JPH07296825A - Internal manifold type solid electrolyte fuel cell - Google Patents

Internal manifold type solid electrolyte fuel cell

Info

Publication number
JPH07296825A
JPH07296825A JP6088514A JP8851494A JPH07296825A JP H07296825 A JPH07296825 A JP H07296825A JP 6088514 A JP6088514 A JP 6088514A JP 8851494 A JP8851494 A JP 8851494A JP H07296825 A JPH07296825 A JP H07296825A
Authority
JP
Japan
Prior art keywords
air
main body
cell
separator
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6088514A
Other languages
Japanese (ja)
Inventor
Yuichi Hishinuma
祐一 菱沼
Yoshio Matsuzaki
良雄 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP6088514A priority Critical patent/JPH07296825A/en
Publication of JPH07296825A publication Critical patent/JPH07296825A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To provide a high-performance composite separator of high accuracy at low cost by fitting a conductive oxide plate in a grooved portion having a flat bottom passing from one end surface to the opposite end surface of the air-electrode side portion of a heat resistant metallic main body portion. CONSTITUTION:A separator 1 is a combination of a heat resistant metallic main body portion 1A and a conductive oxide plate 1B, with plural lines of gas circulating channels and projections formed on the bottom surface of the main body portion 1A to make contact with the fuel electrode surface of a cell. A grooved portion 1d consisting of a flat surface passing from on end surface 1g to the opposite end surface 1g is formed in the center of the top surface of the main body portion 1A other than both end portions 1d, and the plate 1B is fitted into the grooved portion 1e. Since the grooved portion 1e is not a recess, it is cut by a shaping machine and has its surface finish polished by a polishing machine. Similarly, the bottom surface of the plate 1B is ground and polished. Therefore, the manufacturing process is simple and the contact resistance of the fuel cell is decreased by the close contact between both sides. Also, plural lines of air circulating channels 5c and projections 5b are formed on the top surface of the plate 1B to make contact with the air electrode of the cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐熱性金属と導電性酸化
物からなる複合セパレータを有する内部マニホールド方
式の固体電解質型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal manifold type solid oxide fuel cell having a composite separator composed of a refractory metal and a conductive oxide.

【0002】[0002]

【従来の技術】最近、酸素と水素をそれぞれ、酸化剤お
よび燃料として、燃料が本来持っている化学エネルギー
を直接電気エネルギーに変換する燃料電池が、省資源、
環境保護などの観点から注目されている。イットリアな
どをドープしたジルコニアを単電池の電解質層として用
い、耐熱性金属や導電性酸化物をセパレータとして用い
た固体電解質型燃料電池は、作動温度が高く、発電効率
が高く、高温の廃熱の利用により総合効率が高いので、
研究開発が進んでいる。
2. Description of the Related Art Recently, a fuel cell that directly converts chemical energy originally possessed by fuel into electric energy by using oxygen and hydrogen as an oxidant and a fuel, respectively, is a resource saving,
It is drawing attention from the perspective of environmental protection. A solid oxide fuel cell that uses zirconia doped with yttria, etc. as the electrolyte layer of a single cell and uses a heat-resistant metal or a conductive oxide as a separator has a high operating temperature, high power generation efficiency, and high temperature waste heat. Since the total efficiency is high due to use,
Research and development is progressing.

