルの樹脂含浸方法であって、
前記収納部の上面は、水平面に対して傾斜した溝を有し、
前記収納部への前記樹脂の注入が完了した後、前記収納部内の前記樹脂に圧力振動を加えることを特徴とする超電導コイルの樹脂含浸方法。
A resin impregnation method for a superconducting coil in which an annular superconducting coil is housed in a housing container having an annular housing portion, and then a resin is injected into the housing portion to impregnate the superconducting coil with resin.
The upper surface of the storage part has a groove inclined with respect to a horizontal plane,
A resin impregnation method for a superconducting coil, wherein after the injection of the resin into the storage portion is completed, pressure vibration is applied to the resin in the storage portion.
請求項1に記載の超電導コイルの樹脂含浸方法において、前記収納部への前記樹脂の注入が完了した後、前記収納部内の前記樹脂を加圧することにより前記超伝導コイルに樹脂を含浸させることを特徴とする超電導コイルの樹脂含浸方法。   2. The resin impregnation method for a superconducting coil according to claim 1, wherein after the injection of the resin into the storage part is completed, the resin in the superconducting coil is impregnated by pressurizing the resin in the storage part. A method of impregnating a superconducting coil with a resin. 請求項1又は2に記載の超電導コイルの樹脂含浸方法において、前記収納部の内周側から外周側に向かうほど、水平面からの高さが高くなるように前記溝が形成されていることを特徴とする超電導コイルの樹脂含浸方法。   3. The resin impregnation method for a superconducting coil according to claim 1 or 2, wherein the groove is formed such that the height from the horizontal plane increases from the inner peripheral side to the outer peripheral side of the storage portion. And a resin impregnation method for a superconducting coil. 請求項1乃至3に記載の超電導コイルの樹脂含浸方法において、前記樹脂が加圧された状態で前記圧力振動が加えられることを特徴とする超電導コイルの樹脂含浸方法。   4. The resin impregnation method for a superconducting coil according to claim 1, wherein the pressure vibration is applied while the resin is pressurized. 請求項1乃至4に記載の超電導コイルの樹脂含浸方法において、前記収納部に前記樹脂を注入する前に前記樹脂を脱気し、前記収納部に前記樹脂を注入する際の真空度は、前記樹脂を脱気する際の真空度よりも低いことを特徴とする超電導コイルの樹脂含浸方法。   5. The method of impregnating a superconducting coil according to claim 1, wherein the degree of vacuum when the resin is deaerated before the resin is injected into the storage portion and the resin is injected into the storage portion is A method of impregnating a superconducting coil with a resin, which is lower than the degree of vacuum when degassing the resin. 請求項1乃至5に記載の超電導コイルの樹脂含浸方法において、前記収納容器は前記収納部内に発生したボイドを前記収納部外へ放出するための排出口を有し、前記排出口は前記収納部内に前記樹脂を注入するための注入流路を兼ねることを特徴とする超電導コイルの樹脂含浸方法。   6. The method for impregnating a superconducting coil according to claim 1, wherein the storage container has a discharge port for discharging a void generated in the storage unit to the outside of the storage unit, and the discharge port is in the storage unit. And a resin impregnation method for a superconducting coil, which also serves as an injection flow path for injecting the resin into the substrate. 請求項1乃至6に記載の超電導コイルの樹脂含浸方法において、前記樹脂は注入流路を介して前記収納部に注入され、下記式で定義される前記収納部への前記樹脂の流入流量Qにより、前記超電導コイルの樹脂含浸時間を予測することを特徴とする超電導コイルの樹脂含浸方法。
樹脂流入流量Q={√(1/(64/Re×L/(D×α)×1/2g×ρ/ΔP))
×A}×β
(ただし、ΔP:流路の圧力損失,Re:レイノルズ数,L:流路の長さ,D:流路の径(等価直径),ρ:流体(樹脂)密度,V:流速,g:重力の加速度,A:流路面積,β:流路数,α:巻き線張力に依存する流路の径(等価直径)の補正係数、である。)
7. The resin impregnation method for a superconducting coil according to claim 1, wherein the resin is injected into the storage portion via an injection flow path, and the inflow flow rate Q of the resin into the storage portion defined by the following formula. A resin impregnation method for a superconducting coil, wherein the resin impregnation time of the superconducting coil is predicted.
