JPH07292040A - Heat-sensitive shape-memory gel - Google Patents

Heat-sensitive shape-memory gel

Info

Publication number
JPH07292040A
JPH07292040A JP12670194A JP12670194A JPH07292040A JP H07292040 A JPH07292040 A JP H07292040A JP 12670194 A JP12670194 A JP 12670194A JP 12670194 A JP12670194 A JP 12670194A JP H07292040 A JPH07292040 A JP H07292040A
Authority
JP
Japan
Prior art keywords
gel
heat
monomer
hydrophobic
elastic modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12670194A
Other languages
Japanese (ja)
Inventor
Yoshihito Osada
義仁 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12670194A priority Critical patent/JPH07292040A/en
Publication of JPH07292040A publication Critical patent/JPH07292040A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a heat-sensitive shape-memory hydrogel which reversibly changes its moldulus from high to low at a specified temp. by forming a high- molecular hydrogel contg. hydrophobic monomer units. CONSTITUTION:A heat-sensitive shape-memory hydrogel which reversibly changes its modulus from high to low at a specified temp. is obtd. by copolymerizing a hydrophilic monomer and a hydrophobic monomer. A gel which changes its modulus from 10<8>dyn/cm<2> or higher to 10<4>dyn/cm<2> or lower is obtd. by copolymerizing e.g. a hydrophilic acrylic monomer and a hydrophobic acrylic monomer in the presence of a cross-linker. An example of the hydrophobic monomer is a (meth)acrylate having a 5-30C alkyl or its deriv. group at the side chain. For instance, a 6-20C alkyl acrylate or its deriv. is copolymerized with (meth)acrylic acid under cross-linking reaction giving the gel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】温度変化によって剛体−柔軟体に
可逆的に変化し、かつ形状記憶特性を生かした弁、緩衝
材、クッション、徐放性担体、DDS、スイッチ、セン
サーなど。
[Industrial application] Valves, cushioning materials, cushions, sustained-release carriers, DDS, switches, sensors, etc. that reversibly change to rigid-flexible bodies due to temperature changes and that utilize shape memory characteristics.

【0002】[0002]

【従来の技術】高分子ゲルとは、三次元網目高分子が溶
媒で膨潤した物質である。この溶媒が水の場合には特に
ハイドロゲルといわれ、吸収材、土壌処理材、薬物の単
体など広く用いられている。(詳しくは、長田・伏見・
荻野・山内著「ゲル」<産業図書>参照)。従来より感
熱性高分子ゲルとして、ポリメチルビニルエーテル、ポ
リNアルキルアクリルアミド、セルロース誘導体等が知
られているが、これらはいずれも特定温度において膨潤
・収縮など、体積変化を行なうものの力学特性、特にそ
の弾性率を大きく、しかも可逆的に変える機能は有して
いなかった。又、形状記憶性高分子としては、ポリノル
ボルナジエン、延伸ポリエチレン等が知られているが、
これらは含水ゲル特有の親水性、生体適合性、吸水性と
いった特性を有していない。本件は疎水性基をゲル中に
成分として含む高分子ハイドロゲルを合成することによ
り、特定の温度で可逆的に剛体(高弾性率)−柔軟体
(低弾性率)特性変化を示し、かつ形状記憶性を有する
ハイドロゲルに関する。
2. Description of the Related Art A polymer gel is a substance in which a three-dimensional network polymer is swollen with a solvent. When this solvent is water, it is called hydrogel, and it is widely used as an absorbent material, a soil treatment material, and a single drug substance. (For details, see Nagata / Fushimi /
See "Gel" by Ogino and Yamauchi <Industrial Books>). Conventionally, polymethyl vinyl ether, poly N alkyl acrylamide, cellulose derivative and the like have been known as heat-sensitive polymer gels, but all of them have mechanical properties, especially those that undergo volume change such as swelling / shrinking at a specific temperature. It had a large elastic modulus and no function of reversibly changing it. Also, as the shape memory polymer, polynorbornadiene, stretched polyethylene, etc. are known.
These do not have the properties such as hydrophilicity, biocompatibility, and water absorption characteristic of hydrous gels. In this case, by synthesizing a polymer hydrogel containing a hydrophobic group as a component in the gel, it exhibits a rigid (high elastic modulus) -flexible (low elastic modulus) characteristic change reversibly at a specific temperature and has a shape. The present invention relates to a hydrogel having memory properties.