【0003】固体電解質型燃料電池は固体電解質層を挟
むように燃料極と空気極を配置してなる平板状単電池
と、隣接する単電池同志を電気的に直列に接続しかつ各
単電池に燃料ガスと空気とを分配するセパレータとを交
互に積層して複層のスタックとして構成されたものであ
る。内部マニホールド方式の固体電解質型燃料電池はセ
パレータ等の電池材料が酸素および燃料の各ガスの給排
気、分配の機能および電気的接続の機能を兼ね備える一
体型の構造である。そのため、セパレータの周縁部にガ
スの給排気の孔が開けられ、この孔から単電池の電極面
に各ガスが給排気され、さらに、電極面の全面隅々にガ
スを均等に分配するため、および、隣あう電池を直列に
接続するため電極面に複数本のガス流通溝が形成されて
いる。周縁部に設けたガス給排気の孔は単電池を積層す
る過程で連結され、スタック内部にガス通路を形成して
いる。
In the solid oxide fuel cell, a flat plate-shaped single cell in which a fuel electrode and an air electrode are arranged so as to sandwich a solid electrolyte layer and an adjacent single cell are electrically connected in series and each single cell is connected. It is configured as a multi-layer stack by alternately stacking separators that distribute fuel gas and air. The internal manifold type solid oxide fuel cell has an integrated structure in which a cell material such as a separator has a function of supplying and discharging oxygen and fuel gas, a function of distributing, and an electrical connection function. Therefore, a gas supply / exhaust hole is formed in the peripheral portion of the separator, each gas is supplied / exhausted from the hole to the electrode surface of the unit cell, and further, in order to evenly distribute the gas to all the corners of the electrode surface, In addition, a plurality of gas flow grooves are formed on the electrode surface for connecting adjacent batteries in series. Gas supply / exhaust holes provided in the peripheral portion are connected in the process of stacking the unit cells to form a gas passage inside the stack.

【0004】図3は従来の内部マニホールド方式の固体
電解質型燃料電池に使用されている複合セパレータの斜
視図である。
FIG. 3 is a perspective view of a composite separator used in a conventional internal manifold type solid oxide fuel cell.

【0005】従来、内部マニホールド方式の固体電解質
型燃料電池に使用されているセパレータは耐熱性金属の
本体部11と導電性酸化物の板12からなる複合セパレ
ータとして構成されている。この複合セパレータの燃料
極側の面(図3において本体部11の裏側の面)はすべ
て耐熱性金属面である。しかし、その反対の空気極側の
面(図3において本体部11の表側の面)はその大部分
が耐熱性金属面であり、残りの一部の面が凹んでポケッ
ト部13となり、このポケット部13に集電部としての
導電性酸化物板12を嵌め込んでいる。導電性酸化物板
12はたとえばストロンチウムドープランタンクロマイ
トを加圧成型し空気中で焼成して得たものである。上述
のように嵌め込んだとき、耐熱性金属の本体部11のポ
ケット部13の平らな底面と導電性酸化物板12の平ら
な下面は重ね合わされ、酸素と燃料の両ガス流通溝の有
る面は互いに上下外方に露出されることになる。なお、
導電性酸化物板12は上面にガス流通溝12aを備え、
下面は扁平面である。このガス流通溝12aに対応して
本体部1の燃料極側の面に燃料ガス流通溝(図示せず)
が形成されている。
Conventionally, a separator used in an internal manifold type solid oxide fuel cell is constructed as a composite separator composed of a main body 11 made of a refractory metal and a plate 12 made of a conductive oxide. The surface of the composite separator on the fuel electrode side (the surface on the back side of the main body 11 in FIG. 3) is a heat-resistant metal surface. However, most of the opposite surface on the air electrode side (the surface on the front side of the main body 11 in FIG. 3) is a heat resistant metal surface, and the remaining part of the surface is recessed to form the pocket portion 13. The conductive oxide plate 12 as a current collector is fitted in the portion 13. The conductive oxide plate 12 is obtained, for example, by pressure-molding strontium dope lanthanum chromite and firing it in air. When fitted as described above, the flat bottom surface of the pocket portion 13 of the heat-resistant metal main body portion 11 and the flat bottom surface of the conductive oxide plate 12 are overlapped with each other, and a surface having both oxygen and fuel gas flow grooves. Will be exposed top and bottom to each other. In addition,
The conductive oxide plate 12 has a gas flow groove 12a on the upper surface,
The lower surface is flat. A fuel gas flow groove (not shown) is formed on the fuel electrode side surface of the main body 1 corresponding to the gas flow groove 12a.
Are formed.