Resin inflow rate Q = {√ (1 / (64 / Re × L / (D × α) × 1/2 g × ρ / ΔP))
× A} × β
(Where, ΔP: pressure loss of the flow path, Re: Reynolds number, L: length of the flow path, D: diameter of the flow path (equivalent diameter), ρ: fluid (resin) density, V: flow velocity, g: gravity Acceleration: A: channel area, β: number of channels, α: correction coefficient of channel diameter (equivalent diameter) depending on winding tension.
請求項7に記載の超電導コイルの樹脂含浸方法において、前記樹脂流入量Qの積算値が前記超伝導コイルに浸漬すべき樹脂量に達する時刻を前記超電導コイルの樹脂含浸時間とすることを特徴とする超電導コイルの樹脂含浸方法。   8. The resin impregnation method for a superconducting coil according to claim 7, wherein the time when the integrated value of the resin inflow amount Q reaches the amount of resin to be immersed in the superconducting coil is defined as the resin impregnation time of the superconducting coil. To impregnate superconducting coil with resin. 環状の収納部を備える収納容器に環状の超伝導コイルを収納し、その後、前記収納部に樹脂を注入して前記超伝導コイルに樹脂を含浸させる超電導コイルの樹脂含浸方法であって、
前記樹脂は注入流路を介して前記収納部に注入され、下記式で定義される前記収納部への前記樹脂の流入流量Qにより、前記超電導コイルの樹脂含浸時間を予測することを特徴とする超電導コイルの樹脂含浸方法。
樹脂流入流量Q={√(1/(64/Re×L/(D×α)×1/2g×ρ/ΔP))
×A}×β
(ただし、ΔP:流路の圧力損失,Re:レイノルズ数,L:流路の長さ,D:流路の径(等価直径),ρ:流体(樹脂)密度,V:流速,g:重力の加速度,A:流路面積,β:流路数,α:巻き線張力に依存する流路の径(等価直径)の補正係数、である。)
A resin impregnation method for a superconducting coil in which an annular superconducting coil is housed in a housing container having an annular housing portion, and then a resin is injected into the housing portion to impregnate the superconducting coil with resin.
The resin is injected into the storage portion through an injection flow path, and the resin impregnation time of the superconducting coil is predicted from the flow rate Q of the resin into the storage portion defined by the following equation. Resin impregnation method for superconducting coils.
Resin inflow rate Q = {√ (1 / (64 / Re × L / (D × α) × 1/2 g × ρ / ΔP))
× A} × β
(Where, ΔP: pressure loss of the flow path, Re: Reynolds number, L: length of the flow path, D: diameter of the flow path (equivalent diameter), ρ: fluid (resin) density, V: flow velocity, g: gravity Acceleration: A: channel area, β: number of channels, α: correction coefficient of channel diameter (equivalent diameter) depending on winding tension.
請求項9に記載の超電導コイルの樹脂含浸方法において、前記樹脂流入量Qの積算値が前記超伝導コイルに浸漬すべき樹脂量に達する時刻を前記超電導コイルの樹脂含浸時間とすることを特徴とする超電導コイルの樹脂含浸方法。
10. The resin impregnation method for a superconducting coil according to claim 9, wherein the time when the integrated value of the resin inflow amount Q reaches the amount of resin to be immersed in the superconducting coil is defined as the resin impregnation time of the superconducting coil. To impregnate superconducting coil with resin.
JP2006234839A 2006-08-31 2006-08-31 Resin impregnation method for superconducting coils Expired - Fee Related JP4899727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006234839A JP4899727B2 (en) 2006-08-31 2006-08-31 Resin impregnation method for superconducting coils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006234839A JP4899727B2 (en) 2006-08-31 2006-08-31 Resin impregnation method for superconducting coils

