JPH07296799A - Carbon negative electrode and li secondary battery - Google Patents

Carbon negative electrode and li secondary battery

Info

Publication number
JPH07296799A
JPH07296799A JP6107921A JP10792194A JPH07296799A JP H07296799 A JPH07296799 A JP H07296799A JP 6107921 A JP6107921 A JP 6107921A JP 10792194 A JP10792194 A JP 10792194A JP H07296799 A JPH07296799 A JP H07296799A
Authority
JP
Japan
Prior art keywords
negative electrode
carbon
secondary battery
graphite
based negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6107921A
Other languages
Japanese (ja)
Inventor
Masaharu Kamauchi
正治 鎌内
Yoshinori Takada
善典 高田
Toshio Nishihara
敏夫 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP6107921A priority Critical patent/JPH07296799A/en
Publication of JPH07296799A publication Critical patent/JPH07296799A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a carbon negative electrode excellent in storing performance of lithium while keeping the characteristic in which a dendrite is difficult to grow, and provide a Li secondary battery excellent in battery characteristics such as energy density, discharge capacity, and cycle life. CONSTITUTION:A carbon negative electrode 1 for Li secondary battery has a layer consisting of the graphite structure of fullerene molecule at least on the surface, and a Li secondary battery has such a carbon negative electrode. Thus, the limitation to electrolyte is minimized, and electrolytes having various compositions can be widely used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウムの吸蔵能に優
れてエネルギー密度、放電容量、サイクル寿命に優れる
Li二次電池及びその炭素系負極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Li secondary battery having an excellent lithium storage capacity and an excellent energy density, discharge capacity and cycle life, and a carbon-based negative electrode thereof.

【0002】[0002]

【従来の技術】従来、Li二次電池におけるLi系負極
のデンドライト成長による正負極間の短絡問題等を克服
した負極として、炭素質中にLiをインターカレーショ
ンによりイオン状態で吸蔵保持させてなる炭素系負極が
知られていた。しかしながら、前記のLiインターカレ
ーション型炭素系負極では、Li系負極に比べて放電容
量やエネルギー密度に劣る問題点があった。
2. Description of the Related Art Conventionally, as a negative electrode that has overcome the problem of short circuit between positive and negative electrodes due to dendrite growth of Li-based negative electrode in a Li secondary battery, Li is intercalated and retained in carbonaceous state in an ionic state. Carbon-based negative electrodes have been known. However, the Li intercalation-type carbon-based negative electrode has a problem that the discharge capacity and energy density are inferior to those of the Li-based negative electrode.

【0003】[0003]

【発明が解決しようとする課題】本発明は、炭素系負極
のデンドライトが成長しにくい特性を維持しつつ、リチ
ウムの吸蔵能に優れる炭素系負極を得て、エネルギー密
度や放電容量、サイクル寿命等の電池特性に優れるLi
二次電池を得ることを課題とする。
DISCLOSURE OF THE INVENTION The present invention provides a carbon-based negative electrode having an excellent lithium storage capacity while maintaining the property that the dendrites of the carbon-based negative electrode are hard to grow, thereby obtaining energy density, discharge capacity, cycle life, etc. Li with excellent battery characteristics
An object is to obtain a secondary battery.

【0004】[0004]

【課題を解決するための手段】本発明は、フラーレン分
子の黒鉛型構造体からなる層を少なくとも表面に有する
ことを特徴とするLi二次電池用の炭素系負極、及びか
かる炭素系負極を有することを特徴とするLi二次電池
を提供するものである。
The present invention has a carbon-based negative electrode for a Li secondary battery characterized by having a layer composed of a graphite type structure of fullerene molecules on at least the surface thereof, and such a carbon-based negative electrode. The present invention provides a Li secondary battery characterized by the above.

【0005】[0005]

【実施態様の例示】炭素系負極は、フラーレン分子の黒
鉛型構造体の粉末成形物、あるいは導電性支持基材上に
フラーレン分子の黒鉛型構造体からなる層をスラリー塗
布方式、蒸着方式、CVD方式、PVD方式、LB方式
等により付設したものなどとして形成される。また導電
性支持基材としては、銅、ニッケル、ステンレス、アル
ミニウム、銀等の金属からなるシートやネットなどが用
いられる。Li二次電池は、電解質含有の多孔質絶縁膜
を介し正極と炭素系負極を配置したものなどとして形成
される。
[Exemplary Embodiments] A carbon-based negative electrode is a powder molded product of a graphite-type structure of fullerene molecules, or a layer formed of a graphite-type structure of fullerene molecules on a conductive support substrate by a slurry coating method, a vapor deposition method, a CVD method. It is formed as a device attached by a method, a PVD method, an LB method, or the like. As the conductive support base material, a sheet or net made of a metal such as copper, nickel, stainless steel, aluminum or silver is used. The Li secondary battery is formed as one in which a positive electrode and a carbon-based negative electrode are arranged via a porous insulating film containing an electrolyte.

【0006】[0006]

【作用】フラーレン分子の黒鉛型構造体は、黒鉛におけ
る炭素をフラーレン分子で置換したものに準じた構造を
有し、そのベンゼン環型の六員環からなる網平面が形成
する層が多段に重畳してなる層状構造における層間距離
が黒鉛の場合の約3.354Åに比べて大きい。ちなみ
に、かかる層間距離が10Å以上、就中15〜20Åに
も及ぶ黒鉛型構造体とすることもできる。
[Function] The graphite-type structure of fullerene molecules has a structure similar to that of carbon in graphite substituted with fullerene molecules, and the layers formed by the network plane composed of the benzene ring-type 6-membered rings are superposed in multiple stages. The inter-layer distance in the layered structure is larger than about 3.354Å in the case of graphite. Incidentally, a graphite type structure having such an interlayer distance of 10 Å or more, especially 15 to 20 Å can also be used.

【0007】前記に基づいて、すなわちフラーレン分子
の黒鉛型構造体における層間距離が大きいことに基づい
て、かかる黒鉛型構造体は多くのリチウムを吸蔵するこ
とができ、かつデンドライトが成長しにくい特性を維持
する。その結果、フラーレン分子の黒鉛型構造体からな
る負極を用いることで、リチウムの大量吸蔵に基づきエ
ネルギー密度、充放電容量に優れると共に、デンドライ
トが成長しにくいことに基づいてサイクル寿命に優れる
Li二次電池を形成することができる。
Based on the above, that is, based on the large interlayer distance of the fullerene molecule in the graphite type structure, such a graphite type structure can store a large amount of lithium and has a characteristic that dendrites hardly grow. maintain. As a result, by using a negative electrode composed of a graphite-type structure of fullerene molecules, the Li secondary having excellent energy density and charge / discharge capacity due to the large amount of lithium occlusion and excellent cycle life due to the difficulty of dendrite growth. A battery can be formed.

【0008】[0008]

【実施例】本発明の炭素系負極は、フラーレン分子の黒
鉛型構造体からなる層を少なくとも表面に有するもので
あって、Li二次電池の形成に用いるものである。従っ
て本発明の炭素系負極は、例えばフラーレン分子の黒鉛
型構造体の粉末成形物や、導電性支持基材上にフラーレ
ン分子の黒鉛型構造体からなる層を付設したものなどの
適宜な形態物として形成することができる。その例を図
1、図2に示した。
EXAMPLE A carbon-based negative electrode of the present invention has a layer of a graphite type structure of fullerene molecules on at least the surface thereof and is used for forming a Li secondary battery. Therefore, the carbon-based negative electrode of the present invention is, for example, an appropriate form such as a powder molded product of a graphite-type structure of fullerene molecules, or a conductive support substrate provided with a layer of a graphite-type structure of fullerene molecules. Can be formed as. Examples thereof are shown in FIGS. 1 and 2.

【0009】図1に例示の炭素系負極1は、フラーレン
分子の黒鉛型構造体からなる粉末を粉末成形したものか
らなる。図2に例示の炭素系負極2は、導電性支持基材
22の表面に当該黒鉛型構造体からなる層21を付設し
たものからなる。なお当該黒鉛型構造体層は、導電性支
持基材の両面に設けられていてもよいし、片面又は両面
に部分的に設けられていてもよい。
The carbon-based negative electrode 1 illustrated in FIG. 1 is formed by powder molding a powder of a graphite type structure of fullerene molecules. The carbon-based negative electrode 2 illustrated in FIG. 2 is formed by attaching a layer 21 made of the graphite type structure on the surface of a conductive support base material 22. The graphite structure layer may be provided on both sides of the conductive support substrate, or may be partially provided on one side or both sides.

【0010】前記のように本発明において炭素系負極は
任意な形態とすることができ、その形成は例えば、当該
黒鉛型構造体の粉末を必要に応じポリフッ化ビニリデン
やエチレン・プロピレン・ジエン共重合体、ポリテトラ
フルオロエチレンやポリエチレンの如き適宜な結着剤を
用いて粉末成形する方法、又は結着剤と分散媒等を用い
て調製したスラリーを注形する方法や導電性支持基材に
塗布する方法、あるいは導電性支持基材の表面に当該黒
鉛型構造体の層をコーティングする方法などの適宜な方
法により行うことができる。
As described above, in the present invention, the carbon-based negative electrode may be in any form, and its formation may be carried out, for example, by adding the powder of the graphite type structure to polyvinylidene fluoride or ethylene / propylene / diene copolymer as needed. Coalescing, powder molding using a suitable binder such as polytetrafluoroethylene or polyethylene, casting of a slurry prepared using a binder and a dispersion medium, or coating on a conductive support substrate. Or a method of coating the surface of the conductive support substrate with a layer of the graphite-type structure, or the like.