【0006】この複合セパレータは機械的強度が大で割
れが少なく、酸化物の膜を金属上にコーティングしてい
た場合と異なって熱膨張差による剥離の問題や剥離によ
り界面抵抗が増加する問題も無く、したがって複合セパ
レータを使用した固体電解質型燃料電池は熱サイクルに
強く、耐久性が大で、製造および修理が簡単容易で、コ
ストも安い等の長所がある。
This composite separator has high mechanical strength and few cracks, and unlike the case where an oxide film is coated on a metal, there is also a problem of peeling due to a difference in thermal expansion and a problem of increasing interfacial resistance due to peeling. Therefore, the solid oxide fuel cell using the composite separator has advantages such as resistance to heat cycle, high durability, easy manufacture and repair, and low cost.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の複合セパレータには次のような欠点が存在す
る。 (1)耐熱性金属の本体部11に設けるポケット部13
は周囲が盛り上がった凹みであるため、これを機械加工
による製作はミーリング加工(フライス加工)によらな
ければならない。すなわち、エンドミルにより切削しな
ければならない。さらに、ミーリング加工後の研削加工
も困難または不可能である。その結果、ポケット部13
の底面の精度を良くすることができない。この面精度が
悪いと、導電性酸化物板12の下面(図4参照)がポケ
ット部13の底面に密着せず両者間の接触が悪くなり、
燃料電池の接触抵抗すなわち内部抵抗が増大してその性
能が低下する。また、ミーリング加工とそれに続く研磨
仕上げに多大の時間を要し、製造コストが増大する。 (2)内部マニホールド方式の固体電解質型燃料電池を
単電池とセパレータとを交互に積層し加圧して複層のス
タックとして組み立てる際に、本体部1の表面および裏
面の周縁部は単電池の固体電解質層と気密状に重なりガ
スの漏洩を防止するためのシール面となる。一方、導電
性酸化物板12の空気流通溝12aの突起の頂面は燃料
電池を組立てたとき、単電池の空気極面に接触するよう
になっている(図3参照)。この際、加圧力は主として
本体部11の周縁部11aのシール面に作用するが、導
電性酸化物板12の空気流通溝12aの突起の頂面にあ
まり作用せず加圧力が小さくなる。この原因は前述のポ
ケット部13(その深さ)の加工精度の不良と、本体部
11の周縁部の気密性を重視するためである。そのた
め、燃料電池の接触抵抗すなわち内部抵抗が増大してそ
の性能が低下する。
However, such a conventional composite separator has the following drawbacks. (1) Pocket part 13 provided in the main body 11 of heat-resistant metal
Since is a dent with a raised periphery, this must be manufactured by milling (milling). That is, it must be cut with an end mill. Further, the grinding process after the milling process is difficult or impossible. As a result, the pocket portion 13
Can not improve the accuracy of the bottom surface of. If this surface accuracy is poor, the lower surface of the conductive oxide plate 12 (see FIG. 4) does not adhere to the bottom surface of the pocket portion 13, and the contact between the two becomes poor.
The contact resistance of the fuel cell, that is, the internal resistance increases, and the performance thereof deteriorates. Further, it takes a lot of time for the milling process and the subsequent polishing and finishing, and the manufacturing cost increases. (2) When an internal manifold type solid oxide fuel cell is assembled by alternately stacking cells and separators and applying pressure to assemble them into a stack of multiple layers, the peripheral portions of the front surface and the back surface of the main body 1 are solid cells of the single cells. It seals with the electrolyte layer in an airtight manner and serves as a sealing surface for preventing gas leakage. On the other hand, the top surface of the protrusion of the air flow groove 12a of the conductive oxide plate 12 comes into contact with the air electrode surface of the unit cell when the fuel cell is assembled (see FIG. 3). At this time, the pressing force mainly acts on the sealing surface of the peripheral edge portion 11a of the main body portion 11, but does not act on the top surface of the projection of the air circulation groove 12a of the conductive oxide plate 12 so much that the pressing force becomes small. This is because the above-mentioned poor processing accuracy of the pocket portion 13 (its depth) and the airtightness of the peripheral portion of the main body portion 11 are emphasized. Therefore, the contact resistance of the fuel cell, that is, the internal resistance of the fuel cell is increased and the performance thereof is deteriorated.

【0008】本発明は上述の点に鑑みてなされたもの
で、製作が容易で、コストが低廉で、精度が高く、性能
の良い、複合セパレータを有する内部マニホールド方式
の固体電解質型燃料電池を提供することを目的とする。
The present invention has been made in view of the above points, and provides an internal manifold type solid oxide fuel cell having a composite separator, which is easy to manufacture, low in cost, high in accuracy, and good in performance. The purpose is to do.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、本発明は固体電解質層を挟むように燃料極と空気極
を配置した平板状単電池と、隣接する単電池を電気的に
直列に接続しかつ各単電池に燃料ガスと空気とを分配す
るセパレータを交互に積層してなる固体電解質型燃料電
池において、前記セパレータが燃料ガス及び空気を給排
気する貫通孔を周縁部に備え、空気極側へ空気を分配す
る構造を表面に備え、且つ燃料極へ燃料ガスを分配する
構造を裏面に備え、前記空気極側へ空気を分配する構造
がセパレータの一方の端面から反対側の端面に貫通する
扁平底部を有する溝部を空気極側に備えた耐熱性金属製
本体部と、表面を空気極に対面させ且つ裏面を前記本体
部の溝部の扁平底部に密着させて前記溝部の中に嵌め込
まれた導電性酸化物板とを具備することを特徴とする。
In order to solve the above-mentioned problems, the present invention relates to a plate-shaped unit cell in which a fuel electrode and an air electrode are arranged so as to sandwich a solid electrolyte layer, and an adjacent unit cell is electrically connected in series. In a solid oxide fuel cell in which separators that connect and distribute fuel gas and air to each unit cell are alternately laminated, the separator is provided with through holes for supplying and exhausting fuel gas and air in the peripheral portion, and A structure for distributing air to the electrode side is provided on the front surface, and a structure for distributing fuel gas to the fuel electrode is provided on the back surface, and a structure for distributing air to the air electrode side is provided from one end surface of the separator to the opposite end surface. A heat-resistant metal main body having a groove portion having a flat bottom penetrating therethrough on the air electrode side, a front surface facing the air electrode, and a back surface closely fitted to the flat bottom portion of the groove portion of the main body portion and fitted into the groove portion. Conductive oxide Characterized by including and.

【0010】[0010]

【作用】セパレータを耐熱性金属製本体部と、該本体部
の片面の一部に設けた溝部に嵌合する導電性酸化物板と
からなる複合式にして、溝部の形状をセパレータの一方
の端面から反対側の端面に貫通する扁平底部を有する構
造にしたので、この溝部が型削り盤により切削されかつ
研削盤により研磨されるようになり、その結果平面の仕
上がり精度を向上させ、電池の接触抵抗を低下させる作
用がある。
The separator is a composite type composed of a heat-resistant metal main body and a conductive oxide plate fitted in a groove provided on a part of one side of the main body, and the shape of the groove is one of the separators. Since it has a structure that has a flat bottom that penetrates from the end face to the opposite end face, this groove is cut by a die-cutting machine and polished by a grinder, as a result, the finishing accuracy of the flat surface is improved, and the battery It has the effect of reducing contact resistance.

【0011】[0011]

【実施例】以下、本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0012】図1は本発明の内部マニホールド方式の固
体電解質型燃料電池に使用する複合セパレータの組立前
の斜視図、図2は本発明の内部マニホールド方式の固体
電解質型燃料電池に使用する複合セパレータの組立後の
平面図である。
FIG. 1 is a perspective view of a composite separator used for the internal manifold type solid oxide fuel cell of the present invention before assembly, and FIG. 2 is a composite separator used for the internal manifold type solid oxide fuel cell of the present invention. FIG. 4 is a plan view after assembly of FIG.