Publications (2)

Publication Number Publication Date
JP2008060290A true JP2008060290A (en) 2008-03-13
JP4899727B2 JP4899727B2 (en) 2012-03-21

Family

ID=39242693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006234839A Expired - Fee Related JP4899727B2 (en) 2006-08-31 2006-08-31 Resin impregnation method for superconducting coils

Country Status (1)

Country Link
JP (1) JP4899727B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107080A1 (en) * 2009-03-18 2010-09-23 株式会社神戸製鋼所 Superconducting magnet
WO2011087052A1 (en) * 2010-01-14 2011-07-21 ジャパンスーパーコンダクタテクノロジー株式会社 Superconducting magnet
KR101373579B1 (en) * 2012-07-05 2014-03-12 고려대학교 산학협력단 Apparatus for epoxy impregnation of HTS racetrack coil
KR101531001B1 (en) * 2013-12-13 2015-06-25 한국전기연구원 Fabrication method for 2G HTS superconducting coil
KR101547204B1 (en) 2014-10-20 2015-08-25 고려대학교 산학협력단 Apparatus for epoxy impregnation of no-insulation HTS coil, and method thereof
JP2015534732A (en) * 2012-10-10 2015-12-03 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Coil potting apparatus and method
KR20190056319A (en) * 2017-11-16 2019-05-24 주식회사 원준하이테크 Vacuum Impregnation Apparatus and Manufacturing Method of Organic-Inorgarnic Hybrid Panel Using the Same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488095A (en) * 1977-12-24 1979-07-12 Sumitomo Electric Ind Ltd Superconduction magnet and its manufacture
JPS5728318A (en) * 1980-07-29 1982-02-16 Toshiba Corp Manufacture of insulated coil
JPH02146806A (en) * 1988-04-27 1990-06-06 Sgs Thomson Microelectron Srl Bias network for internally commutable integrated amplifier pair from single end configuration to balance configuration or in opposite direction
JPH02211606A (en) * 1989-02-13 1990-08-22 Sumitomo Electric Ind Ltd Resin impregnating method for superconductive magnet
JPH04127503A (en) * 1990-09-19 1992-04-28 Mitsubishi Electric Corp Manufacture of superconducting coil
JPH05152118A (en) * 1991-11-28 1993-06-18 Mitsubishi Electric Corp Manufacture of superconducting magnet and impregnating apparatus for superconducting magnet with impregnant
JPH07297026A (en) * 1994-04-22 1995-11-10 Fuji Electric Co Ltd Superconducting coil
JPH07335948A (en) * 1994-06-10 1995-12-22 Hitachi Ltd Method and apparatus for manufacture of thermal-type permanent current switch
JPH11154607A (en) * 1997-11-20 1999-06-08 Sumitomo Heavy Ind Ltd Method and equipment for impregnating superconducting coil in resin
JP2001189226A (en) * 1999-12-27 2001-07-10 Toshiba Corp Insulated coil, impregnating equipment of resin, curing equipment of resin, method of resin impregnation and method of curing resin
JP2006168300A (en) * 2004-12-20 2006-06-29 Toray Ind Inc Method and apparatus of supporting establishment of molding condition
JP2006192628A (en) * 2005-01-12 2006-07-27 Mitsubishi Heavy Ind Ltd Method and apparatus for forming composite material structure