【0003】従来知られているハイドロゲルは水で膨潤
しているがゆえに高い吸水性を示すが、一般に非晶性で
あり、力学的にも弱い。吸水性を持つと同時に、充分な
力学的強度をもつゲルはこれまで知られていない。
Conventionally known hydrogels have high water absorption because they are swollen with water, but they are generally amorphous and mechanically weak. So far, no gel has been known that has water absorbency and sufficient mechanical strength.

【0004】[0004]

【発明が解決しようとする課題】 本発明は、親水性モ
ノマーと疎水性モノマーとを、適当な比率で重合するこ
とにより、水で膨潤し、なおかつラメラ類似の配列構造
又は結晶構造を維持し、力学的な強度を保証するような
ゲルの合成に関するものである。このゲルの特徴は、低
温では大きい力学強度と高弾性率形状記憶性を疎水性モ
ノマーの配列構造に由来して有しているが、加熱するこ
とによってこの疎水性配列構造が壊れ、特定温度で非晶
性柔軟なハイドロゲルに変化すると同時にゲル作製時の
形状に回復することである。
The present invention is to swell with water and maintain a lamella-like array structure or crystal structure by polymerizing a hydrophilic monomer and a hydrophobic monomer in an appropriate ratio, It relates to the synthesis of gels that guarantee mechanical strength. The characteristics of this gel are that it has a large mechanical strength and a high elastic modulus shape memory at low temperature, which is derived from the arrangement structure of the hydrophobic monomer. It is to change to an amorphous flexible hydrogel and at the same time to recover the shape at the time of gel preparation.

【0005】[0005]

【課題を解決するための手段】ゲル中の疎水性基として
は、長鎖アルキル基、フェニル基、ナフチル基等の芳香
族化合物、シクロアルカン等疎水性を分子中に有するも
のならばいずれでも良い。しかし、ハイドロゲルとして
の吸水特性を与えるため、親水性基、たとえばカルボキ
シル基、水酸基、アミノ基、ヒドロキシル基等を有する
親水性モノマー単位を適当量導入する必要がある。転移
現象はこれら疎水性基の配列構造又は結晶構造−非晶構
造転移に基づくもので、結晶状態では一般に高い弾性率
と失透性を、低い弾性率では、ゴム弾性と透明性を示
す。転移温度は、疎水性基の大きさと量によって決まる
ので自由に制御する事ができる。長鎖アルキル基を使っ
た場合をいえば、その鎖長が長いほど、又含有量が大き
いほど転移温度は高くなり弾性率も大きくなる。たとえ
ばアクリル酸(AA)を親水性モノマー、アクリル酸ス
テアリル(SA)を疎水性モノマーとして用い、それら
をモル比で7.5部対2.5部で適当な橋架け剤で共重
合した場合、結晶−非晶温度は48℃でおこる。しか
し、SAの替わりにアクリル酸ヘキサデシル(HA)を
用いると、その温度は38℃に変化する。又、AAとS
Aの場合でもその比率を8.5部対1.5部の割合で共
重合すると45℃に変化する(表1)。結晶−非晶転移
による力学強度の変化と含水量は橋架け剤の量によって
も規制できる。たとえば橋架け剤をモノマー総量に対し
5モル%加えれば、体積変化をあまりおこさないまま転
移をおこすことができるが、橋架け剤0.01モル%の
ように少ない場合には、転移に伴い含水量が増え、ゲル
の力学強度も著しく低下する。こうして得られるゲルの
含水率は、一般に10%〜500%であり、結晶状態の
方が含水率は小さい。
[Means for Solving the Problems] The hydrophobic group in the gel may be any aromatic compound such as a long-chain alkyl group, a phenyl group or a naphthyl group, or a cycloalkane having hydrophobicity in the molecule. . However, it is necessary to introduce an appropriate amount of a hydrophilic monomer unit having a hydrophilic group such as a carboxyl group, a hydroxyl group, an amino group, and a hydroxyl group in order to impart a water absorbing property as a hydrogel. The transition phenomenon is based on the arrangement structure of these hydrophobic groups or the crystal structure-amorphous structure transition, and generally exhibits high elastic modulus and devitrification in the crystalline state, and rubber elasticity and transparency in the low elastic modulus. The transition temperature can be freely controlled because it depends on the size and amount of the hydrophobic group. When a long-chain alkyl group is used, the longer the chain length and the higher the content, the higher the transition temperature and the elastic modulus. For example, when acrylic acid (AA) is used as a hydrophilic monomer and stearyl acrylate (SA) is used as a hydrophobic monomer and these are copolymerized with a suitable cross-linking agent at a molar ratio of 7.5 parts to 2.5 parts, The crystalline-amorphous temperature occurs at 48 ° C. However, when hexadecyl acrylate (HA) is used instead of SA, the temperature changes to 38 ° C. Also, AA and S
Even in the case of A, when the ratio is copolymerized at a ratio of 8.5 parts to 1.5 parts, it changes to 45 ° C. (Table 1). The change in mechanical strength due to the crystal-amorphous transition and the water content can also be controlled by the amount of the cross-linking agent. For example, if the cross-linking agent is added in an amount of 5 mol% with respect to the total amount of the monomer, the transition can occur without causing a large volume change. The amount of water increases and the mechanical strength of the gel also decreases significantly. The water content of the gel thus obtained is generally 10% to 500%, and the water content is lower in the crystalline state.

【0006】このような構造を持つハイドロゲルは低温
下では、配列構造又は結晶構造のゆえに、10〜10
dyne/cm程度の高い弾性率を示し、プラスチ
ックとしての力学特性と強固な形状維持能力を示す。し
かし、昇温して転移をするとこのゲルは著しく軟化し、
その弾性率も10dyne/cm、あるいはそれ以
下になり自由に変形できるようになる(図1)。したが
って、重合時に適当な架橋剤を共存させて特定の形状に
成形し、ついで転移温度以上で軟化させた後、適当に応
力を加えることによって変形させ、そのまま転移点以下
に冷却すれば変形状態でその形状を固定できる。再び元
の重合時の形に復元したい場合には、再度転移点以上に
加熱すればこのゲルは重合時の形状に復帰して形状記憶
特性を示す。橋架け剤によって三次元網目構造を持つゲ
ルにする目的は、転移して軟化した後でもゲルの形状維
持を付与することと結晶性向上のためである。たとえ
ば、橋架け剤なしで重合した同じ化学組成の線状ポリマ
ーと比較すると、橋かけゲル化したものの方が結晶性が
高く優れた力学特性を示す。重合はラジカル重合法、イ
オン重合法、プラズマ重合法、放射線重合法と特に限定
するものではないが適当な溶媒中、特にエタノール、メ
タノールなど極性有機溶媒中でラジカル重合するのが簡
便である。又、相分離を防ぐためにレドックス法を用い
て低温で重合するのも一法である。
A hydrogel having such a structure has an array structure or a crystalline structure at a low temperature of 10 8 to 10 10 at a low temperature.
It exhibits a high elastic modulus of about 9 dyne / cm 2, and exhibits mechanical properties as a plastic and a strong shape maintaining ability. However, when the temperature rises and the transition occurs, this gel softens significantly,
Its elastic modulus becomes 10 4 dyne / cm 2 or less, and it becomes freely deformable (FIG. 1). Therefore, at the time of polymerization, a suitable cross-linking agent is coexisted to form a specific shape, and after being softened at a transition temperature or higher, it is deformed by applying an appropriate stress, and if it is cooled below the transition point, it is in a deformed state. The shape can be fixed. When it is desired to restore the original shape upon polymerization, the gel is restored to the shape upon polymerization by heating again above the transition point and exhibits shape memory characteristics. The purpose of forming a gel having a three-dimensional network structure by a cross-linking agent is to impart shape maintenance of the gel and improve its crystallinity even after it is transformed and softened. For example, when compared to a linear polymer of the same chemical composition that was polymerized without a cross-linking agent, the crosslinked gel shows higher crystallinity and superior mechanical properties. The polymerization is not particularly limited to a radical polymerization method, an ionic polymerization method, a plasma polymerization method, and a radiation polymerization method, but it is convenient to carry out radical polymerization in a suitable solvent, particularly in a polar organic solvent such as ethanol or methanol. Further, in order to prevent phase separation, a redox method is used for polymerization at low temperature.

【0007】[0007]

【作用】低温で剛体、高温で変形可能な柔軟体として振
る舞う形状記憶ゲルであるので、弁、クッションやセン
サーとなる。また柔軟状態では物質の拡散係数が大きい
ので、徐放作用やセンサー、スイッチとして作用する。
[Function] Since it is a shape memory gel that behaves as a rigid body at low temperature and a flexible body that can be deformed at high temperature, it serves as a valve, cushion or sensor. In addition, since the substance has a large diffusion coefficient in a flexible state, it acts as a sustained release action, a sensor, or a switch.

