JPH07291691A - Dispersing agent for inorganic hydraulic composition, hydraulic composition and cured material thereof - Google Patents

Dispersing agent for inorganic hydraulic composition, hydraulic composition and cured material thereof

Info

Publication number
JPH07291691A
JPH07291691A JP6103195A JP10319594A JPH07291691A JP H07291691 A JPH07291691 A JP H07291691A JP 6103195 A JP6103195 A JP 6103195A JP 10319594 A JP10319594 A JP 10319594A JP H07291691 A JPH07291691 A JP H07291691A
Authority
JP
Japan
Prior art keywords
hydraulic composition
dispersant
parts
curing
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6103195A
Other languages
Japanese (ja)
Other versions
JP3315523B2 (en
Inventor
Yoshimitsu Karasawa
義光 唐沢
Yasuo Kuroda
泰男 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP10319594A priority Critical patent/JP3315523B2/en
Publication of JPH07291691A publication Critical patent/JPH07291691A/en
Application granted granted Critical
Publication of JP3315523B2 publication Critical patent/JP3315523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2664Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of ethylenically unsaturated dicarboxylic acid polymers, e.g. maleic anhydride copolymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/408Dispersants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain a dispersing agent for an inorganic hydraulic composition having excellent dispersing performances, by copoymerizing acrylic acid with maleic acid, maleic anhydride or fumaric acid. CONSTITUTION:The dispersing agent for an inorganic hydraulic composition, is obtained by copolymerizing acrylic acid with a monomer (a) selected from maleic acid, maleic anhydride or fumaric acid, or copolymerizing a monomer copolymerizable therewith with the monomers. As the monomers copolymerizable with the monomer (a), hydroxyethyl (meth)acrylate, N-vinylpyrroridone, sodium styrene sulfonic acid, etc., are cited. This hydraulic composition is obtained by blending a latently hydraulic material, a super fine powdery material, a curing stimulator, and the dispersing agent. This hydraulic composition can be used in a wide field such as architecture, construction or scenic material, since it has good fluidity property, and is excellent in compression, bending and stretching strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、分散性能に優れた分散
剤、それを含有する水硬性組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dispersant having excellent dispersibility and a hydraulic composition containing the dispersant.

【0002】[0002]

【従来の技術】従来より、高炉水砕スラグ又は転炉スラ
グは産業副生物として、多量に産出されているが、その
用途は、セメント製造原料としたり、高炉セメントや骨
材を製造したりする程度であって、そのような有効利用
もなされないまま多くは埋立等に利用されていた。
2. Description of the Related Art Conventionally, a large amount of granulated blast furnace slag or converter slag has been produced as an industrial by-product, but its use is as a raw material for cement production, blast furnace cement and aggregate production. Most of them were used for landfill without effective use.

【0003】最近にいたり高炉水砕スラグに石膏や生石
灰、苛性アルカリ等の薬剤を添加し、その潜在水硬性を
活性化して、それ自体を水硬性セメントとすることが提
案されている。しかし高炉水砕スラグを流し込み、遠心
成形などに使用するには、流動性が悪く、また強度発現
が不十分であって、生成した硬化体は非常に脆く使用に
耐えないため、満足できるものは得られていない。
Recently, it has been proposed to add a chemical such as gypsum, quick lime or caustic alkali to the granulated blast furnace slag to activate its latent hydraulic property to form a hydraulic cement itself. However, in order to cast granulated blast furnace slag and use it for centrifugal molding, etc., it has poor fluidity and insufficient strength development, and the resulting cured product is extremely brittle and cannot withstand use. Not obtained.

【0004】[0004]

【発明が解決しようとする課題】近年この高炉水砕スラ
グの混練組成物の流動性、硬化物の強度が弱いという点
を改良すべく、種々の検討がなされているが、その流動
性は、セメントモルタル、コンクリートより劣り、又強
度も実用に耐えなかった。
In order to improve the fluidity of the kneaded composition of the granulated blast furnace slag and the weak strength of the cured product, various studies have been made in recent years. It was inferior to cement mortar and concrete, and its strength could not be put to practical use.

【0005】[0005]

【課題を解決するための手段】本発明は、この欠点を解
決することを目的とするものであり、高炉水砕スラグ等
の潜在水硬性物質に超微粉状物質、硬化刺激剤、アクリ
ル酸・マレイン酸(または無水マレイン酸、フマル酸)
を必須成分とする共重合物を添加する事により、普通ポ
ルトランドセメント以上の流動性、強度発現が可能とな
ることを見い出したものである。
DISCLOSURE OF THE INVENTION The present invention is intended to solve this drawback, and a latent hydraulic substance such as granulated blast furnace slag is added to an ultrafine powder substance, a curing stimulant, and acrylic acid.・ Maleic acid (or maleic anhydride, fumaric acid)
It has been found that the addition of a copolymer containing as an essential component makes it possible to achieve fluidity and strength development more than ordinary Portland cement.