【0011】前記のコーティング法としては、例えば真
空蒸着方式の如き蒸着法、熱CVD方式やプラズマCV
D方式、MOCVD方式の如きCVD法、MBE方式や
ICB方式、スパッタリング方式の如きPVD法、さら
にはLB法などの適宜な方法を採ることができる。
As the above-mentioned coating method, for example, an evaporation method such as a vacuum evaporation method, a thermal CVD method or a plasma CV method is used.
Appropriate methods such as CVD method such as D method and MOCVD method, PVD method such as MBE method and ICB method, sputtering method, and LB method can be adopted.

【0012】フラーレン分子からなる黒鉛型構造体の形
成は、例えばPbやSi、AlやPd、CoやFe、N
i等の半径の大きい原子ないしそのカチオンの併用下
に、フラーレン分子を加熱処理、蒸着処理、CVD処
理、PVD処理する方法などにより結晶化処理すること
で行うことができる。
The formation of a graphite type structure composed of fullerene molecules is carried out, for example, with Pb, Si, Al, Pd, Co, Fe, N.
It can be carried out by crystallization treatment of a fullerene molecule by a method of heat treatment, vapor deposition treatment, CVD treatment, PVD treatment or the like in combination with an atom having a large radius such as i or a cation thereof.

【0013】前記の結晶化処理により、図3に例示した
如く併用の原子ないしそのカチオンbを中心にフラーレ
ン分子aがベンゼン環型の六員環を構成しつつ網平面を
形成し(図)、六方晶系の結晶を成長させて黒鉛型構造
体を形成する。その場合、前記の原子ないしそのカチオ
ンの併用量は、フラーレン分子2モルあたり約1モルと
することが六員環からなる網平面の形成上、ひいては黒
鉛型構造体の形成上、好ましい。なおフラーレン分子と
しては、C60型やC70型など、多数の炭素原子が球状に
結合してなる適宜なものを用いることができ、特に限定
はない。
By the above crystallization treatment, the fullerene molecule a forms a benzene ring type six-membered ring around the combined atom or its cation b as shown in FIG. A hexagonal crystal is grown to form a graphite type structure. In this case, it is preferable that the amount of the above atom or its cation used in combination is about 1 mol per 2 mols of the fullerene molecule in order to form a network plane composed of a 6-membered ring, and thus to form a graphite structure. As the fullerene molecule, an appropriate one such as C 60 type or C 70 type in which a large number of carbon atoms are spherically bonded can be used, and there is no particular limitation.

【0014】なお上記において、粉末成形体等の形成に
用いるフラーレン分子の黒鉛型構造体の粉末としては、
形成目的の炭素系負極形態等に応じて適宜な粒径のもの
を用いてよい。負極特性等の点より好ましく用いうる粉
末は、平均粒径に基づき1〜500μm以下、就中5〜
300μm、特に10〜100μmのものである。なお結
着剤の使用量は強度等に応じて適宜に決定してよく、一
般には形成負極の機械的強度や電極特性等の点より当該
黒鉛型構造体粉末の0.1〜30重量%、就中1〜20
重量%、特に2〜15重量%が好ましい。
In the above, as the powder of the graphite type structure of fullerene molecules used for forming the powder compact or the like,
A particle having an appropriate particle size may be used depending on the form of the carbon-based negative electrode to be formed. The powder that can be preferably used from the viewpoint of negative electrode characteristics and the like is 1 to 500 μm or less based on the average particle diameter, and 5 to
The thickness is 300 μm, particularly 10 to 100 μm. The amount of the binder used may be appropriately determined depending on the strength and the like, and generally 0.1 to 30% by weight of the graphite-type structure powder in terms of mechanical strength and electrode characteristics of the formed negative electrode, Above all 1-20
%, Especially 2 to 15% by weight is preferred.

【0015】また導電性支持基材についても、形成目的
の負極形態等に応じて適宜なものを用いてよい。その例
としては、銅、ニッケル、ステンレス、アルミニウム、
銀等の金属からなるシートやネットなどがあげられる。
シート状の炭素系負極の形成を目的とする場合、その導
電性支持基材としては一般に、1〜500μm、就中5
〜300μm、特に10〜100μmの厚さのものが用い
られる。その場合、導電性支持基材上に設ける当該黒鉛
型構造体層の厚さは任意で、電極の使用目的等に応じて
適宜に決定してよく、一般には5〜800μm、就中1
0〜500μm、特に20〜300μmとされる。
Also, as the conductive supporting base material, an appropriate one may be used depending on the form of the negative electrode to be formed. Examples include copper, nickel, stainless steel, aluminum,
Examples include sheets and nets made of metal such as silver.
When the purpose is to form a sheet-like carbon-based negative electrode, the conductive supporting base material is generally 1 to 500 μm, especially 5
The thickness of ˜300 μm, especially 10 to 100 μm is used. In that case, the thickness of the graphite-type structure layer provided on the conductive supporting substrate is arbitrary and may be appropriately determined according to the purpose of use of the electrode, etc., and is generally 5 to 800 μm, especially 1
It is set to 0 to 500 μm, and particularly 20 to 300 μm.

【0016】本発明の炭素系負極は、Li二次電池を形
成するためのものであるが、そのLi二次電池の形成に
ついては、かかる炭素系負極を用いる点を除いて特に限
定はなく、電解質と正極を用いて従来に準じて行うこと
ができる。従ってLi二次電池の形態なども使用目的等
に応じて適宜に決定することができ、例えばコイン型や
ボタン型、あるいは捲回体型等のように、電解質含有の
多孔質絶縁膜を介して正極と炭素系負極を配置した構造
形態、円筒型や角型等の外形形態などの適宜な形態とす
ることができる。
The carbon-based negative electrode of the present invention is for forming a Li secondary battery, but the formation of the Li secondary battery is not particularly limited except that the carbon-based negative electrode is used. It can be carried out in a conventional manner using an electrolyte and a positive electrode. Therefore, the form of the Li secondary battery can be appropriately determined according to the purpose of use and the like. For example, like a coin type, a button type, or a wound type, a positive electrode is provided via a porous insulating film containing an electrolyte. It is possible to adopt an appropriate form such as a structural form in which the carbon-based negative electrode is arranged and an external form such as a cylindrical type or a rectangular type.

【0017】ちなみに、図4にコイン型のLi二次電池
を例示した。3は負極缶、4,8は集電用のニッケル
板、5は炭素系負極、6は電解質層(多孔質絶縁膜から
なるセパレータ)、7は正極、9は正極缶、10は絶縁
封止材である。なお前記した捲回体型のものは、テープ
状ないしシート状の正極と炭素系負極を多孔質絶縁膜か
らなるセパレータを介し捲回して正・負極部を形成する
缶体に収容したものである。前記したシート状等の正
極、炭素系負極の厚さは任意であるが、数〜数百μm程
度の厚さのものとすることもできる。
Incidentally, FIG. 4 illustrates a coin type Li secondary battery. 3 is a negative electrode can, 4, 8 is a nickel plate for collecting current, 5 is a carbon-based negative electrode, 6 is an electrolyte layer (separator made of a porous insulating film), 7 is a positive electrode, 9 is a positive electrode can, and 10 is insulation sealing. It is a material. The above-mentioned wound body type is one in which a tape-shaped or sheet-shaped positive electrode and a carbon-based negative electrode are housed in a can body which forms a positive and negative electrode part by winding a separator made of a porous insulating film. The above-mentioned sheet-shaped positive electrode and carbon-based negative electrode may have any thickness, but may have a thickness of several to several hundreds of μm.

【0018】電解質としては、Liイオンの移動を可能
とした適宜なものを用いることができる。その例として
は、塩類電解性ポリマーにリチウム塩を混合してなるも
のの如き固体電解質、エステルやエーテル等の有機溶媒
にリチウム塩を溶解させてなる非水電解液系のものなど
があげられる。
As the electrolyte, it is possible to use an appropriate electrolyte capable of moving Li ions. Examples thereof include a solid electrolyte such as a salt electrolytic polymer mixed with a lithium salt, and a non-aqueous electrolytic solution type in which a lithium salt is dissolved in an organic solvent such as ester or ether.

【0019】前記の塩類電解性ポリマーの代表例として
は、ポリエチレンオキシド、ポリホスファゼン、ポリア
ジリジン、ポリエチレンスルフィド、ポリビニルアルコ
ール、それらの誘導体や混合物、複合体などがあげられ
る。なお固体電解質の場合には、それが正・負極間のセ
パレータを兼ねうる利点を有している。
Typical examples of the above salt-electrolytic polymers include polyethylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, polyvinyl alcohol, their derivatives, mixtures and complexes. The solid electrolyte has the advantage that it can also serve as a separator between the positive and negative electrodes.

【0020】また前記有機溶媒の代表例としては、プロ
ピレンカーボネート、エチレンカーボネート、ジメチル
カーボネート、ジエチルカーボネート、テトラヒドロフ
ラン、2−メチルテトラヒドロフラン、ジメトキシエタ
ン、ジメチルスルホキシド、スルホラン、γ−ブチロラ
クトン、1,2−ジメトキシエタン、ジエチルエーテ
ル、1,3−ジオキソラン、蟻酸メチル、酢酸メチル、
N,N−ジメチルホルムアミド、アセトニトリル、それ
らの混合物などがあげられる。従来の黒鉛系負極では電
解液分解の触媒作用があるためエチレンカーボネート系
電解液を用いる必要があったが、本発明の負極では電解
液が分解されにくく、その電解液については特に制約は
ない。
Typical examples of the organic solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, dimethylsulfoxide, sulfolane, γ-butyrolactone and 1,2-dimethoxyethane. , Diethyl ether, 1,3-dioxolane, methyl formate, methyl acetate,
Examples thereof include N, N-dimethylformamide, acetonitrile, a mixture thereof and the like. In the conventional graphite-based negative electrode, it was necessary to use an ethylene carbonate-based electrolytic solution because it has a catalytic action for electrolytic solution decomposition, but in the negative electrode of the present invention, the electrolytic solution is difficult to decompose, and the electrolytic solution is not particularly limited.