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488095A (en) * 1977-12-24 1979-07-12 Sumitomo Electric Ind Ltd Superconduction magnet and its manufacture
JPS5728318A (en) * 1980-07-29 1982-02-16 Toshiba Corp Manufacture of insulated coil
JPH02146806A (en) * 1988-04-27 1990-06-06 Sgs Thomson Microelectron Srl Bias network for internally commutable integrated amplifier pair from single end configuration to balance configuration or in opposite direction
JPH02211606A (en) * 1989-02-13 1990-08-22 Sumitomo Electric Ind Ltd Resin impregnating method for superconductive magnet
JPH04127503A (en) * 1990-09-19 1992-04-28 Mitsubishi Electric Corp Manufacture of superconducting coil
JPH05152118A (en) * 1991-11-28 1993-06-18 Mitsubishi Electric Corp Manufacture of superconducting magnet and impregnating apparatus for superconducting magnet with impregnant
JPH07297026A (en) * 1994-04-22 1995-11-10 Fuji Electric Co Ltd Superconducting coil
JPH07335948A (en) * 1994-06-10 1995-12-22 Hitachi Ltd Method and apparatus for manufacture of thermal-type permanent current switch
JPH11154607A (en) * 1997-11-20 1999-06-08 Sumitomo Heavy Ind Ltd Method and equipment for impregnating superconducting coil in resin
JP2001189226A (en) * 1999-12-27 2001-07-10 Toshiba Corp Insulated coil, impregnating equipment of resin, curing equipment of resin, method of resin impregnation and method of curing resin
JP2006168300A (en) * 2004-12-20 2006-06-29 Toray Ind Inc Method and apparatus of supporting establishment of molding condition
JP2006192628A (en) * 2005-01-12 2006-07-27 Mitsubishi Heavy Ind Ltd Method and apparatus for forming composite material structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107080A1 (en) * 2009-03-18 2010-09-23 株式会社神戸製鋼所 Superconducting magnet
JP2010245511A (en) * 2009-03-18 2010-10-28 Kobe Steel Ltd Superconducting magnet
CN102349118A (en) * 2009-03-18 2012-02-08 株式会社神户制钢所 Superconducting magnet
WO2011087052A1 (en) * 2010-01-14 2011-07-21 ジャパンスーパーコンダクタテクノロジー株式会社 Superconducting magnet
KR101373579B1 (en) * 2012-07-05 2014-03-12 고려대학교 산학협력단 Apparatus for epoxy impregnation of HTS racetrack coil
JP2015534732A (en) * 2012-10-10 2015-12-03 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Coil potting apparatus and method
KR101531001B1 (en) * 2013-12-13 2015-06-25 한국전기연구원 Fabrication method for 2G HTS superconducting coil
KR101547204B1 (en) 2014-10-20 2015-08-25 고려대학교 산학협력단 Apparatus for epoxy impregnation of no-insulation HTS coil, and method thereof
KR20190056319A (en) * 2017-11-16 2019-05-24 주식회사 원준하이테크 Vacuum Impregnation Apparatus and Manufacturing Method of Organic-Inorgarnic Hybrid Panel Using the Same
KR102033437B1 (en) * 2017-11-16 2019-10-17 주식회사 원준하이테크 Vacuum Impregnation Apparatus and Manufacturing Method of Organic-Inorgarnic Hybrid Panel Using the Same

Also Published As

Publication number Publication date
JP4899727B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP4899727B2 (en) Resin impregnation method for superconducting coils
KR102158922B1 (en) Vacuum desorption, impregnation and curing system, vacuum desorption device, and vacuum desorption process for the protective layer of magnetic poles
KR101721461B1 (en) Vacuum assistant resin casted protection coating, system and method of permanent magnet motor rotor
US20070145622A1 (en) System and method for resin infusion
EP3431961B1 (en) Test apparatus and control method for test apparatus
CN106384664A (en) Vacuum centrifugal impregnation device
CN109443647A (en) System and method for power battery pack seawater soak test
JP6589645B2 (en) Tank inspection method
CN109669027A (en) A kind of detection device and detection method of for transformer oil vacuum antifoam property
JP5657129B2 (en) Method for filling the main circuit of a nuclear reactor with water and a connecting device for carrying out the method
CN116773583A (en) Crack rock mass frost heaving load and damage expansion characteristic test device and method
JP4170546B2 (en) Insulating coil, resin impregnation apparatus and resin impregnation method
CN108724565B (en) Pouring and assembling process of ultrathin ultrasonic probe
CN109968694B (en) Vacuum auxiliary resin pouring method for motor rotor
JP2007234692A (en) Resin impregnation method for superconducting coil
JP3469025B2 (en) High speed casting machine
CN209214840U (en) System for power battery pack seawater soak test
JP3052673B2 (en) Mold coil
CN105259202A (en) Determinator
JP4847811B2 (en) Permanent current switch and manufacturing method thereof
CN111398090A (en) Oil gas measuring device
CN108344472B (en) Liquid level assembly thermal response detection system
JP2015152466A (en) Concrete sample production method, concrete sample and production device of sample
CN114937555B (en) Constant-temperature constant-pressure vacuum epoxy gum dipping equipment with controllable gum dipping rate and use method
JP2912231B2 (en) Liquid injection device for wood

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110818

AA91 Notification that invitation to amend document was cancelled

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20110913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R151 Written notification of patent or utility model registration

Ref document number: 4899727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees