JPH07292040A - Heat-sensitive shape-memory gel - Google Patents

Heat-sensitive shape-memory gel

Info

Publication number
JPH07292040A
JPH07292040A JP12670194A JP12670194A JPH07292040A JP H07292040 A JPH07292040 A JP H07292040A JP 12670194 A JP12670194 A JP 12670194A JP 12670194 A JP12670194 A JP 12670194A JP H07292040 A JPH07292040 A JP H07292040A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
gel
monomer
heat
hydrophobic
hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12670194A
Other languages
Japanese (ja)
Inventor
Yoshihito Osada
義仁 長田
Original Assignee
Yoshihito Osada
義仁 長田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PURPOSE: To obtain a heat-sensitive shape-memory hydrogel which reversibly changes its moldulus from high to low at a specified temp. by forming a high- molecular hydrogel contg. hydrophobic monomer units.
CONSTITUTION: A heat-sensitive shape-memory hydrogel which reversibly changes its modulus from high to low at a specified temp. is obtd. by copolymerizing a hydrophilic monomer and a hydrophobic monomer. A gel which changes its modulus from 108dyn/cm2 or higher to 104dyn/cm2 or lower is obtd. by copolymerizing e.g. a hydrophilic acrylic monomer and a hydrophobic acrylic monomer in the presence of a cross-linker. An example of the hydrophobic monomer is a (meth)acrylate having a 5-30C alkyl or its deriv. group at the side chain. For instance, a 6-20C alkyl acrylate or its deriv. is copolymerized with (meth)acrylic acid under cross-linking reaction giving the gel.
COPYRIGHT: (C)1995,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】温度変化によって剛体−柔軟体に可逆的に変化し、かつ形状記憶特性を生かした弁、緩衝材、クッション、徐放性担体、DDS、スイッチ、センサーなど。 Rigid temperature changes BACKGROUND OF THE - changed reversibly flexible material, and utilizing the shape memory properties valve, cushioning materials, cushioning, sustained release carrier, DDS, switches, sensors, etc..

【0002】 [0002]

【従来の技術】高分子ゲルとは、三次元網目高分子が溶媒で膨潤した物質である。 The Background of the Invention polymer gel, a substance which three-dimensional network polymer swollen with solvent. この溶媒が水の場合には特にハイドロゲルといわれ、吸収材、土壌処理材、薬物の単体など広く用いられている。 The solvent is said to especially hydrogels in the case of water, the absorbent material, soil treatment materials, are widely used, such as single drug. (詳しくは、長田・伏見・ (For more information, Nagata-Fushimi,
荻野・山内著「ゲル」<産業図書>参照)。 Ogino Yamauchi et al., "Gel" <industry books> reference). 従来より感熱性高分子ゲルとして、ポリメチルビニルエーテル、ポリNアルキルアクリルアミド、セルロース誘導体等が知られているが、これらはいずれも特定温度において膨潤・収縮など、体積変化を行なうものの力学特性、特にその弾性率を大きく、しかも可逆的に変える機能は有していなかった。 As conventionally heat-sensitive polymer gel, polymethyl vinyl ether, poly N-alkyl acrylamides, but such cellulose derivatives are known, these are such as swelling and contraction at a specified temperature either, mechanical properties of those performing volume change, especially its the modulus of elasticity large and function of changing reversibly did not have. 又、形状記憶性高分子としては、ポリノルボルナジエン、延伸ポリエチレン等が知られているが、 As the shape memory polymer, poly norbornadiene, but oriented polyethylene and the like are known,
これらは含水ゲル特有の親水性、生体適合性、吸水性といった特性を有していない。 These do not have water-containing gel unique hydrophilic, biocompatible, properties such absorbent. 本件は疎水性基をゲル中に成分として含む高分子ハイドロゲルを合成することにより、特定の温度で可逆的に剛体(高弾性率)−柔軟体(低弾性率)特性変化を示し、かつ形状記憶性を有するハイドロゲルに関する。 This case by synthesizing the polymer hydrogel comprising as a component a hydrophobic group in the gel reversibly rigid at a specific temperature (high modulus) - shows the flexible member (low modulus) properties change and shape about hydrogels with memory property.