【0006】即ち本発明者は、前記したような問題点の
ない組成物を得る方法について鋭意研究の結果、上記課
題を達成できる組成物を見出し本発明を完成させたもの
である。
That is, the present inventor has completed the present invention by discovering a composition that can achieve the above-mentioned object as a result of earnest research on a method for obtaining a composition having no problems as described above.

【0007】即ち、本発明は (1)アクリル酸と次の化合物群(a)から選ばれる1
種 (a)マレイン酸、無水マレイン酸、フマル酸 とを共重合してなる無機水硬性組成物用分散剤。 (2)アクリル酸と上記(1)記載の化合物群(a)か
ら選ばれる1種とこれらと共重合可能な他の単量体とを
共重合してなる無機水硬性組成物用分散剤。 (3)共重合可能な単量体がヒドロキシエチル(メタ)
アクリレート、Nービニルピロリドン、スチレンスルホ
ン酸ソーダ、(メタ)アリルスルホン酸ソーダ、スチレ
ン、酢酸ビニルから選ばれる1種以上である上記(2)
記載の分散剤、 (4)分子量が1000〜500,000である
(1)、(2)または(3)記載の分散剤、
That is, the present invention is (1) 1 selected from acrylic acid and the following compound group (a):
A dispersant for an inorganic hydraulic composition obtained by copolymerizing a seed (a) maleic acid, maleic anhydride, or fumaric acid. (2) A dispersant for an inorganic hydraulic composition obtained by copolymerizing acrylic acid, one selected from the compound group (a) described in (1) above, and another monomer copolymerizable with these. (3) The copolymerizable monomer is hydroxyethyl (meth)
At least one selected from acrylate, N-vinylpyrrolidone, sodium styrenesulfonate, sodium (meth) allylsulfonate, styrene, vinyl acetate (2)
The dispersant according to (4), the dispersant according to (1), (2) or (3) having a molecular weight of 1000 to 500,000.

【0008】(5)潜在水硬性物質、超微粉状物質、硬
化刺激剤、上記(1)、(2)、(3)または(4)記
載の分散剤を含有して成る水硬性組成物、 (6)潜在水硬性物質が高炉水砕スラグ、転炉スラグ、
フライアッシュから選ばれる1種以上である上記(5)
記載の水硬性組成物、 (7)超微粉状物質がシリカフュームである上記(5)
または(6)記載の水硬性組成物。 (8)硬化刺激剤がアルカリ金属の水酸化物、炭酸塩、
珪酸塩から選ばれた一種以上である上記(5)、(6)
または(7)記載の水硬性組成物、 (9)硬化刺激剤が苛性ソーダ、炭酸ソーダ、苛性カ
リ、珪酸ソーダから選ばれる1種以上である上記
(5)、(6)、(7)または(8)記載の水硬性組成
物、 (10)上記(5)、(6)(7)、(8)または
(9)記載の水硬性組成物を水と混練した後、湿潤養生
してなる硬化物 に関する。
(5) A hydraulic composition comprising a latent hydraulic substance, an ultrafine powder substance, a curing stimulant, and the dispersant described in (1), (2), (3) or (4) above. (6) The latent hydraulic material is granulated blast furnace slag, converter slag,
The above (5), which is at least one selected from fly ash
(7) The above-mentioned (5), wherein the ultrafine powdery substance is silica fume.
Alternatively, the hydraulic composition according to (6). (8) The curing stimulant is an alkali metal hydroxide, carbonate,
(5), (6) above, which is one or more selected from silicates
Alternatively, the hydraulic composition according to (7), (9) the curing stimulant is one or more selected from caustic soda, sodium carbonate, caustic potash, and sodium silicate. (5), (6), (7) or (8) ) Described above, (10) A cured product obtained by kneading the hydraulic composition according to (5), (6), (7), (8) or (9) described above with water and then subjecting to wet curing. Regarding

