JPH07296811A - Lithium secondary battery anode material and lithium secondary battery using same - Google Patents

Lithium secondary battery anode material and lithium secondary battery using same

Info

Publication number
JPH07296811A
JPH07296811A JP6113683A JP11368394A JPH07296811A JP H07296811 A JPH07296811 A JP H07296811A JP 6113683 A JP6113683 A JP 6113683A JP 11368394 A JP11368394 A JP 11368394A JP H07296811 A JPH07296811 A JP H07296811A
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
lithium secondary
alloy
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6113683A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Marumoto
光弘 丸本
Yoshinori Takada
善典 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP6113683A priority Critical patent/JPH07296811A/en
Priority to CA002143047A priority patent/CA2143047A1/en
Priority to EP95102473A priority patent/EP0668621A1/en
Priority to US08/392,217 priority patent/US5498495A/en
Publication of JPH07296811A publication Critical patent/JPH07296811A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a lithium secondary battery anode material which provides a large charge and discharge capacity and a high energy density and which resists deterioration due to repeated charging and discharging and to provide a lithium secondary battery which has a high electromotive force, a high charge and discharge capacity, a high energy-density battery output and an excellent charge and discharge cycle life. CONSTITUTION:A lithium secondary battery, in which an Li-Ag-Te-(M1-M2) alloy composed of Li, Ag, Te, M1 and M2 in an atomic ratio of 80-150:1-20:0.001-10:1-50:1-30 (M1 is Zn and/or Si, M2 is one or two kinds or more of alloy components selected from Fe, Co, Mn, Mo, Ni and W) is used as anode material 3, is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、充放電のサイクル寿命
に優れ、かつ高出力のリチウム系二次電池を形成し得る
負極材、及びそれを用いたリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode material having excellent charge / discharge cycle life and capable of forming a high output lithium secondary battery, and a lithium secondary battery using the same.

【0002】[0002]

【従来の技術】従来、高エネルギー密度の電池出力、高
い起電力などの諸特性を満たす二次電池として、電解液
に有機溶媒等の非水電解液を用い、負極に純リチウムを
用いた非水電解液型のリチウム二次電池が知られてい
る。しかしながら、当該二次電池によれば、充電時にお
いて負極表面にエネルギー的に活性なポイントが生成さ
れ、該部位から電析によりリチウムがトリー状に成長す
るデントライトが発生し、正・負極間を短絡させたり、
デントライトが負極より脱落して不活性化し負極の効率
低下或いは劣化を招いたりし、その結果サイクル寿命が
短くなるという欠点があった。
2. Description of the Related Art Conventionally, as a secondary battery satisfying various characteristics such as high energy density battery output and high electromotive force, a non-aqueous electrolytic solution such as an organic solvent has been used as an electrolytic solution and a non-aqueous electrolyte using a pure lithium as a negative electrode. A water electrolyte type lithium secondary battery is known. However, according to the secondary battery, energetically active points are generated on the surface of the negative electrode during charging, and dendrite in which lithium grows in a tree shape is generated by electrodeposition from the site, and a positive-negative electrode is generated between the positive and negative electrodes. Short circuit,
There is a drawback in that the dendrites fall off from the negative electrode and become inactive, resulting in a decrease in efficiency or deterioration of the negative electrode, resulting in a shorter cycle life.

【0003】そこで、Al,Bi,Pb,Sn,In等
とLiとの金属間化合物からなるリチウム合金で負極を
形成する方式が提案されている。すなわち、リチウムの
合金化により純リチウムよりも電極電位を上げて負極の
活性度を低下させ、リチウムイオン間での放電反応の速
度を低下させてデントライトの成長を抑制するようにし
たものである。しかしながら、かかる合金化による負極
の活性度の低下が起電力や充放電容量を低下させ、また
合金化による脆弱化で充放電時のリチウムの吸収・放出
に伴う体積の膨脹・収縮で負極にクラックが発生し、最
終的には粉体化して十分なサイクル寿命が得られないと
いう問題があった。
Therefore, there has been proposed a method of forming a negative electrode with a lithium alloy composed of an intermetallic compound of Al, Bi, Pb, Sn, In and the like and Li. That is, the alloying of lithium raises the electrode potential higher than that of pure lithium to lower the activity of the negative electrode, and reduces the rate of discharge reaction between lithium ions to suppress the growth of dendrite. . However, the decrease in the activity of the negative electrode due to the alloying reduces the electromotive force and the charge / discharge capacity, and the weakening due to the alloying causes the negative electrode to crack due to the expansion / contraction of the volume accompanying the absorption / release of lithium during charge / discharge. However, there is a problem in that the powder is eventually pulverized and a sufficient cycle life cannot be obtained.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の欠点
を克服し、充放電容量が大きくて高エネルギー密度を有
し、充放電の繰り返しによる劣化が少ないリチウム系二
次電池用負極材を開発し、ひいては高起電力、高充放電
容量、高エネルギー密度の電池出力、充放電のサイクル
寿命に優れるリチウム二次電池を得ることを目的とす
る。
SUMMARY OF THE INVENTION The present invention provides a negative electrode material for a lithium secondary battery, which overcomes the above-mentioned drawbacks, has a large charge / discharge capacity and a high energy density, and is less deteriorated by repeated charge / discharge. The aim is to develop and eventually obtain a lithium secondary battery with high electromotive force, high charge / discharge capacity, high energy density battery output, and excellent charge / discharge cycle life.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上述のリ
チウム合金系負極についてさらなる検討を重ねた結果、
特定の組成範囲からなるリチウム合金で二次電池の負極
を構成すると上記目的が達成されることを見出し、本発
明を完成するに至った。本発明は、原子比に基づく組成
が、Li:Ag:Te:M1:M2=80〜150:1
〜20:0.001〜10:1〜50:1〜30(ただ
しM1はZn及び/又はSi、M2はFe,Co,M
n,Mo,Ni,Wより選ばれる1種又は2種以上の合
金成分)であるLi−Ag−Te−(M1−M2)系合
金からなるリチウム系二次電池用負極材、及びかかる負
極材を用いたリチウム二次電池を提供するものである。
Means for Solving the Problems As a result of further studies on the above-mentioned lithium alloy-based negative electrode, the present inventors have found that
It has been found that the above object can be achieved by constructing a negative electrode of a secondary battery with a lithium alloy having a specific composition range, and has completed the present invention. In the present invention, the composition based on the atomic ratio is Li: Ag: Te: M1: M2 = 80 to 150: 1.
˜20: 0.001 to 10: 1 to 50: 1 to 30 (M1 is Zn and / or Si, M2 is Fe, Co, M
A negative electrode material for a lithium-based secondary battery, comprising a Li-Ag-Te- (M1-M2) -based alloy, which is one or more alloy components selected from n, Mo, Ni, W), and such a negative electrode material The present invention provides a lithium secondary battery using the.

【0006】[0006]

【作用】本発明の負極材のうち、Li−Ag−Te系合
金成分はリチウムの拡散を促進し、充放電時において円
滑にリチウムを吸蔵・放出する機能を果たす。一方(M
1−M2)系合金成分は、それ自身安定な金属間化合物
であって、この金属間化合物のバインダー効果によりリ
チウムの吸蔵・放出に伴う体積の膨脹・収縮による負極
劣化を抑制し、結果としてサイクル寿命の低下の防止に
貢献する。
In the negative electrode material of the present invention, the Li-Ag-Te based alloy component promotes the diffusion of lithium, and functions to smoothly insert and extract lithium during charge and discharge. Meanwhile (M
The 1-M2) -based alloy component is a stable intermetallic compound, and the binder effect of this intermetallic compound suppresses the deterioration of the negative electrode due to the expansion and contraction of the volume accompanying the occlusion and release of lithium, resulting in a cycle. Contributes to the prevention of life reduction.

【0007】[0007]

【実施例】本発明のリチウム系二次電池用負極材は、原
子比に基づく組成が、Li:Ag:Te:M1:M2=
80〜150:1〜20:0.001〜10:1〜5
0:1〜30(ただしM1はZn及び/又はSi、M2
はFe,Co,Mn,Mo,Ni,Wより選ばれる1種
又は2種以上の合金成分)であるLi−Ag−Te−
(M1−M2)系合金からなるものである。
EXAMPLES A negative electrode material for a lithium secondary battery of the present invention has a composition based on atomic ratio of Li: Ag: Te: M1: M2 =
80-150: 1-20: 0.001-10: 1-5
0: 1 to 30 (where M1 is Zn and / or Si, M2
Is one or more alloy components selected from Fe, Co, Mn, Mo, Ni and W), Li-Ag-Te-
It is composed of a (M1-M2) type alloy.

【0008】上記原子比に基づく組成において、Liが
80未満であると十分な起電力が得られず、また150
を越えると負極の活性度が高くなるためか、デントライ
トの抑制が十分に行えない。また、Ag、Teがそれぞ
れ1未満、0.001未満であると、Li−Ag−Te
系合金成分の結晶微細化が不十分となり、一方それぞれ
20以上、10以上であると、電池化の際に必要なシー
ト状加工が困難、或いはシート化が可能であってもそれ
以降の加工が著しく困難になるという不都合があり、さ
らに電極電位が上昇して電池起電力が低下する傾向が生
じるため好ましくない。
In the composition based on the above atomic ratio, if the Li content is less than 80, a sufficient electromotive force cannot be obtained.
If it exceeds, the dendrites cannot be sufficiently suppressed, probably because the activity of the negative electrode becomes high. Moreover, when Ag and Te are less than 1 and less than 0.001, respectively, Li-Ag-Te.
If the crystal grain refinement of the system alloy component is insufficient, and if it is 20 or more and 10 or more, respectively, it is difficult to process the sheet-like material required for making into a battery, or even if sheeting is possible, subsequent processing is not possible. It is not preferable because there is a disadvantage that it becomes extremely difficult, and further, the electrode potential increases and the battery electromotive force tends to decrease.

【0009】また、M1,M2について、それぞれ1以
下であると十分なバインダー効果を発揮しなくなり、結
果として電池のサイクル寿命を低下させてしまうため好
ましくない。一方、M1が50を越えるとLiに対する
吸引力が大きくなり過ぎて放電の効率が悪化し、M2が
30を越えると電池起電力が著しく低下してしまい、こ
れらの結果として電池のエネルギー密度が低くなるとい
う不都合がある。
Further, if M1 and M2 are each 1 or less, the binder effect is not sufficiently exerted, and as a result, the cycle life of the battery is shortened, which is not preferable. On the other hand, when M1 exceeds 50, the attraction force for Li becomes too large and the discharge efficiency deteriorates, and when M2 exceeds 30, the battery electromotive force significantly decreases, resulting in low energy density of the battery. There is an inconvenience.

【0010】本発明の負極材を製造する方法としては、
例えば(M1−M2)系合金粉末を、予め集電体となる
NiやAl,CuやAg等からなる平板状の金属箔、金
属メッシュ、或いは金属の多孔体に適量塗布または蒸着
した後熱処理を施し、その後Li−Ag−Te系合金を
スプレー塗布、含浸、または浸漬させる方法が挙げられ
る。これらの工程は、各構成材の劣化を防止するため、
不活性ガス雰囲気下で行う必要がある。
As a method for producing the negative electrode material of the present invention,
For example, an appropriate amount of (M1-M2) -based alloy powder is previously applied to or vapor-deposited on a flat metal foil, a metal mesh, or a metal porous body made of Ni, Al, Cu, Ag, or the like serving as a current collector, and then heat treated. Examples of the method include applying and then spraying, impregnating, or dipping the Li-Ag-Te alloy. These steps are to prevent deterioration of each component,
It needs to be performed in an inert gas atmosphere.

【0011】上記製造例において、Li−Ag−Te系
合金の形成は、例えば所定割合のLiとAgとTeを溶
融させて反応させる方法や、蒸着方式で反応させる方法
等の公知の合金化方法で行うことができる。ちなみに前
記の溶融法では、合金成分を不活性ガス雰囲気下で加熱
・溶融させることにより合金化でき、その場合にLiの
融点以上の温度に加熱して溶融させる方式が速やかに合
金化反応を進行させる点で好ましい。
In the above production example, the Li-Ag-Te alloy is formed by a known alloying method such as a method of melting and reacting a predetermined ratio of Li, Ag and Te or a method of reacting by a vapor deposition method. Can be done at. By the way, in the above-mentioned melting method, alloying can be performed by heating and melting the alloy components in an inert gas atmosphere, and in that case, a method of heating to a temperature not lower than the melting point of Li to melt the alloy rapidly advances the alloying reaction. It is preferable in that

【0012】本発明の負極材を製造する他の方法とし
て、蒸着による合金化方法が挙げられる。この方法は合
金成分を蒸発させて他種金属からなる導体の表面上で凝
固させることにより達成される。この場合、全ての合金
成分を蒸着させても、前述の製法においてLi−Ag−
Te系合金のみ蒸着により作成しても良い。蒸着方式と
しては、例えばイオンビームスパッタ等の各種のスパッ
タ方式、電子ビーム蒸着方式、各種のイオンプレーティ
ング方式、フラッシュプラズマ蒸着方式、パルスプラズ
マ蒸着方式、CVD方式などの適宜な方式を採用するこ
とができる。
Another method for producing the negative electrode material of the present invention is an alloying method by vapor deposition. This method is achieved by evaporating the alloy components and solidifying them on the surface of a conductor made of another metal. In this case, even if all the alloy components are vapor-deposited, Li-Ag-
Only the Te-based alloy may be formed by vapor deposition. As the vapor deposition method, it is possible to adopt an appropriate method such as various sputtering methods such as ion beam sputtering, electron beam evaporation method, various ion plating methods, flash plasma evaporation method, pulse plasma evaporation method, CVD method, and the like. it can.

【0013】本発明のLi二次電池は、負極材として前
記の合金を用いる点を除けば従来公知の方法で適宜に形
成することができる。例えば図1はコイン型のLi二次
電池を示しており、図において1,7は電池缶を、2,
6はNi集電体を、3は負極を、4はセパレータ(電解
液層)を、5は正極を、8は絶縁封止材をそれぞれ示し
ている。
The Li secondary battery of the present invention can be appropriately formed by a conventionally known method except that the above alloy is used as the negative electrode material. For example, FIG. 1 shows a coin-type Li secondary battery. In the figure, 1 and 7 are battery cans, and 2,
Reference numeral 6 is a Ni current collector, 3 is a negative electrode, 4 is a separator (electrolyte layer), 5 is a positive electrode, and 8 is an insulating sealant.

【0014】実施例1 (負極の作成)高純度Ar雰囲気(露点度−60℃以
下)において、原子比でLi:Ag:Te=90:1
0:0.5となるように秤量したものを500℃に加熱
し、これを融解させて合金化した。また、原子比でS
i:Fe=10:20(前記のLi:Ag:Teに対す
る比)となるように秤量したものを同様の雰囲気におい
て1400℃に加熱し、合金化した。得られたSi−F
e系合金を−200メッシュに粉砕し、これを銅製の長
尺集電体(幅42mm,厚さ10ミクロン)にロールにて
圧着し、次いで800℃で3時間加熱し、負極用基板と
した。そして前記で得たLi−Ag−Te系合金の溶湯
を250℃に保温し、そこへ当該負極用基板を浸漬し、
基板の両面にLi−Ag−Te系合金層の厚さが片面あ
たり50〜200ミクロンになるよう絞りを与え、長さ
330mmに切断して負極板を作成した。
Example 1 (Preparation of Negative Electrode) Li: Ag: Te = 90: 1 by atomic ratio in a high-purity Ar atmosphere (dew point -60 ° C. or lower).
What was weighed so as to be 0: 0.5 was heated to 500 ° C., and this was melted and alloyed. Also, in atomic ratio S
What was weighed so as to be i: Fe = 10: 20 (ratio to Li: Ag: Te) was heated to 1400 ° C. in the same atmosphere and alloyed. Obtained Si-F
The e-based alloy was crushed to -200 mesh, and this was pressed onto a long copper current collector (width 42 mm, thickness 10 micron) with a roll, and then heated at 800 ° C. for 3 hours to obtain a negative electrode substrate. . Then, the molten metal of the Li-Ag-Te alloy obtained above is kept at 250 ° C, and the negative electrode substrate is immersed therein,
A negative electrode plate was prepared by squeezing both sides of the substrate so that the thickness of the Li-Ag-Te alloy layer was 50 to 200 microns per side and cutting the length to 330 mm.

【0015】(正極の作成)正極活物質としてのLiC
oO2 46重量部、導電性付与材としてのアセチレン
ブラック4重量部、結着剤としてのPVDF1重量部、
及びN−メチルピロリドン49重量部を十分に混合した
ペーストを、長尺のアルミニウム箔(幅42mm,厚さ1
0ミクロン)へドクターブレード法にて片面厚さが10
0ミクロンになるように両面塗布し、200℃で1分間
仮乾燥を行った後圧延し、これを長さ300mmに切断
し、真空中において120℃で3時間の本乾燥を行い、
正極板を作成した。
(Preparation of positive electrode) LiC as a positive electrode active material
46 parts by weight of oO2, 4 parts by weight of acetylene black as a conductivity-imparting material, 1 part by weight of PVDF as a binder,
And 49 parts by weight of N-methylpyrrolidone were mixed sufficiently to prepare a long aluminum foil (width 42 mm, thickness 1
The thickness of one side is 10 by the doctor blade method.
Both sides are coated so that it becomes 0 micron, and temporary drying is performed at 200 ° C for 1 minute, followed by rolling. This is cut into a length of 300 mm, and main drying is performed in vacuum at 120 ° C for 3 hours.
A positive electrode plate was created.

【0016】(セパレータの作成)含水量が20ppm 以
下のプロピレンカーボネートと、1,2−ジメトキシエ
タンとを、体積比で1:1として混合し、該混合物に1
mol/l の過塩素酸リチウムを溶解させ電解液とした。こ
れを、空孔率43%、厚さが25ミクロンのポリプロピ
レンフィルムに含浸させ、セパレータを作成した。上記
で得た負極板と正極板との間に該セパレータを介在させ
た状態で巻回し、これをニッケルメッキを施した鉄製の
電池缶に収納し、単3型のLi二次電池を作成した。
(Preparation of Separator) Propylene carbonate having a water content of 20 ppm or less and 1,2-dimethoxyethane were mixed at a volume ratio of 1: 1 and 1 was added to the mixture.
Mol / l lithium perchlorate was dissolved to prepare an electrolyte. A polypropylene film having a porosity of 43% and a thickness of 25 μm was impregnated with this to prepare a separator. The negative electrode plate and the positive electrode plate obtained as described above were wound with the separator interposed, and the resulting product was housed in a nickel-plated iron battery can to prepare an AA-type Li secondary battery. .

【0017】実施例2 実施例1の負極で用いたSi−Fe系合金に代えて、原
子比でZn:Ni=10:10(Li:Ag:Teに対
する比)となるように秤量したものを同様の雰囲気にお
いて1000℃に加熱し、合金化したものを用いる以外
は全て実施例1と同様にしてLi二次電池を作成した。
Example 2 Instead of the Si—Fe alloy used in the negative electrode of Example 1, the alloy was weighed so that the atomic ratio was Zn: Ni = 10: 10 (ratio to Li: Ag: Te). A Li secondary battery was produced in the same manner as in Example 1 except that the alloyed one was heated to 1000 ° C. in the same atmosphere.