【0003】従来知られているハイドロゲルは水で膨潤しているがゆえに高い吸水性を示すが、一般に非晶性であり、力学的にも弱い。 Conventionally known hydrogel shows a has swollen because high water absorption in water, but generally a amorphous, mechanical to weak. 吸水性を持つと同時に、充分な力学的強度をもつゲルはこれまで知られていない。 At the same time with water absorption, gel with sufficient mechanical strength it has not been known heretofore.

【0004】 [0004]

【発明が解決しようとする課題】 本発明は、親水性モノマーと疎水性モノマーとを、適当な比率で重合することにより、水で膨潤し、なおかつラメラ類似の配列構造又は結晶構造を維持し、力学的な強度を保証するようなゲルの合成に関するものである。 The present invention 0005] is a hydrophilic monomer and a hydrophobic monomer, by polymerizing in suitable proportions, swollen with water, yet maintaining the arrangement structure or crystal structure of the lamellae similar it relates the synthesis of gels such as to ensure mechanical strength. このゲルの特徴は、低温では大きい力学強度と高弾性率形状記憶性を疎水性モノマーの配列構造に由来して有しているが、加熱することによってこの疎水性配列構造が壊れ、特定温度で非晶性柔軟なハイドロゲルに変化すると同時にゲル作製時の形状に回復することである。 Features of this gel is has been derived from a large mechanical strength and high modulus shape-memory properties at low temperatures in the array structure of the hydrophobic monomer, it is broken the hydrophobic sequence structure by heating, at a certain temperature If changes to the amorphous soft hydrogel is to recover the shape of the time the gel produced simultaneously.

【0005】 [0005]

【課題を解決するための手段】ゲル中の疎水性基としては、長鎖アルキル基、フェニル基、ナフチル基等の芳香族化合物、シクロアルカン等疎水性を分子中に有するものならばいずれでも良い。 The hydrophobic groups in the gel Means for Solving the Problems], long-chain alkyl group, a phenyl group, aromatic compounds such as naphthyl group, may be any if having a cycloalkane such as hydrophobic in the molecule . しかし、ハイドロゲルとしての吸水特性を与えるため、親水性基、たとえばカルボキシル基、水酸基、アミノ基、ヒドロキシル基等を有する親水性モノマー単位を適当量導入する必要がある。 However, to provide the absorption properties of the hydrogel, hydrophilic group, for example a carboxyl group, a hydroxyl group, an amino group, it is necessary to introduce an appropriate amount of hydrophilic monomer units having a hydroxyl group. 転移現象はこれら疎水性基の配列構造又は結晶構造−非晶構造転移に基づくもので、結晶状態では一般に高い弾性率と失透性を、低い弾性率では、ゴム弾性と透明性を示す。 Sequence structure or crystal structure of the transition phenomenon these hydrophobic groups - those based on amorphous structural transformation, the generally high modulus and devitrification in the crystalline state, the low modulus of elasticity, exhibiting rubber elasticity and transparency. 転移温度は、疎水性基の大きさと量によって決まるので自由に制御する事ができる。 Transition temperature, can be freely controlled so determined by the size and amount of the hydrophobic group. 長鎖アルキル基を使った場合をいえば、その鎖長が長いほど、又含有量が大きいほど転移温度は高くなり弾性率も大きくなる。 Speaking when using long-chain alkyl group, as the chain length is longer, and the more transition temperature of greater content also increases higher becomes elastic modulus. たとえばアクリル酸(AA)を親水性モノマー、アクリル酸ステアリル(SA)を疎水性モノマーとして用い、それらをモル比で7.5部対2.5部で適当な橋架け剤で共重合した場合、結晶−非晶温度は48℃でおこる。 For example hydrophilic monomer acrylic acid (AA), using stearyl acrylate (SA) as the hydrophobic monomer, when co-polymerized with a suitable crosslinking agent in 7.5 parts vs. 2.5 parts at their molar ratio, crystal - amorphous temperature takes place at 48 ℃. しかし、SAの替わりにアクリル酸ヘキサデシル(HA)を用いると、その温度は38℃に変化する。 However, the use of hexadecyl acrylate (HA) instead of SA, its temperature varies 38 ° C.. 又、AAとS In addition, AA and S
Aの場合でもその比率を8.5部対1.5部の割合で共重合すると45℃に変化する(表1)。 When the ratio even when the A copolymerized at a ratio of 8.5 parts: 1.5 parts changes 45 ° C. (Table 1). 結晶−非晶転移による力学強度の変化と含水量は橋架け剤の量によっても規制できる。 Crystal - change the water content of the mechanical strength due to amorphous transition can be regulated by the amount of crosslinking agent. たとえば橋架け剤をモノマー総量に対し5モル%加えれば、体積変化をあまりおこさないまま転移をおこすことができるが、橋架け剤0.01モル%のように少ない場合には、転移に伴い含水量が増え、ゲルの力学強度も著しく低下する。 For example be added 5 mole% of crosslinking agent to total monomer, can cause the transfer without much cause the volume change, if small as crosslinking agent 0.01 mol%, with the transition including water increases, the mechanical strength of the gel also significantly reduced. こうして得られるゲルの含水率は、一般に10%〜500%であり、結晶状態の方が含水率は小さい。 The water content of the resulting gel thus, generally from 10% to 500%, towards the crystalline state moisture content is small.