【0008】[0008]

【実施例1】アクリル酸ステアリル0.1モル、アクリ
ル酸0.4モルを300mlの、エチルアルコール中
0.004モルのN、Nエチレンビスアクリルアミドを
架橋剤としてアゾビスイソブチロニトリルを重合開始剤
としてガラス板上でラジカル重合し厚さ2mmの薄板状
白色重合体を得た。この重合体を多量の水中に浸漬し水
置換して得られたハイドロゲルの弾性率を測定したとこ
ろ5×10dyne/cm(又は5×10Pa)
であった。このゲルは自重の24%の水を含んでいた。
次にこのゲルをDSCで転移温度を計ったところ42℃
で融解することがわかった。融解した時の弾性率は10
dyne/cmであった。又、融解前の試料の広角
X線回折像をとった所、結晶構造を示すラウエパターン
が観察された。このハイドロゲルを直径30mmの円盤
状に切り出した後、6つに等分し、弁を作製した。これ
を直径30mmの鉄パイプの一端に装着したのち、この
パイプに1%澱粉水溶液を入れて透過実験したところ4
5℃では弁が閉じていて水溶液を全く透過させないが4
9℃に加熱するとゲルが軟化し澱粉水溶液を流下させる
ことがわかった。この弁は冷却すると再びひとりでに閉
じて水溶液を通さなくなった。
Example 1 Initiation of polymerization of azobisisobutyronitrile using 0.1 mol of stearyl acrylate and 0.4 mol of acrylic acid as a crosslinking agent of 300 ml of 0.004 mol of N, N ethylenebisacrylamide in ethyl alcohol. Radical polymerization was performed on the glass plate as an agent to obtain a thin plate-shaped white polymer having a thickness of 2 mm. When the elastic modulus of the hydrogel obtained by immersing this polymer in a large amount of water and substituting with water was measured, it was 5 × 10 9 dyne / cm 2 (or 5 × 10 8 Pa).
Met. The gel contained 24% of its own weight of water.
Next, when the transition temperature of this gel was measured by DSC, it was 42 ° C.
It was found to melt at. Elastic modulus when melted is 10
It was 3 dyne / cm 2 . Further, when a wide-angle X-ray diffraction image of the sample before melting was taken, a Laue pattern showing a crystal structure was observed. This hydrogel was cut into a disk shape having a diameter of 30 mm, and then divided into six equal parts to prepare a valve. After this was attached to one end of an iron pipe with a diameter of 30 mm, a 1% starch aqueous solution was put into this pipe and a permeation experiment was conducted.
At 5 ° C, the valve is closed and the solution does not permeate at all.
It was found that heating to 9 ° C softens the gel and causes the aqueous starch solution to flow down. When the valve cooled, it closed again by itself and was impermeable to the aqueous solution.

【0009】[0009]

【実施例2】実施例1においてアクリル酸ステアリルを
0.15mol、アクリル酸を0.85molの比率で
重合して同様のゲルを得た。このゲルは45℃で融解
し、融解前は8×10dyne/cm、融解後は1
dyne/cmの弾性率を示した。ゲルの含水量
は融解前は280%、融解後は540%であった。又、
実施例1と同様に弁を作った所、同様に温度変化によっ
て開閉して感温性形状記憶ゲルとして機能することがわ
かった。
Example 2 The same gel as in Example 1 was obtained by polymerizing stearyl acrylate at a ratio of 0.15 mol and acrylic acid at a ratio of 0.85 mol. This gel melts at 45 ° C., 8 × 10 9 dyne / cm 2 before melting and 1 after melting.
The elastic modulus was 0 3 dyne / cm 2 . The water content of the gel was 280% before melting and 540% after melting. or,
When a valve was made in the same manner as in Example 1, it was found that the valve similarly opened and closed by a temperature change to function as a temperature-sensitive shape memory gel.