【0013】本発明の内部マニホールド方式の固体電解
質型燃料電池は、平板状単電池とセパレータ1を交互に
積層してスタックとして組み立てられたものである。単
電池は固体電解質層を挟むように燃料極としてNi/Y
SZサーメットを、空気極として(La、Sr)MnO
3をスクリーン印刷などによりコーティングしたものを
配置したものである。固体電解質層はイットリアなどを
ドープしたジルコニア焼結体(YSZ)で造られる。固
体電解質層の4隅にガスの給排気孔が開けられている。
このガス給排気孔はセパレータ1の4隅の給排気孔とし
ての貫通孔1aの大きさおよび配置と同一である。
The solid oxide fuel cell of the internal manifold type of the present invention is constructed by stacking flat plate cells and separators 1 alternately to form a stack. The unit cell uses Ni / Y as the fuel electrode so that the solid electrolyte layer is sandwiched between them.
SZ cermet as an air electrode (La, Sr) MnO
It is an arrangement of 3 coated by screen printing. The solid electrolyte layer is made of a zirconia sintered body (YSZ) doped with yttria or the like. Gas supply / exhaust holes are formed at four corners of the solid electrolyte layer.
The gas supply / exhaust holes have the same size and arrangement as the through holes 1a as the supply / exhaust holes at the four corners of the separator 1.

【0014】セパレータ1は単電池の燃料極と空気極に
それぞれ使用される燃料ガスと酸化剤ガスを分離してク
ロスリークを防止する作用と、単電池同士を電気的に直
列に接続する作用をするものである。セパレータ1はN
iやNi基合金等の耐熱性金属で造った本体部1Aと、
本体部の上面(図1参照)に嵌め込まれるようになった
導電性酸化物板1Bとの複合体として構成され、この複
合セパレータ1の上面が空気極側へ空気を分配する構造
を構成し、またその下面が燃料極側へ燃料を分配する構
造を構成している。図1は導電性酸化物板1Bを本体部
1Aに嵌め込む前の状態を示し、図2は嵌め込んだ状態
を示す。
The separator 1 has a function of separating the fuel gas and the oxidant gas used for the fuel electrode and the air electrode of the unit cell to prevent cross leak and a function of electrically connecting the unit cells in series. To do. Separator 1 is N
a main body 1A made of a heat-resistant metal such as i or Ni-based alloy,
It is configured as a composite with a conductive oxide plate 1B adapted to be fitted on the upper surface of the main body portion (see FIG. 1), and the upper surface of the composite separator 1 constitutes a structure for distributing air to the air electrode side, Further, the lower surface thereof constitutes a structure for distributing the fuel to the fuel electrode side. 1 shows a state before the conductive oxide plate 1B is fitted into the main body 1A, and FIG. 2 shows a fitted state.

【0015】本体部1Aはセパレータ1の大部分を占め
る矩形状をなし、4隅にガスの給排気孔1aが開けら
れ、さらに、単電池の燃料電極面の隅々に燃料ガスを均
等に分配するため、および、隣あう単電池と直列に接続
するため電極面に複数列の燃料ガス流通溝と突起が施さ
れている。この突起の頂面は燃料電池を組立てたとき、
単電池の燃料極面に接触するようになっている。しか
し、これらの溝と突起は本体部1Aの下面のみに形成さ
れており、一方本体部1Aの上面は両側端部1dを残
し、中央部の全幅にわたり溝部1eが形成されている。
この溝部1eの中に導電性酸化物板1Bが嵌め込まれて
いる。
The main body 1A has a rectangular shape occupying most of the separator 1, and gas supply / exhaust holes 1a are formed at four corners, and the fuel gas is evenly distributed to the corners of the fuel electrode surface of the unit cell. In order to do so, and in order to connect in series with adjacent cells, a plurality of rows of fuel gas flow grooves and protrusions are provided on the electrode surface. When the fuel cell is assembled, the top surface of this protrusion is
It is designed to come into contact with the fuel electrode surface of the unit cell. However, these grooves and protrusions are formed only on the lower surface of the main body portion 1A, while the upper surface of the main body portion 1A has a groove portion 1e formed over the entire width of the central portion, leaving both side end portions 1d.
The conductive oxide plate 1B is fitted in the groove 1e.