【0018】実施例3 実施例1の負極で用いたSi−Fe系合金に代えて、原
子比でSi:Ni=20:10(Li:Ag:Teに対
する比)となるように秤量したものを同様の雰囲気にお
いて1200℃に加熱し、合金化したものを用いる以外
は全て実施例1と同様にしてLi二次電池を作成した。
Example 3 Instead of the Si—Fe alloy used in the negative electrode of Example 1, the alloy was weighed so that the atomic ratio was Si: Ni = 20: 10 (ratio to Li: Ag: Te). A Li secondary battery was prepared in the same manner as in Example 1 except that the alloyed one was heated to 1200 ° C. in the same atmosphere.

【0019】比較例1 高純度Ar雰囲気において、原子比でLi:Ag=9
0:10となるように秤量し500℃に加熱・融解し合
金化したものを負極として用いる以外は、全て実施例1
と同様にしてLi二次電池を作成した。
Comparative Example 1 Li: Ag = 9 in atomic ratio in a high-purity Ar atmosphere.
Example 1 except that the alloy was weighed to 0:10, heated to 500 ° C., melted, and alloyed to be used as the negative electrode.
A Li secondary battery was prepared in the same manner as in.

【0020】比較例2 高純度Ar雰囲気において、原子比でLi:Ag:Te
=90:10:0.5となるように秤量し500℃に加
熱・融解し合金化したものを負極として用いる以外は、
全て実施例1と同様にしてLi二次電池を作成した。
Comparative Example 2 Li: Ag: Te in atomic ratio in a high-purity Ar atmosphere.
= 90: 10: 0.5, heated to 500 ° C., melted and alloyed to be used as the negative electrode,
A Li secondary battery was prepared in the same manner as in Example 1.

【0021】評価試験 上記実施例1〜3、及び比較例1,2で得られたLi二
次電池を用い、上限電圧4.2V、下限電圧2.7Vに
設定して充放電を繰り返した。そして50サイクル時点
でのエネルギー密度および充放電効率を測定した。これ
らの試験の結果得られた、上記Li二次電池の負極のエ
ネルギー密度及び充放電効率はそれぞれ表1に示す通り
であった。
Evaluation Test Using the Li secondary batteries obtained in Examples 1 to 3 and Comparative Examples 1 and 2, the upper limit voltage was 4.2 V and the lower limit voltage was 2.7 V, and charging and discharging were repeated. Then, the energy density and charge / discharge efficiency at the time of 50 cycles were measured. The energy density and charge / discharge efficiency of the negative electrode of the Li secondary battery obtained as a result of these tests were as shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】以上説明した通り本発明によれば、デン
トライトが成長しにくくて充放電容量が大きく、高エネ
ルギー密度を有して充放電の繰り返しによる劣化が少な
い負極が得られ、充放電のサイクル寿命に優れて長期間
実用できる高エネルギー密度、高起電力、高放電容量の
Li二次電池を得ることができる。
As described above, according to the present invention, it is possible to obtain a negative electrode in which dendrite is hard to grow, the charge / discharge capacity is large, the energy density is high, and the deterioration due to repeated charge / discharge is small. It is possible to obtain a Li secondary battery having excellent cycle life, high energy density, high electromotive force, and high discharge capacity that can be used for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかるコイン型Li二次電池を示す断
面図である。
FIG. 1 is a cross-sectional view showing a coin-type Li secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1,7 電池缶 2,6 Ni集電体 3 負極 4 セパレータ 5 正極 8 絶縁封止材 1,7 Battery can 2,6 Ni current collector 3 Negative electrode 4 Separator 5 Positive electrode 8 Insulation sealant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原子比に基づく組成が、Li:Ag:T
e:M1:M2=80〜150:1〜20:0.001
〜10:1〜50:1〜30(ただしM1はZn及び/
又はSi、M2はFe,Co,Mn,Mo,Ni,Wよ
り選ばれる1種又は2種以上の合金成分)であるLi−
Ag−Te−(M1−M2)系合金からなるリチウム系
二次電池用負極材。
1. A composition based on atomic ratio is Li: Ag: T.
e: M1: M2 = 80 to 150: 1 to 20: 0.001
-10: 1 to 50: 1 to 30 (where M1 is Zn and /
Alternatively, Si and M2 are one or more alloy components selected from Fe, Co, Mn, Mo, Ni, W) Li-
A negative electrode material for a lithium-based secondary battery, comprising an Ag-Te- (M1-M2) -based alloy.
【請求項2】 請求項1記載の負極材を有するリチウム
二次電池。
2. A lithium secondary battery comprising the negative electrode material according to claim 1.
JP6113683A 1994-02-22 1994-04-28 Lithium secondary battery anode material and lithium secondary battery using same Pending JPH07296811A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6113683A JPH07296811A (en) 1994-04-28 1994-04-28 Lithium secondary battery anode material and lithium secondary battery using same
CA002143047A CA2143047A1 (en) 1994-02-22 1995-02-21 Alloy for the negative electrode of lithium secondary battery and lithium secondary battery
EP95102473A EP0668621A1 (en) 1994-02-22 1995-02-22 Alloy for negative electrode of lithium secondary battery and lithium secondary battery
US08/392,217 US5498495A (en) 1994-02-22 1995-02-22 Alloy for negative electrode of lithium secondary battery and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6113683A JPH07296811A (en) 1994-04-28 1994-04-28 Lithium secondary battery anode material and lithium secondary battery using same