【0010】[0010]

【実施例3】例1と同じ条件でアクリル酸ステアリルの
かわりにアクリル酸ヘキサデシルを用いてゲルを合成し
たところ37℃で転移する感熱性高分子ゲルが得られ
た。40℃に加温した塩酸ピロカルビン(Pil)0.
1M水溶液1リットルにこのゲル2gを48時間40℃
で浸漬し、Pilを0.02モル含むゲルを作製した。
このゲル1gを25℃で100mlの水に48時間浸漬
してもPilはまったく放出されなかったが、50℃の
温水では長時間にわたってPilが水中に放出され、徐
放性を有していることがわかった。
Example 3 A gel was synthesized using hexadecyl acrylate instead of stearyl acrylate under the same conditions as in Example 1, and a heat-sensitive polymer gel that transferred at 37 ° C. was obtained. Pilocarbine hydrochloride (Pil) heated to 40 ° C.
2g of this gel is added to 1 liter of 1M aqueous solution for 48 hours at 40 ° C.
Was dipped in to prepare a gel containing 0.02 mol of Pil.
Even if 1 g of this gel was immersed in 100 ml of water at 25 ° C for 48 hours, no Pil was released, but with warm water at 50 ° C, Pil was released into the water for a long time, and it had a sustained release property. I understood.

【0011】[0011]

【実施例4】例1と同じ条件でアクリル酸ステアリルの
かわりにアクリル酸ナフチルを、またアクリル酸のかわ
りにスチレンスルホン酸を用いてゲルを合成したところ
58℃で転移する感熱性高分子ゲルが得られた。
[Example 4] Under the same conditions as in Example 1, naphthyl acrylate was used instead of stearyl acrylate, and styrene sulfonic acid was used instead of acrylic acid. Was obtained.

【0012】[0012]

【実施例5】例1で作成した薄板状重合体を巾20mm
長さ50mmの長方形に切り出し、60℃の温水中で加
熱して引き伸ばした所、巾およそ7mm長さ16mmに
延伸され、そのまま冷却するとその状態で形状が維持固
定された。この状態で、広角X線回折写真をとったとこ
ろ赤道方向(天地)に強い回折像がえられ、これより主
鎖は、延伸方向に、側鎖は、それと垂直方向に配向して
いることがわかった。この状態の弾性率を測定した所延
伸方向は9×10dyne/cmに増大した。次に
延伸された状態の薄膜を60℃の温浴中につけたとこ
ろ、このゲルはすみやかに元の大きさ巾20mm長さ5
0mmに戻った。これは何回も繰り返すことができ、形
状記憶性をもっていることがわかった。
Example 5 The thin plate polymer prepared in Example 1 has a width of 20 mm.
When it was cut into a rectangle with a length of 50 mm, heated and stretched in warm water at 60 ° C., it was stretched to a width of about 7 mm and a length of 16 mm, and when cooled as it was, the shape was maintained and fixed in that state. In this state, when a wide-angle X-ray diffraction photograph was taken, a strong diffraction image was obtained in the equatorial direction (top and bottom), from which the main chain was oriented in the stretching direction and the side chains were oriented in the direction perpendicular to it. all right. When the elastic modulus in this state was measured, the stretching direction was increased to 9 × 10 9 dyne / cm 2 . Next, when the thin film in the stretched state was placed in a warm bath at 60 ° C., the gel immediately showed its original size, width 20 mm, length 5
It returned to 0 mm. This can be repeated many times and was found to have shape memory.

【0013】[0013]

【実施例6】例1と同様の方法で、長さ40mmの魚の
形をした鋳形の中で同様の組成の原料を用い重合させて
魚形ハイドロゲルを得た。これを水洗後60℃の温浴中
で例5と同様にして軟化後、力を加えて変形させ、魚の
形を失わしめ、放置して冷却した所、変形されたままの
形で固定された。翌日、60℃の温浴中にこの変形した
ゲルを入れた所、ゲルは、すみやかに元の魚の形に回復
した。
Example 6 In the same manner as in Example 1, a raw material having the same composition was polymerized in a casting mold having a length of 40 mm to obtain a fish-shaped hydrogel. After washing this with water, it was softened in a warm bath at 60 ° C. in the same manner as in Example 5, deformed by applying force to lose the shape of the fish, and allowed to cool, and then fixed in the deformed shape. The next day, when the deformed gel was put in a warm bath at 60 ° C., the gel immediately recovered to the original fish shape.

【0014】[0014]

【発明の効果】【The invention's effect】 【図面の簡単な説明】[Brief description of drawings]

【図1】形状記憶ゲルの弾性率の温度依存性。アクリル
酸8部、アクリル酸ステアリル2部。
FIG. 1 is the temperature dependence of the elastic modulus of a shape memory gel. 8 parts acrylic acid, 2 parts stearyl acrylate.

【表の簡単な説明】[Short description of table]

【表1】 アクリル酸ヘキサデシル(C16)又は、アクリル酸オ
クタデシル(C18)とアクリル酸共重合ゲルの結晶−
非晶転移温度。
[Table 1] Crystal of hexadecyl acrylate (C 16 ) or octadecyl acrylate (C 18 ) and acrylic acid copolymer gel-
Amorphous transition temperature.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年10月10日[Submission date] October 10, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】形状記憶ゲルの弾性率の温度依存性。アクリル
酸8部、アクリル酸ステアリル2部。
FIG. 1 is the temperature dependence of the elastic modulus of a shape memory gel. 8 parts acrylic acid, 2 parts stearyl acrylate.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 親水性モノマーを一成分及び、疎水性モ
ノマーを一成分とし、これらを重合することにより、特
定温度で高弾性率−低弾性率に変化する感熱性形状記憶
ハイドロゲル。
1. A heat-sensitive shape memory hydrogel, which comprises a hydrophilic monomer as one component and a hydrophobic monomer as one component, and polymerizes these to change from a high elastic modulus to a low elastic modulus at a specific temperature.
【請求項2】1のうち適当な橋架け剤を共存させ加熱に
よって結晶−非晶転移によって弾性率を10dyne
/cm以上から10dyne/cm以下に変化す
る感熱性形状記憶ゲル。
2. An elastic modulus of 10 8 dyne due to crystal-amorphous transition by heating in the presence of an appropriate bridging agent of 1.
/ Cm 2 or more to 10 4 dyne / cm 2 or less, a thermosensitive shape memory gel.
【請求項3】1のうちアクリル系親水性モノマーとアク
リル系疎水性モノマーを共重合することによって得られ
る感熱性形状記憶ゲル。
3. A heat-sensitive shape memory gel obtained by copolymerizing an acrylic hydrophilic monomer and an acrylic hydrophobic monomer of the above 1.
【請求項4】1で疎水性基としてC〜C30からなる
アルキル基又はその誘導体を側鎖に含むアクリレート又
は、メタクリレートを疎水性成分として含有する感熱性
形状記憶ハイドロゲル。
4. A heat-sensitive shape-memory hydrogel containing acrylate or methacrylate containing a C 5 to C 30 alkyl group or a derivative thereof as a hydrophobic group in 1 in a side chain.
【請求項5】1でC〜C20のアルキルアクリレート
又はその誘導体を疎水性成分とし、アクリル酸、又はメ
タクリル酸を親水性成分とし、これらを適当な橋かけ反
応を行いながら重合して得られる感熱性形状記憶ハイド
ロゲル。
5. A polymer obtained by polymerizing C 6 -C 20 alkyl acrylate or its derivative as a hydrophobic component and acrylic acid or methacrylic acid as a hydrophilic component in 1 and polymerizing them while carrying out an appropriate crosslinking reaction. Heat-sensitive shape memory hydrogel.
JP12670194A 1994-04-28 1994-04-28 Heat-sensitive shape-memory gel Pending JPH07292040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12670194A JPH07292040A (en) 1994-04-28 1994-04-28 Heat-sensitive shape-memory gel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12670194A JPH07292040A (en) 1994-04-28 1994-04-28 Heat-sensitive shape-memory gel

Publications (1)

Publication Number Publication Date
JPH07292040A true JPH07292040A (en) 1995-11-07

Family

ID=14941714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12670194A Pending JPH07292040A (en) 1994-04-28 1994-04-28 Heat-sensitive shape-memory gel

Country Status (1)

Country Link
JP (1) JPH07292040A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976648A (en) * 1995-12-14 1999-11-02 Kimberly-Clark Worldwide, Inc. Synthesis and use of heterogeneous polymer gels
JP2006503172A (en) * 2002-10-11 2006-01-26 ユニバーシティ オブ コネチカット Blends of amorphous and semi-crystalline polymers with shape memory properties
US7838610B2 (en) 2005-09-30 2010-11-23 Nippon Shokubai Co., Ltd. Ion-sensitive super-absorbent polymer
EP2491082A4 (en) * 2009-10-20 2014-01-22 Georgia Tech Res Inst Shape memory polymers and process for preparing
US9115245B2 (en) 2002-10-11 2015-08-25 Boston Scientific Scimed, Inc. Implantable medical devices
CN106188416A (en) * 2015-05-06 2016-12-07 天津大学 A kind of have hydrogen bond high-strength shape memory hydrogel strengthening ion-drive and preparation method thereof and application thereof
JP2017116782A (en) * 2015-12-25 2017-06-29 エルジー ディスプレイ カンパニー リミテッド Flexible display and method for using the display
JP2017156603A (en) * 2016-03-03 2017-09-07 エルジー ディスプレイ カンパニー リミテッド Flexible display and method of use
JP2017179216A (en) * 2016-03-31 2017-10-05 日立化成株式会社 Composition for molding, resin molding, and method for producing resin molding