【0016】導電性酸化物板1Bの上面に形成されてい
る溝部1eは、図1に示すように、セパレータ1の一方
の端面1gから反対側の端面1gに貫通する扁平面であ
り、凹みではない。このことは非常に重要なことであ
り、刃物が工作物の加工面上を往復動するとき加工面の
前後に空間を持つことになる。これにより溝部1eを端
から端まで形削り盤により切削し、さらに研削盤により
平面研磨仕上げすることが可能となり、平面の精度を確
保することができる。勿論、導電性酸化物板1Bの下面
も形削り盤により切削し、さらに平面研磨により面の精
度を確保することができる。セパレータ1は単電池と単
電池を電気的に直列に接続する作用を有するものであ
る。したがって、精密仕上げされた両面を密着させるこ
とにより、燃料電池の接触抵抗すなわち内部抵抗を減少
させることができる。
As shown in FIG. 1, the groove portion 1e formed on the upper surface of the conductive oxide plate 1B is a flat surface penetrating from one end surface 1g of the separator 1 to the opposite end surface 1g, and is not a recess. Absent. This is very important, as the blade reciprocates on the work surface of the work piece, and has a space in front of and behind the work surface. This makes it possible to cut the groove portion 1e from one end to the other with a shaping machine and further to finish the surface polishing with a grinding machine, so that the accuracy of the plane can be secured. Of course, the lower surface of the conductive oxide plate 1B can also be cut by a shaper, and the surface accuracy can be ensured by planar polishing. The separator 1 has a function of electrically connecting cells and cells in series electrically. Therefore, the contact resistance, that is, the internal resistance of the fuel cell can be reduced by bringing the two surfaces that have been finely finished into close contact with each other.

【0017】本体部1Aの下面の溝は左右2個の対角線
方向の給排気孔1aに連通している。なお、左右2個の
対角線方向の別の給排気孔1aは後述するように導電性
酸化物の板1Bの空気流通溝5cに連通している。セパ
レータ1の表面と裏面の両端部1dは単電池の固体電解
質層と重ねるための面である。
Grooves on the lower surface of the main body 1A communicate with two diagonal air supply / exhaust holes 1a. The two right and left diagonal air supply / exhaust holes 1a communicate with the air flow groove 5c of the conductive oxide plate 1B as described later. Both ends 1d of the front surface and the back surface of the separator 1 are surfaces for overlapping with the solid electrolyte layer of the unit cell.