Publications (1)

Publication Number Publication Date
JPH07296811A true JPH07296811A (en) 1995-11-10

Family

ID=14618538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6113683A Pending JPH07296811A (en) 1994-02-22 1994-04-28 Lithium secondary battery anode material and lithium secondary battery using same

Country Status (1)

Country Link
JP (1) JPH07296811A (en)

Similar Documents

Publication Publication Date Title
US6794087B2 (en) Lithium battery having evenly coated negative electrode and method of manufacture thereof
JP3578015B2 (en) Lithium secondary battery
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
CN109244473B (en) Lithium alloy strip and preparation method thereof
KR101394431B1 (en) Electrode current collector and method for producing the same, electrode for battery and method for producing the same, and secondary battery
WO1996017392A1 (en) Secondary lithium cell
JPH07240201A (en) Negative electrode and lithium secondary battery
JP3895932B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JPH07326342A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using the same
US5498495A (en) Alloy for negative electrode of lithium secondary battery and lithium secondary battery
JPH10241670A (en) Electrode for nonaqueous electrolytic secondary battery and manufacture thereof
JPH07296812A (en) Negative electrode and li secondary battery
JP3707617B2 (en) Negative electrode and battery using the same
JPH08180853A (en) Separator and lithium secondary battery
KR100404733B1 (en) Current collector coated with metal, electrodes comprising it, and lithium batteries comprising the electrodes
JP2968447B2 (en) Anode alloy for lithium secondary battery and lithium secondary battery
JPH07245099A (en) Negative electrode for nonaqueous electrolyte type lithium secondary battery
US9263742B2 (en) Negative electrode active substance for lithium secondary battery and method for producing same
JP2019175568A (en) Lithium ion secondary battery
JPS62213064A (en) Lithium-alloy negative electrode and its manufacture
JPH08130006A (en) Negative electrode, its manufacture and lithium secondary battery
JPH09171829A (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2002203593A (en) Inorganic solid electrolyte thin film and lithium battery member using it
JPH07296811A (en) Lithium secondary battery anode material and lithium secondary battery using same
JP4534264B2 (en) Nonaqueous electrolyte secondary battery