【0021】リチウム塩の代表例としては、LiI、Li
CF3SO3、Li(CF2SO22、LiBF4、LiClO
4、LiAlCl4、LiPF4、LiPF6、LiAsF3、Li
AsF6などがあげられる。電解液におけるリチウム塩濃
度は0.1〜3モル/リットルが一般的であるが、これ
に限定されない。なお前記した非水電解液等の形成に際
しては、寿命や放電容量、起電力等の電池特性の向上な
どを目的として、必要に応じて2−メチルフラン、チオ
フェン、ピロール、クラウンエーテル等の有機添加物を
添加することもできる。
Typical examples of lithium salts include LiI and Li
CF 3 SO 3 , Li (CF 2 SO 2 ) 2 , LiBF 4 , LiClO
4 , LiAlCl 4 , LiPF 4 , LiPF 6 , LiAsF 3 , Li
AsF 6 and the like. The concentration of lithium salt in the electrolytic solution is generally 0.1 to 3 mol / liter, but is not limited to this. When forming the above-mentioned non-aqueous electrolyte, organic additives such as 2-methylfuran, thiophene, pyrrole and crown ether are added as necessary for the purpose of improving battery characteristics such as life, discharge capacity and electromotive force. It is also possible to add substances.

【0022】正極については、金属系のもの、共役系ポ
リマー等の有機導電性物質系のものなどの適宜なものを
用いることができる。前記金属系正極の例としては、L
iを含有する、Ti、Mo、Cu、Nb、V、Mn、C
r、Ni、Co、P等の金属の複合酸化物、硫化物、セ
レン化物などがあげられ、その代表的具体例としては、
MnO2、TiS2、MoO2、MoO3、V25、V25
-P25(アモルファス)、LiCoO2、LiMn
24、LiNiO2、LiNi0.5Co0.52、LiwCo
1-x-yxy2+z(ただし、Mは1種又は2種以上の遷
移金属、wは0<w≦2、xは0≦x<1、yは0<y
<1、zは−1≦z≦4である。)、あるいはLiない
しLi・Coのリン酸塩及び/又はCoないしLi・Coの
酸化物を成分として1モルのLiあたり0.1モル以上
のCoと0.2モル以上のPを含有するものなどを活物
質とするものがあげられる。
As the positive electrode, a suitable one such as a metallic one and an organic conductive substance such as a conjugated polymer can be used. Examples of the metal-based positive electrode include L
Ti, Mo, Cu, Nb, V, Mn, C containing i
Examples thereof include complex oxides of metals such as r, Ni, Co, P, sulfides, selenides, and the like.
MnO 2 , TiS 2 , MoO 2 , MoO 3 , V 2 O 5 , V 2 O 5
-P 2 O 5 (amorphous), LiCoO 2 , LiMn
2 O 4 , LiNiO 2 , LiNi 0.5 Co 0.5 O 2 , Li w Co
1-xy M x P y O 2 + z (where M is one or more transition metals, w is 0 <w ≦ 2, x is 0 ≦ x <1, y is 0 <y
<1, z is −1 ≦ z ≦ 4. ), Or a phosphate containing Li to Li · Co and / or an oxide of Co to Li · Co and containing 0.1 mol or more of Co and 0.2 mol or more of P per 1 mol of Li. The active material is, for example.

【0023】なおシート状等の正極の形成は、例えば活
物質を必要に応じてアセチレンブラックやケッチェンブ
ラック等の導電材料と結着剤と共に、キャスティング方
式や圧縮成形方式、ロール成形方式、ドクターブレード
方式などの上記した炭素系負極の形成方式に準じた適宜
な方式で成形する方法などにより行うことができる。従
って正極は、導電性支持基材に正極材を半田付けやろう
付け、超音波溶接、スポット溶接、バインダ樹脂による
塗布付着等の適宜な方式で接着してなる補強形態物とす
ることもできる。
The sheet-like positive electrode may be formed, for example, by using an active material together with a conductive material such as acetylene black or Ketjen black and a binder, if necessary, a casting method, a compression molding method, a roll molding method, a doctor blade. It can be carried out by a method such as a method of molding by an appropriate method according to the above-described method of forming a carbon-based negative electrode. Therefore, the positive electrode may be a reinforced form in which the positive electrode material is adhered to the conductive supporting base material by an appropriate method such as soldering, brazing, ultrasonic welding, spot welding, or coating with a binder resin.

【0024】一方、上記した正極と炭素系負極間に介在
させる多孔質絶縁膜(セパレータ)としては、例えばポ
リプロピレン等からなる多孔性ポリマーフィルムやガラ
スフィルター、不織布などの適宜な多孔性素材を用いる
ことができる。電解質含有の多孔質絶縁膜の形成は、多
孔質絶縁膜に電解質ないし電解液を含浸させたり、充填
する方式、あるいは電池缶内に電解液等を充填する方式
などの適宜な方式で行うことができる。
On the other hand, as the porous insulating film (separator) interposed between the positive electrode and the carbon-based negative electrode, an appropriate porous material such as a porous polymer film made of polypropylene or the like, a glass filter, a nonwoven fabric or the like is used. You can The electrolyte-containing porous insulating film may be formed by an appropriate method such as a method of impregnating or filling the porous insulating film with an electrolyte or an electrolytic solution, or a method of filling the battery can with the electrolytic solution or the like. it can.

【0025】Li二次電池に対する充電は、一定電流を
連続して通電する方式や、一定電圧を超えないように電
流を規制する定電圧方式のほか、適宜なパルス電源を用
いてパルス電流を供給する方式などによっても行うこと
ができる。パルス電流による充電方式では、通電・停止
が繰り返されるため電解質の濃度変化が抑制されてデン
ドライトがより成長しにくい利点がある。
For charging the Li secondary battery, a constant current is continuously applied, a constant voltage method is used to regulate the current so as not to exceed a constant voltage, and a pulse current is supplied using an appropriate pulse power source. It can also be carried out by a method of doing. The charging method using a pulse current has the advantage that dendrites are less likely to grow because the concentration change of the electrolyte is suppressed because energization / stopping is repeated.

【0026】実施例1 直径20mm、厚さ0.5mmのニッケル基板上に、フラー
レンC60とPb原子を真空蒸着装置にてフラーレンC60
2モル及びPb原子1モルの割合で蒸着し、フラーレン
60の六角平面網の六員環の中心に1個のPb原子を有
する六方晶系構造(図3)の厚さ約80μmの黒鉛型構
造層を形成して、炭素系負極を得た。
[0026] Example 1 diameter 20 mm, the thickness of 0.5mm nickel substrate, fullerene C 60 fullerene C 60 and Pb atom by a vacuum deposition apparatus
A hexagonal crystal structure (Fig. 3) having a thickness of about 80 µm, which is vapor-deposited at a ratio of 2 mol and 1 mol of Pb atom and has one Pb atom at the center of the six-membered ring of the hexagonal plane network of fullerene C 60 A structural layer was formed to obtain a carbon-based negative electrode.

【0027】次に図5の如く、前記の炭素系負極11、
厚さ100μmのLiシートからなる正極13、及びL
i片からなる参照電極12を、ビーカー15の中に収容
した電解液14(エチレンカーボネート(含水率20pp
m以下)にLiPF6を1モル/リットル濃度で添加した
もの)に浸漬して三極型のLi二次電池を形成した。
Next, as shown in FIG. 5, the carbon-based negative electrode 11,
Positive electrode 13 made of a Li sheet having a thickness of 100 μm, and L
Electrolyte solution 14 (ethylene carbonate (water content 20 pp
LiPF 6 was added at a concentration of 1 mol / liter) to a tripolar Li secondary battery.

【0028】比較例 天然黒鉛30重量部とポリテトラフルオロエチレン10
重量部の均一混合物を直径20mm、厚さ0.5mmのニッ
ケル基板上に厚さ約100μmでプレス成形して炭素系
負極を得、それを用いて実施例1に準じ三極型のLi二
次電池を得た。
Comparative Example 30 parts by weight of natural graphite and 10 parts of polytetrafluoroethylene
A weight ratio of the homogeneous mixture was press-molded on a nickel substrate having a diameter of 20 mm and a thickness of 0.5 mm to a thickness of about 100 μm to obtain a carbon-based negative electrode. I got a battery.

【0029】評価試験 実施例1又は比較例で得た三極型のLi二次電池につい
て、ガルバノスタットを用いて0.5mAの一定電流、か
つ参照電極に対する電位に基づいて上限(充電)電位2
V、下限(放電)電位0Vの条件(30℃)で正・負極
を介し充放電を繰り返し、1サイクル目、25サイクル
目、及び50サイクル目での充電容量、放電容量、及び
クーロン効率を調べた。
Evaluation Test Regarding the tripolar Li secondary battery obtained in Example 1 or Comparative Example, a constant current of 0.5 mA was used using a galvanostat, and the upper limit (charging) potential was 2 based on the potential with respect to the reference electrode.
Charge and discharge are repeated through the positive and negative electrodes under the conditions of V and lower limit (discharge) potential of 0V (30 ° C), and the charge capacity, discharge capacity, and Coulombic efficiency at the 1st, 25th, and 50th cycles are examined. It was

【0030】前記の結果を下表に示した。 The above results are shown in the table below.