【0006】このような構造を持つハイドロゲルは低温下では、配列構造又は結晶構造のゆえに、10 〜10 [0006] At low temperatures the hydrogel having such a structure, because of the array structure or crystal structure, 10 8 to 10
dyne/cm 程度の高い弾性率を示し、プラスチックとしての力学特性と強固な形状維持能力を示す。 9 dyne / cm 2 about the show high modulus, shows the mechanical properties and strong shape retention capability as plastic. しかし、昇温して転移をするとこのゲルは著しく軟化し、 However, the gel significantly soften when the temperature was raised to transition,
その弾性率も10 dyne/cm 、あるいはそれ以下になり自由に変形できるようになる(図1)。 Its modulus of elasticity becomes 10 4 dyne / cm 2, or freely deformed can so becomes less (Fig. 1). したがって、重合時に適当な架橋剤を共存させて特定の形状に成形し、ついで転移温度以上で軟化させた後、適当に応力を加えることによって変形させ、そのまま転移点以下に冷却すれば変形状態でその形状を固定できる。 Therefore, molded into a particular shape coexist Suitable crosslinking agents during the polymerization, and then after being softened at the transition temperature or higher, is deformed by the application of appropriate stress in a deformed state when cooled below as transition point its shape can be fixed. 再び元の重合時の形に復元したい場合には、再度転移点以上に加熱すればこのゲルは重合時の形状に復帰して形状記憶特性を示す。 If you want to restore the shape of the time the original polymerization again, the gel shows the shape memory properties and returns to the shape of the polymerization when heated above again transition point. 橋架け剤によって三次元網目構造を持つゲルにする目的は、転移して軟化した後でもゲルの形状維持を付与することと結晶性向上のためである。 The purpose of the gel having a three-dimensional network structure by crosslinking agents is that because of the improvement in crystallinity to impart shape retention of the gel even after softening metastasized. たとえば、橋架け剤なしで重合した同じ化学組成の線状ポリマーと比較すると、橋かけゲル化したものの方が結晶性が高く優れた力学特性を示す。 For example, when compared with a linear polymer of the same chemical composition polymerized without crosslinking agent, who those bridged gel exhibits high excellent mechanical properties crystallinity. 重合はラジカル重合法、イオン重合法、プラズマ重合法、放射線重合法と特に限定するものではないが適当な溶媒中、特にエタノール、メタノールなど極性有機溶媒中でラジカル重合するのが簡便である。 Polymerization radical polymerization, ion polymerization method, a plasma polymerization method, in but a suitable solvent not particularly limited and radiation polymerization, it is convenient to radical polymerization, especially ethanol, methanol, etc. polar organic solvent. 又、相分離を防ぐためにレドックス法を用いて低温で重合するのも一法である。 Also, it is one method also to polymerization at a low temperature using a redox process to prevent phase separation.

【0007】 [0007]

【作用】低温で剛体、高温で変形可能な柔軟体として振る舞う形状記憶ゲルであるので、弁、クッションやセンサーとなる。 [Action] rigid at low temperatures, since the shape memory gels behave as deformable flexible body at a high temperature, the valve, the cushion and sensors. また柔軟状態では物質の拡散係数が大きいので、徐放作用やセンサー、スイッチとして作用する。 Since also the diffusion coefficient of the material is large and flexible state, sustained action and sensors act as a switch.