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976648A (en) * 1995-12-14 1999-11-02 Kimberly-Clark Worldwide, Inc. Synthesis and use of heterogeneous polymer gels
US6194073B1 (en) 1995-12-14 2001-02-27 Kimberly-Clark Worldwide, Inc Synthesis and use of heterogeneous polymer gels
JP2006503172A (en) * 2002-10-11 2006-01-26 ユニバーシティ オブ コネチカット Blends of amorphous and semi-crystalline polymers with shape memory properties
US9115245B2 (en) 2002-10-11 2015-08-25 Boston Scientific Scimed, Inc. Implantable medical devices
US7838610B2 (en) 2005-09-30 2010-11-23 Nippon Shokubai Co., Ltd. Ion-sensitive super-absorbent polymer
EP2491082A4 (en) * 2009-10-20 2014-01-22 Georgia Tech Res Inst Shape memory polymers and process for preparing
CN106188416A (en) * 2015-05-06 2016-12-07 天津大学 A kind of have hydrogen bond high-strength shape memory hydrogel strengthening ion-drive and preparation method thereof and application thereof
CN106188416B (en) * 2015-05-06 2018-06-15 天津大学 A kind of high-strength shape memory hydrogel with hydrogen bond enhancing ion-drive and preparation method thereof and its application
JP2017116782A (en) * 2015-12-25 2017-06-29 エルジー ディスプレイ カンパニー リミテッド Flexible display and method for using the display
JP2017156603A (en) * 2016-03-03 2017-09-07 エルジー ディスプレイ カンパニー リミテッド Flexible display and method of use
JP2017179216A (en) * 2016-03-31 2017-10-05 日立化成株式会社 Composition for molding, resin molding, and method for producing resin molding

Similar Documents

Publication Publication Date Title
US4267295A (en) Polymeric compositions and hydrogels formed therefrom
US3929741A (en) Hydrophilic acrylamido polymers
AU548496B2 (en) Modified synthetic hydrogels
US4842597A (en) Hydrophilic copolymers for wound dressings and other biomedical uses
Zhang et al. Elastin-based thermoresponsive shape-memory hydrogels
JPS6323126A (en) Soft contact lens and its production
Shantha et al. Synthesis and evaluation of sucrose‐containing polymeric hydrogels for oral drug delivery
JPH07292040A (en) Heat-sensitive shape-memory gel
WO2003093327A1 (en) Gel having multiple network structure and method for preparation thereof
AU8762682A (en) Hydrogels of modified solubilized collagen
Tillekeratne et al. Modification of zein films by incorporation of poly (ethylene glycol) s
CA2451113A1 (en) Biomedical molding materials from semi-solid precursors
US5147923A (en) Thermotropic biphilic hydrogels and hydroplastics
CZ70097A3 (en) Composite water-swelling elastomers and process for preparing thereof
JPS606444A (en) Manufacture of shaped article
Havanur et al. Synthesis and optimization of poly (N, N-diethylacrylamide) hydrogel and evaluation of its anticancer drug doxorubicin’s release behavior
Jain et al. Thermoresponsive cryogels of poly (2-hydroxyethyl methacrylate-co-N-isopropyl acrylamide)(P (HEMA-co-NIPAM)): fabrication, characterization and water sorption study
Liu et al. Two-step freezing polymerization method for efficient synthesis of high-performance stimuli-responsive hydrogels
JPH02109570A (en) Silkfibroin-containing molding
US5104954A (en) Thermostropic biphilic hydrogels and hydroplastics
JP3626195B2 (en)   Azlactone functional membrane
WO2002057368A1 (en) Low friction hydrogel having straight chain polymer and method for preparation thereof
US5086138A (en) Polymerizable composition
JPH01129008A (en) Thermotropic amphoteric hydrogel and hydroplastic
JPH08190077A (en) Water-containing soft contact lens