【0031】黒鉛は、層間化合物を形成して炭素原子6
個あたり最大1個のリチウム原子をインターカレートす
るので(充電:Li+C6⇒LiC6、放電:LiC6
Li+C6)、その理論容量は372mAh/gである。表よ
り、比較例では黒鉛の理論容量に近いが、実施例1では
黒鉛の理論容量よりも大きい充電容量と放電容量を示し
ており、これよりフラーレン分子の大きさに基づいてそ
の黒鉛型構造体にリチウム原子がより多く吸蔵されてい
ることが推察される。また実施例1では、ほぼ100%
のクーロン効率を示し、電解液の分解も殆どなくてサイ
クル劣化が小さい電池特性を有していることがわかる。
Graphite forms an intercalation compound to form 6 carbon atoms.
A maximum of one lithium atom per number since the intercalated (charging: Li + C 6 ⇒LiC 6, discharge: LiC 6
Li + C 6 ), whose theoretical capacity is 372 mAh / g. From the table, the comparative example is close to the theoretical capacity of graphite, but Example 1 shows a larger charging capacity and discharging capacity than the theoretical capacity of graphite. From this, the graphite type structure based on the size of the fullerene molecule is shown. It is speculated that more lithium atoms are occluded. In Example 1, almost 100%
It shows that Coulomb efficiency is shown, and that it has battery characteristics with little cycle deterioration with almost no decomposition of the electrolytic solution.

【0032】[0032]

【発明の効果】本発明によれば、デンドライトが成長し
にくい特性を維持し、かつリチウムの吸蔵能に優れると
共に電解液を分解しにくい炭素系負極を得ることがで
き、エネルギー密度、放電容量、サイクル寿命等の電池
特性に優れ、安全性ないし信頼性に優れる種々の形態の
Li二次電池を得ることができる。また電解液に対する
制約が少なく、種々の組成の幅広い電解液を使用するこ
とができる。
EFFECTS OF THE INVENTION According to the present invention, a carbon-based negative electrode can be obtained which maintains the characteristics that dendrites do not easily grow, has an excellent lithium occlusion capacity, and does not easily decompose the electrolytic solution. It is possible to obtain various types of Li secondary batteries having excellent battery characteristics such as cycle life and excellent safety and reliability. Further, there are few restrictions on the electrolytic solution, and a wide range of electrolytic solutions having various compositions can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】炭素系負極例の断面図。FIG. 1 is a cross-sectional view of an example of a carbon-based negative electrode.

【図2】他の炭素系負極例の断面図。FIG. 2 is a cross-sectional view of another carbon-based negative electrode example.

【図3】フラーレン分子の六角平面網の説明図。FIG. 3 is an explanatory diagram of a hexagonal plane network of fullerene molecules.

【図4】電池例の説明図。FIG. 4 is an explanatory diagram of a battery example.

【図5】他の電池例の説明図。FIG. 5 is an explanatory diagram of another battery example.

【符号の説明】[Explanation of symbols]

1,2,5:炭素系負極 21:フラーレン分子の黒鉛型構造体からなる層 22:導電性支持基材 3:負極缶 6:電解質層(多孔質絶縁膜からなるセパレータ) 7:正極 1, 2, 5: carbon-based negative electrode 21: layer made of graphite type structure of fullerene molecule 22: conductive support base material 3: negative electrode can 6: electrolyte layer (separator made of porous insulating film) 7: positive electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 フラーレン分子の黒鉛型構造体からなる
層を少なくとも表面に有することを特徴とするLi二次
電池用の炭素系負極。
1. A carbon-based negative electrode for a Li secondary battery, which has a layer composed of a graphite type structure of fullerene molecules on at least the surface thereof.
【請求項2】 フラーレン分子の黒鉛型構造体からなる
層をシート状の導電性支持基材上に設けてなる請求項1
に記載の炭素系負極。
2. A layer comprising a graphite type structure of fullerene molecules is provided on a sheet-shaped conductive supporting substrate.
The carbon-based negative electrode described in.
【請求項3】 請求項1又は2に記載の炭素系負極を有
することを特徴とするLi二次電池。
3. A Li secondary battery comprising the carbon-based negative electrode according to claim 1.
JP6107921A 1994-04-22 1994-04-22 Carbon negative electrode and li secondary battery Pending JPH07296799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6107921A JPH07296799A (en) 1994-04-22 1994-04-22 Carbon negative electrode and li secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6107921A JPH07296799A (en) 1994-04-22 1994-04-22 Carbon negative electrode and li secondary battery

Publications (1)

Publication Number Publication Date
JPH07296799A true JPH07296799A (en) 1995-11-10

Family

ID=14471430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6107921A Pending JPH07296799A (en) 1994-04-22 1994-04-22 Carbon negative electrode and li secondary battery

Country Status (1)