【0008】 [0008]

【実施例1】アクリル酸ステアリル0.1モル、アクリル酸0.4モルを300mlの、エチルアルコール中0.004モルのN、Nエチレンビスアクリルアミドを架橋剤としてアゾビスイソブチロニトリルを重合開始剤としてガラス板上でラジカル重合し厚さ2mmの薄板状白色重合体を得た。 EXAMPLE 1 stearyl acrylate 0.1 mol, of a 0.4 molar acrylic acid 300 ml, the polymerization initiator azobisisobutyronitrile ethyl alcohol 0.004 mole of N, N-ethylene bisacrylamide as a crosslinking agent radical polymerization on a glass plate to give a thin plate-like white polymer thickness 2mm as agent. この重合体を多量の水中に浸漬し水置換して得られたハイドロゲルの弾性率を測定したところ5×10 dyne/cm (又は5×10 Pa) The polymer immersed in a large amount of water and water replaced the elastic modulus of the hydrogel thus obtained was measured 5 × 10 9 dyne / cm 2 ( or 5 × 10 8 Pa)
であった。 Met. このゲルは自重の24%の水を含んでいた。 The gel contained 24% of its own weight in water.
次にこのゲルをDSCで転移温度を計ったところ42℃ Next it was measure the transition temperature of the gel at DSC 42 ° C.
で融解することがわかった。 In it it was found that the melt. 融解した時の弾性率は10 The elastic modulus at the time of melting 10
dyne/cm であった。 It was 3 dyne / cm 2. 又、融解前の試料の広角X線回折像をとった所、結晶構造を示すラウエパターンが観察された。 Further, as a result of taking a wide-angle X-ray diffraction pattern of the sample before melting, Laue pattern showing a crystal structure was observed. このハイドロゲルを直径30mmの円盤状に切り出した後、6つに等分し、弁を作製した。 After cutting out the hydrogel into a disc having a diameter of 30 mm, aliquoted into six to prepare a valve. これを直径30mmの鉄パイプの一端に装着したのち、このパイプに1%澱粉水溶液を入れて透過実験したところ4 After this was attached to one end of the steel pipe with a diameter of 30 mm, where the permeation experiments put 1% aqueous starch solution in the pipe 4
5℃では弁が閉じていて水溶液を全く透過させないが4 Although 5 ° C. In the valve does not at all transmitted through the aqueous solution closed 4
9℃に加熱するとゲルが軟化し澱粉水溶液を流下させることがわかった。 Gel was found to flow down the softened starch solution when heated to 9 ° C.. この弁は冷却すると再びひとりでに閉じて水溶液を通さなくなった。 The valve no longer impervious to aqueous closes by itself again upon cooling.

【0009】 [0009]

【実施例2】実施例1においてアクリル酸ステアリルを0.15mol、アクリル酸を0.85molの比率で重合して同様のゲルを得た。 EXAMPLE 2 The stearyl acrylate in Example 1 0.15 mol, obtained similar gel by polymerizing acrylic acid in a ratio of 0.85 mol. このゲルは45℃で融解し、融解前は8×10 dyne/cm 、融解後は1 The gel was melted at 45 ° C., thawed before 8 × 10 9 dyne / cm 2 , after melting 1
dyne/cm の弾性率を示した。 0 3 showed an elastic modulus of dyne / cm 2. ゲルの含水量は融解前は280%、融解後は540%であった。 The water content of the gel 280 is pre-melted%, after thawing was 540%. 又、 or,
実施例1と同様に弁を作った所、同様に温度変化によって開閉して感温性形状記憶ゲルとして機能することがわかった。 Where it made valves in the same manner as in Example 1, was found to function as a temperature-sensitive shape memory gels to open and close the same manner by temperature changes.