【0018】導電性酸化物の板1Bは例えばストロンチ
ウムドープランタンクロマイトを加圧成型し空気中で焼
成して得た平板状焼結体である。板1Bはその上面に単
電池の空気極面に空気を流すための複数本の空気流通溝
5cと突起5bを備えている。なお、突起5bの頂面は
燃料電池を組立てたとき、単電池の空気極面に接触する
ようになっている。板1Bの溝5cはセパレータ1の本
体部1Aのへこみ1fを通じて左右2個の対角線方向の
貫通孔の給排気孔1aに連通している(図1参照)。こ
のようにして、セパレータ1の上面が空気極側へ空気を
分配する構造を構成する。
The conductive oxide plate 1B is, for example, a flat plate-shaped sintered body obtained by pressure-molding strontium dope lanthanum chromite and firing in air. The plate 1B is provided with a plurality of air circulation grooves 5c and projections 5b for flowing air on the air electrode surface of the unit cell on the upper surface thereof. The top surface of the protrusion 5b comes into contact with the air electrode surface of the unit cell when the fuel cell is assembled. The groove 5c of the plate 1B communicates with the air supply / exhaust holes 1a of two right and left diagonal through holes through the recesses 1f of the main body 1A of the separator 1 (see FIG. 1). In this way, the upper surface of the separator 1 constitutes a structure for distributing air to the air electrode side.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、セ
パレータを耐熱性金属製本体部と、この本体部の片面の
一部に設けた溝部に嵌合する導電性酸化物板とからなる
複合セパレータとし、該溝部にセパレータの一方の端面
から反対側の端面に貫通する扁平な底面を形成し、この
本体部の扁平底面に導電性酸化物板の片側の扁平面を重
ねて密着させる構造とし、この複合セパレータを使用し
て内部マニホールド方式の固体電解質型燃料電池を組立
てたので、次のような優れた効果が得られる。 (1)複合セパレータの本体部に形成する溝と導電性酸
化物板との嵌合部の加工が容易となったので、多量生産
が可能となり、コストが低減される。 (2)本体部に形成する溝の底面の仕上がり精度を向上
させることができる。 (3)燃料電池をスタックに組み立てる時に複合セパレ
ータの本体部と導電性酸化物板との嵌合部に作用する圧
縮加重を増大させることができる。 (4)複合セパレータの本体部と導電性酸化物板とが良
好な面接触をなし、且つ加圧力が増大するので、接触抵
抗すなわち燃料電池の内部抵抗が減少し、燃料電池の性
能が向上する。
As described above, according to the present invention, the separator is composed of a heat-resistant metal main body and a conductive oxide plate which fits in a groove provided in a part of one surface of the main body. As a composite separator, a structure in which a flat bottom surface that penetrates from one end surface of the separator to the end surface on the opposite side is formed in the groove portion, and a flat bottom surface of the main body portion is superposed and closely adhered to one flat surface of the conductive oxide plate Since the solid oxide fuel cell of the internal manifold type is assembled using this composite separator, the following excellent effects can be obtained. (1) Since it is easy to process the fitting portion between the groove formed in the main body of the composite separator and the conductive oxide plate, mass production is possible and cost is reduced. (2) The finishing accuracy of the bottom surface of the groove formed in the main body can be improved. (3) It is possible to increase the compression load that acts on the fitting portion between the main body of the composite separator and the conductive oxide plate when the fuel cell is assembled into the stack. (4) Since the main body of the composite separator and the conductive oxide plate are in good surface contact with each other and the pressing force is increased, the contact resistance, that is, the internal resistance of the fuel cell is reduced, and the performance of the fuel cell is improved. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の内部マニホールド方式の固体電解質型
燃料電池に使用する複合セパレータの組立前の斜視図で
ある。
FIG. 1 is a perspective view before assembly of a composite separator used in an internal manifold type solid oxide fuel cell of the present invention.

【図2】本発明の内部マニホールド方式の固体電解質型
燃料電池に使用する複合セパレータの組立後の平面図で
ある。
FIG. 2 is a plan view after assembly of a composite separator used in an internal manifold type solid oxide fuel cell of the present invention.

【図3】従来の内部マニホールド方式の固体電解質型燃
料電池に使用されている複合セパレータの斜視図であ
る。
FIG. 3 is a perspective view of a composite separator used in a conventional solid oxide fuel cell of the internal manifold type.

【符号の説明】[Explanation of symbols]

1 セパレータ 1A 耐熱性金属本体部 1B 導電性酸化物板 1a 貫通孔 1d 端部 1e 溝部 1f へこみ 1g 端面 5b 突起 5c 溝 1 Separator 1A Heat Resistant Metal Main Body 1B Conductive Oxide Plate 1a Through Hole 1d End 1e Groove 1f Indentation 1g End Face 5b Protrusion 5c Groove