Country Link
JP (1) JPH07296799A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032262A1 (en) * 2002-10-04 2004-04-15 Mitsubishi Chemical Corporation Additive to negative electrode material for lithium secondary battery, negative electrode material for lithium secondary battery and, using the negative electrode material for lithium secondary battery, negative electrode and lithium secondary battery
US7129003B2 (en) * 2001-05-29 2006-10-31 Itt Manufacturing Enterprises, Inc. Fullerene-based secondary cell electrodes
CN1333478C (en) * 2002-10-04 2007-08-22 三菱化学株式会社 Additive for anode material for lithium secondary battery, anode material for lithium secondary battery, anode and lithium secondary battery using the anode material for lithium secondary battery
US7531273B2 (en) 2001-05-29 2009-05-12 Itt Manufacturing Enterprises, Inc. Fullerene-based secondary cell electrodes
WO2009098977A1 (en) * 2008-02-06 2009-08-13 Sony Corporation Electrolyte and battery
US7879260B2 (en) 2002-10-04 2011-02-01 Mitsubishi Chemical Corporation Additive for anode material for lithium secondary battery, anode material for lithium secondary battery, anode and lithium secondary battery using the anode material for lithium secondary battery
WO2013127953A1 (en) * 2012-03-01 2013-09-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Electrochemical energy storage device or energy conversion device comprising a galvanic cell having electrochemical half-cells containing a suspension of fullerene and ionic liquid
CN111628140A (en) * 2020-06-19 2020-09-04 湖南科技大学 Flexible cathode of lithium ion battery, preparation method of flexible cathode and lithium ion battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7129003B2 (en) * 2001-05-29 2006-10-31 Itt Manufacturing Enterprises, Inc. Fullerene-based secondary cell electrodes
US7531273B2 (en) 2001-05-29 2009-05-12 Itt Manufacturing Enterprises, Inc. Fullerene-based secondary cell electrodes
KR100917286B1 (en) * 2001-05-29 2009-09-11 아이티티 메뉴펙터링 엔터프라이지즈 인코포레이티드 Fullerene-based secondary cell electrodes
WO2004032262A1 (en) * 2002-10-04 2004-04-15 Mitsubishi Chemical Corporation Additive to negative electrode material for lithium secondary battery, negative electrode material for lithium secondary battery and, using the negative electrode material for lithium secondary battery, negative electrode and lithium secondary battery
CN1333478C (en) * 2002-10-04 2007-08-22 三菱化学株式会社 Additive for anode material for lithium secondary battery, anode material for lithium secondary battery, anode and lithium secondary battery using the anode material for lithium secondary battery
US7879260B2 (en) 2002-10-04 2011-02-01 Mitsubishi Chemical Corporation Additive for anode material for lithium secondary battery, anode material for lithium secondary battery, anode and lithium secondary battery using the anode material for lithium secondary battery
WO2009098977A1 (en) * 2008-02-06 2009-08-13 Sony Corporation Electrolyte and battery
US8492034B2 (en) 2008-02-06 2013-07-23 Sony Corporation Electrolyte and battery
WO2013127953A1 (en) * 2012-03-01 2013-09-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Electrochemical energy storage device or energy conversion device comprising a galvanic cell having electrochemical half-cells containing a suspension of fullerene and ionic liquid
CN111628140A (en) * 2020-06-19 2020-09-04 湖南科技大学 Flexible cathode of lithium ion battery, preparation method of flexible cathode and lithium ion battery

Similar Documents

Publication Publication Date Title
KR100832205B1 (en) Anode for non-aqueous secondary battery and non-aqueous secondary battery using the same
KR100458098B1 (en) Electrode Material for Negative Pole of Lithium Secondary Cell, Electrode Structure Using Said Electrode Material, Lithium Secondary Cell Using Said Electrode Structure, and Method for Manufacturing Said Electrode Structure and Said Lithium Secondary Cell
JP3262704B2 (en) Carbon electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
JP4854289B2 (en) Non-aqueous electrolyte secondary battery
JP3726958B2 (en) battery
EP0713256B1 (en) Lithium secondary battery and process for preparing negative-electrode active material for use in the same
JP3543437B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using this positive electrode active material
KR102419885B1 (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and system thereof
US20040110064A1 (en) Non-aqueous electrolyte secondary battery
US20090123851A1 (en) Positive-electrode active material for lithium-ion secondary battery, positive electrode, manufacturing method thereof, and lithium-ion secondary battery
KR20060127790A (en) Non-aqueous electrolyte secondary battery
JP2011233245A (en) Lithium secondary battery
JP2004139886A (en) Nonaqueous electrolyte secondary battery
JP6394253B2 (en) Non-aqueous secondary battery electrode, method for producing the same, and non-aqueous secondary battery
JP2012003997A (en) Nonaqueous electrolyte secondary cell
JPH07240201A (en) Negative electrode and lithium secondary battery
CN112313817A (en) Positive electrode material and secondary battery
JP2012014993A (en) Nonaqueous electrolyte secondary battery
US20210202951A1 (en) Electrically conductive substance, positive electrode, and secondary battery
JP4625672B2 (en) Nonaqueous electrolyte secondary battery
JP2003317705A (en) Battery
JP2012084426A (en) Nonaqueous electrolyte secondary battery
WO2020203420A1 (en) Nonaqueous electrolyte secondary battery
JPH07296799A (en) Carbon negative electrode and li secondary battery
JPH06325753A (en) Lithium secondary battery