【0010】 [0010]

【実施例3】例1と同じ条件でアクリル酸ステアリルのかわりにアクリル酸ヘキサデシルを用いてゲルを合成したところ37℃で転移する感熱性高分子ゲルが得られた。 EXAMPLE 3 thermosensitive polymer gel transition at 37 ° C. was synthesized gel using an acrylic acid hexadecyl instead of stearyl acrylate in the same conditions as Example 1 were obtained. 40℃に加温した塩酸ピロカルビン(Pil)0. To 40 ° C. warmed hydrochloric Pirokarubin (Pil) 0.
1M水溶液1リットルにこのゲル2gを48時間40℃ The gel 2g in 1M aqueous 1 l 48 h 40 ° C.
で浸漬し、Pilを0.02モル含むゲルを作製した。 It was soaked with to prepare a 0.02 mol containing gel Pil.
このゲル1gを25℃で100mlの水に48時間浸漬してもPilはまったく放出されなかったが、50℃の温水では長時間にわたってPilが水中に放出され、徐放性を有していることがわかった。 Although Pil was never released even the gel 1g was immersed for 48 hours in 100ml of water at 25 ° C., the Pil long time in the 50 ° C. Hot water is released into the water, and has a sustained-release it was found.

【0011】 [0011]

【実施例4】例1と同じ条件でアクリル酸ステアリルのかわりにアクリル酸ナフチルを、またアクリル酸のかわりにスチレンスルホン酸を用いてゲルを合成したところ58℃で転移する感熱性高分子ゲルが得られた。 Acrylic acid naphthyl in place of Example 4 Example 1 and stearyl acrylate in the same conditions, also heat-sensitive polymer gel transition at 58 ° C. was synthesized gel with styrene sulfonic acid in place of acrylic acid obtained.

【0012】 [0012]

【実施例5】例1で作成した薄板状重合体を巾20mm EXAMPLE 5 width 20mm lamellar polymer created in Example 1
長さ50mmの長方形に切り出し、60℃の温水中で加熱して引き伸ばした所、巾およそ7mm長さ16mmに延伸され、そのまま冷却するとその状態で形状が維持固定された。 Cut into rectangular length 50 mm, where stretched by heating in a 60 ° C. warm water, is stretched in the width approximately 7mm length 16 mm, in that state shape is maintained fixed Continued cooling. この状態で、広角X線回折写真をとったところ赤道方向(天地)に強い回折像がえられ、これより主鎖は、延伸方向に、側鎖は、それと垂直方向に配向していることがわかった。 In this state, a strong diffraction image is example in the equatorial direction (top and bottom) was taking a wide-angle X-ray diffraction photos, than this backbone, to the stretching direction, the side chains, the same is that they are oriented in a vertical direction all right. この状態の弾性率を測定した所延伸方向は9×10 dyne/cm に増大した。 Stretching direction where the elastic modulus was measured in this state is increased to 9 × 10 9 dyne / cm 2 . 次に延伸された状態の薄膜を60℃の温浴中につけたところ、このゲルはすみやかに元の大きさ巾20mm長さ5 Next was attached a thin film of stretched state during the 60 ° C. bath, the gel is promptly original size width 20mm length 5
0mmに戻った。 It returned to 0mm. これは何回も繰り返すことができ、形状記憶性をもっていることがわかった。 This can be repeated a number of times, it was found that has a shape memory.

【0013】 [0013]

【実施例6】例1と同様の方法で、長さ40mmの魚の形をした鋳形の中で同様の組成の原料を用い重合させて魚形ハイドロゲルを得た。 In Example 6 in a similar manner to Example 1, was obtained by polymerization using a raw material having the same composition in Igata in the shape of fish length 40mm with fish-shaped hydrogel. これを水洗後60℃の温浴中で例5と同様にして軟化後、力を加えて変形させ、魚の形を失わしめ、放置して冷却した所、変形されたままの形で固定された。 After softening it in the same manner as in Example 5 at 60 ° C. in a water bath washed with water, it is deformed by applying a force, tighten lose fish shape, where it was allowed to cool, which is fixed in the form as it is deformed. 翌日、60℃の温浴中にこの変形したゲルを入れた所、ゲルは、すみやかに元の魚の形に回復した。 The next day, during a 60 ℃ warm bath where you put the deformed gel, gel, recovered quickly in the form of the original fish.