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質層を挟むように燃料極と空気
極を配置した平板状単電池と、隣接する単電池を電気的
に直列に接続しかつ各単電池に燃料ガスと空気とを分配
するセパレータを交互に積層してなる固体電解質型燃料
電池において、前記セパレータが燃料ガス及び空気を給
排気する貫通孔を周縁部に備え、空気極側へ空気を分配
する構造を表面に備え、且つ燃料極へ燃料ガスを分配す
る構造を裏面に備え、前記空気極側へ空気を分配する構
造がセパレータの一方の端面から反対側の端面に貫通す
る扁平底部を有する溝部を空気極側に備えた耐熱性金属
製本体部と、表面を空気極に対面させ且つ裏面を前記本
体部の溝部の扁平底部に密着させて前記溝部の中に嵌め
込まれた導電性酸化物板とを具備することを特徴とする
内部マニホールド方式の固体電解質型燃料電池。
1. A flat plate cell in which a fuel electrode and an air electrode are arranged so as to sandwich a solid electrolyte layer, and adjacent cell cells are electrically connected in series, and fuel gas and air are distributed to each cell. In a solid oxide fuel cell in which separators are alternately laminated, the separator is provided with a through hole for supplying and exhausting fuel gas and air in a peripheral portion, and a surface is provided with a structure for distributing air to the air electrode side, and A structure for distributing fuel gas to the fuel electrode is provided on the back surface, and a structure for distributing air to the air electrode side is provided with a groove portion having a flat bottom portion penetrating from one end face of the separator to the opposite end face on the air electrode side. A heat-resistant metal main body, and a conductive oxide plate fitted into the groove so that the front surface faces the air electrode and the back surface is in close contact with the flat bottom of the groove of the main body. Internal manifold Type solid oxide fuel cell.
JP6088514A 1994-04-26 1994-04-26 Internal manifold type solid electrolyte fuel cell Withdrawn JPH07296825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6088514A JPH07296825A (en) 1994-04-26 1994-04-26 Internal manifold type solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6088514A JPH07296825A (en) 1994-04-26 1994-04-26 Internal manifold type solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH07296825A true JPH07296825A (en) 1995-11-10

Family

ID=13944944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6088514A Withdrawn JPH07296825A (en) 1994-04-26 1994-04-26 Internal manifold type solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH07296825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413891B1 (en) * 1998-09-25 2004-01-07 마쯔시다덴기산교 가부시키가이샤 Fuel cell stack with separator of a laminate structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413891B1 (en) * 1998-09-25 2004-01-07 마쯔시다덴기산교 가부시키가이샤 Fuel cell stack with separator of a laminate structure

Similar Documents

Publication Publication Date Title
JP3466960B2 (en) Flat cell with holding thin frame and fuel cell using the same
JPH10172594A (en) Method and device for distributing introduced gas to solid electrolyte fuel cell of flat plate type
JP3456378B2 (en) Solid oxide fuel cell
JP2000048831A (en) Solid electrolyte fuel cell
JP2004087311A (en) Fuel cell stack and metallic separator for for fuel cell stack
WO2004049483A2 (en) Solid oxide fuel cell stack
JPH09326259A (en) Solid electrolyte fuel cell
JPH08180885A (en) Solid electrolytic fuel cell improved in current collecting efficiency of air electrode
JPH1116585A (en) Flat solid electrolyte fuel cell and its layering method
JPH09231987A (en) Seal structure of solid electrolyte fuel cell and its manufacture
JPH07296825A (en) Internal manifold type solid electrolyte fuel cell
JPH0355764A (en) Solid electrolytic type fuel cell
US11271221B2 (en) Electrochemical reaction cell stack, interconnector-electrochemical reaction unit cell composite, and method for manufacturing electrochemical reaction cell stack
JPH10134828A (en) Current collecting method between fuel electrode and separator of flat solid electrolyte fuel cell
JPH07296829A (en) Support film type solid electrolyte fuel cell
JP3981578B2 (en) Fuel cell
JPH07296827A (en) Internal manifold type solid electrolyte fuel cell having composite separator
JPH06140056A (en) Solid electrolytic fuel cell having inside manifold structure to increase current collecting rate
JPH06342664A (en) Method for reforming inside of flat solid electrolyte fuel cell having internal manifold structure using compound separator of heat resistant metal plate and oxide plate
JPH07296828A (en) Internal manifold type solid electrolyte fuel cell of decreased internal resistance
JPH0845516A (en) Plate type solid electrolyte fuel cell using mesh with different wire diameters
JPH0462757A (en) Solid electrolyte type fuel cell
JPH02197055A (en) Cell structure of fuel cell
JP7023898B2 (en) Electrochemical reaction cell stack
JP2654502B2 (en) Solid electrolyte fuel cell with mechanical seal structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010703