【0014】 [0014]

【発明の効果】 【Effect of the invention】 【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】形状記憶ゲルの弾性率の温度依存性。 [1] Temperature dependence of the elastic modulus of the shape memory gels. アクリル酸8部、アクリル酸ステアリル2部。 8 parts of acrylic acid, 2 parts of stearyl acrylate.

【表の簡単な説明】 Brief Description of the table]

【表1】 [Table 1] アクリル酸ヘキサデシル(C 16 )又は、アクリル酸オクタデシル(C 18 )とアクリル酸共重合ゲルの結晶− Hexadecyl acrylate (C 16) or, octadecyl acrylate (C 18) and crystals of acrylic acid copolymer gel -
非晶転移温度。 Amorphous transition temperature.

───────────────────────────────────────────────────── ────────────────────────────────────────────────── ───

【手続補正書】 [Procedure amendment]

【提出日】平成6年10月10日 [Filing date] 1994 October 10,

【手続補正1】 [Amendment 1]

【補正対象書類名】明細書 [Correction target document name] specification

【補正対象項目名】図面の簡単な説明 A brief description of the correction target item name] drawings

【補正方法】変更 [Correction method] change

【補正内容】 [Correction contents]

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】形状記憶ゲルの弾性率の温度依存性。 [1] Temperature dependence of the elastic modulus of the shape memory gels. アクリル酸8部、アクリル酸ステアリル2部。 8 parts of acrylic acid, 2 parts of stearyl acrylate.

Claims (5)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 親水性モノマーを一成分及び、疎水性モノマーを一成分とし、これらを重合することにより、特定温度で高弾性率−低弾性率に変化する感熱性形状記憶ハイドロゲル。 1. A hydrophilic monomer one component and a hydrophobic monomer as one component, by polymerizing these, high elastic modulus at a specific temperature - heat-sensitive shape memory hydrogel changes to low modulus.
  2. 【請求項2】1のうち適当な橋架け剤を共存させ加熱によって結晶−非晶転移によって弾性率を10 dyne 2. A crystalline by heating coexist suitable crosslinking agent of 1 - 10 8 dyne modulus by amorphous transition
    /cm 以上から10 dyne/cm 以下に変化する感熱性形状記憶ゲル。 / Cm 2 or more from 10 4 dyne / cm 2 or less to changing thermal shape memory gels.
  3. 【請求項3】1のうちアクリル系親水性モノマーとアクリル系疎水性モノマーを共重合することによって得られる感熱性形状記憶ゲル。 3. The acrylic hydrophilic monomers of 1 and the heat-sensitive shape memory gels obtained by copolymerizing acrylic hydrophobic monomer.
  4. 【請求項4】1で疎水性基としてC 〜C 30からなるアルキル基又はその誘導体を側鎖に含むアクリレート又は、メタクリレートを疎水性成分として含有する感熱性形状記憶ハイドロゲル。 4. 1 acrylate or comprises an alkyl group or a derivative thereof consisting of C 5 -C 30 as a hydrophobic group in the side chain, the heat-sensitive shape memory hydrogel containing methacrylate as a hydrophobic component.
  5. 【請求項5】1でC 〜C 20のアルキルアクリレート又はその誘導体を疎水性成分とし、アクリル酸、又はメタクリル酸を親水性成分とし、これらを適当な橋かけ反応を行いながら重合して得られる感熱性形状記憶ハイドロゲル。 In 5. 1 alkyl acrylate or a derivative thereof C 6 -C 20 and the hydrophobic component, acrylic acid, or methacrylic acid and a hydrophilic component, obtained by polymerizing while these suitable crosslinking reaction heat-sensitive shape memory hydrogel is.
JP12670194A 1994-04-28 1994-04-28 Heat-sensitive shape-memory gel Pending JPH07292040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12670194A JPH07292040A (en) 1994-04-28 1994-04-28 Heat-sensitive shape-memory gel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12670194A JPH07292040A (en) 1994-04-28 1994-04-28 Heat-sensitive shape-memory gel

Publications (1)

Publication Number Publication Date
JPH07292040A true true JPH07292040A (en) 1995-11-07

Family

ID=14941714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12670194A Pending JPH07292040A (en) 1994-04-28 1994-04-28 Heat-sensitive shape-memory gel

Country Status (1)

Country Link
JP (1) JPH07292040A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976648A (en) * 1995-12-14 1999-11-02 Kimberly-Clark Worldwide, Inc. Synthesis and use of heterogeneous polymer gels
US7838610B2 (en) 2005-09-30 2010-11-23 Nippon Shokubai Co., Ltd. Ion-sensitive super-absorbent polymer
EP2491082A4 (en) * 2009-10-20 2014-01-22 Georgia Tech Res Inst Shape memory polymers and process for preparing
US9115245B2 (en) 2002-10-11 2015-08-25 Boston Scientific Scimed, Inc. Implantable medical devices
CN106188416A (en) * 2015-05-06 2016-12-07 天津大学 High-strength hydrogel with hydrogen bond strengthened ion driven shape memory, as well as preparation method and application of hydrogel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976648A (en) * 1995-12-14 1999-11-02 Kimberly-Clark Worldwide, Inc. Synthesis and use of heterogeneous polymer gels
US6194073B1 (en) 1995-12-14 2001-02-27 Kimberly-Clark Worldwide, Inc Synthesis and use of heterogeneous polymer gels
US9115245B2 (en) 2002-10-11 2015-08-25 Boston Scientific Scimed, Inc. Implantable medical devices
US7838610B2 (en) 2005-09-30 2010-11-23 Nippon Shokubai Co., Ltd. Ion-sensitive super-absorbent polymer
EP2491082A4 (en) * 2009-10-20 2014-01-22 Georgia Tech Res Inst Shape memory polymers and process for preparing
CN106188416A (en) * 2015-05-06 2016-12-07 天津大学 High-strength hydrogel with hydrogen bond strengthened ion driven shape memory, as well as preparation method and application of hydrogel
CN106188416B (en) * 2015-05-06 2018-06-15 天津大学 Species having a high strength shape memory hydrogels hydrogen and its preparation method and its application to enhance the plasma driving

Similar Documents

Publication Publication Date Title
Serizawa et al. Rapid deswelling of porous poly (N-isopropylacrylamide) hydrogels prepared by incorporation of silica particles
Yokoyama et al. Morphology and structure of highly elastic poly (vinyl alcohol) hydrogel prepared by repeated freezing-and-melting
Bae et al. Insulin permeation through thermo-sensitive hydrogels
Haraguchi et al. Control of the Coil‐to‐Globule Transition and Ultrahigh Mechanical Properties of PNIPA in Nanocomposite Hydrogels
US4716154A (en) Gel of crosslinked hyaluronic acid for use as a vitreous humor substitute
US4351922A (en) Process for the production of highly water-absorbing but less water-soluble hydrogels
US4369229A (en) Composite hydrogel-forming article and method of making same
US5075399A (en) Superabsorbent crosslinked ampholytic ion pair copolymers
Zhang et al. Synthesis and characterization of pH-and temperature-sensitive poly (methacrylic acid)/poly (N-isopropylacrylamide) interpenetrating polymeric networks
US4536554A (en) Hydrophilic polymers and contact lenses made therefrom
Haraguchi et al. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly (N, N-dimethylacrylamide) and clay
US5998498A (en) Soft contact lenses
US5580929A (en) Interpenetrating-polymer network phase-transition gels
Guo et al. Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions
US6828378B2 (en) Compound comprising crosslinked polyrotaxane
Yoshida et al. Modulating the phase transition temperature and thermosensitivity in N-isopropylacrylamide copolymer gels
US3949021A (en) Cross-linked n-vinyl pyrrolidone polymer composition suitable for contact lenses
US4559186A (en) Production of borate crosslinked polyvinyl alcohol contact lenses
US5281683A (en) Process for producing water-absorbent resin
US4620954A (en) Hydrogel from ultraviolet-initiated copolymerization
US4462665A (en) Composite hydrogel-forming lens and method of making same
Kim et al. Swelling behavior of interpenetrating polymer network hydrogels composed of poly (vinyl alcohol) and chitosan
US4058491A (en) Cationic hydrogels based on heterocyclic N-vinyl monomers
Bae et al. “On–Off” thermocontrol of solute transport. I. Temperature dependence of swelling of N-isopropylacrylamide networks modified with hydrophobic components in water
US4452776A (en) Hydrogel implant article and method