【0009】以下、本発明を詳細に説明する。本発明の
分散剤は、アクリル酸とマレイン酸、無水マレイン酸、
フマル酸から選ばれる1種の単量体とを共重合するか、
またはこれらと共重合可能な単量体とこれらとを共重合
して得られる。(以下において、上記のマレイン酸、無
水マレイン酸、フマル酸から選ばれる1種の単量体を特
に断りのない限り単量体(a)という。) アクリル酸及び単量体(a)と共重合可能な単量体の具
体例としてはヒドロキシエチル(メタ)アクリレート、
Nービニルピロリドン、スチレンスルホン酸ソーダ、ア
リルスルホン酸ソーダ、メタリルスルホン酸ソーダ、ス
チレン、酢酸ビニル、アクリル酸メチル、アクリル酸エ
チル、アクリル酸ブチル、アクリロニトリル、メタクリ
ル酸メチル、メタクリル酸、アクリルアマイド、メタク
リルアマイド、エチレン、プロピレン、イソブチレン等
が挙げられる。
The present invention will be described in detail below. The dispersant of the present invention is acrylic acid and maleic acid, maleic anhydride,
Copolymerize with one monomer selected from fumaric acid,
Alternatively, it can be obtained by copolymerizing these with a monomer copolymerizable with them. (In the following, one monomer selected from the above maleic acid, maleic anhydride, and fumaric acid is referred to as a monomer (a) unless otherwise specified.) Acrylic acid and a monomer (a) Specific examples of the polymerizable monomer include hydroxyethyl (meth) acrylate,
N-vinylpyrrolidone, sodium styrenesulfonate, sodium allylsulfonate, sodium methallylsulfonate, styrene, vinyl acetate, methyl acrylate, ethyl acrylate, butyl acrylate, acrylonitrile, methyl methacrylate, methacrylic acid, acrylamide, Methacrylic amide, ethylene, propylene, isobutylene and the like can be mentioned.

【0010】本発明の分散剤は例えば、米国第3635
915号等に記載の公知の方法で製造することができ
る。また、本発明の分散剤は酸の形のままで使用するこ
ともできるが、例えば苛性ソ−ダ等で中和して塩の形で
使用するのが好ましい。即ち、アクリル酸・マレイン酸
共重合体のナトリウム塩、アクリル酸・マレイン酸・ア
リルスルホン酸ソーダの共重合体のナトリウム塩、アク
リル酸・無水マレイン酸・酢酸ビニル共重合体のナトリ
ウム塩、アクリル酸・無水マレイン酸・スチレンの共重
合体のナトリウム塩、アクリル酸・マレイン酸・スチレ
ンスルホン酸ソーダ・N−ビニルピロリドン共重合体の
ナトリウム塩等が本発明の分散剤の好ましい具体例とし
て挙げられる。
The dispersant of the present invention is, for example, US Pat. No. 3,635.
It can be produced by a known method described in, for example, No. 915. The dispersant of the present invention can be used in the acid form as it is, but it is preferably neutralized with caustic soda and the like and used in the salt form. That is, sodium salt of acrylic acid / maleic acid copolymer, sodium salt of acrylic acid / maleic acid / sodium allyl sulfonate copolymer, sodium salt of acrylic acid / maleic anhydride / vinyl acetate copolymer, acrylic acid Preferred examples of the dispersant of the present invention include sodium salt of a maleic anhydride / styrene copolymer and sodium salt of acrylic acid / maleic acid / sodium styrene sulfonate / N-vinylpyrrolidone copolymer.

【0011】次に本発明の水硬性組成物について詳細に
説明する。本発明の水硬性組成物は、潜在水硬性物質、
超微粉状物質、硬化刺激剤及び本発明の分散剤を含有す
ることを特徴とする。本発明で用いる潜在水硬性物質
は、ブレーン比表面積が2000cm2 /g以上のもの
が好ましく、特に3000cm2 /g以上のものが好ま
しい。潜在水硬性物質としては、水及び硬化刺激剤と混
練したときに硬化するものであれば特に限定されない
が、高炉水砕スラグ、転炉スラグ、フライアッシュが好
ましい。これら潜在水硬性物質は、単独でまたは2種以
上を混合して使用することができる。
Next, the hydraulic composition of the present invention will be described in detail. The hydraulic composition of the present invention is a latent hydraulic substance,
It is characterized by containing an ultrafine powder, a curing stimulant and the dispersant of the present invention. The latent hydraulic material used in the present invention preferably has a Blaine specific surface area of 2000 cm 2 / g or more, and particularly preferably 3000 cm 2 / g or more. The latent hydraulic substance is not particularly limited as long as it hardens when kneaded with water and a hardening stimulant, but granulated blast furnace slag, converter slag, and fly ash are preferable. These latent hydraulic substances can be used alone or in admixture of two or more.

【0012】本発明で用いる超微粉状物質としては、そ
の平均粒径が潜在水硬性物質の平均粒径より小さいも
の、好ましくは潜在水硬性物質の平均粒径よりも1オー
ダー以上小さいもの、より好ましくは2オーダー以上小
さいものを使用する。超微粉状物質の好ましい平均粒径
は10μm以下であり、より好ましくは0.01〜5μ
mであり、最も好ましくは0.05〜1μmである。超
微粉状物質の平均粒径は、潜在水硬性物質の平均粒径の
1/2〜1/1000であることが好ましい。
The ultrafine powder used in the present invention has an average particle size smaller than that of the latent hydraulic substance, preferably one order smaller than that of the latent hydraulic substance. It is more preferable to use one that is smaller than two orders of magnitude. The preferable average particle size of the ultrafine powder is 10 μm or less, more preferably 0.01 to 5 μm.
m, and most preferably 0.05 to 1 μm. The average particle size of the ultrafine powder substance is preferably 1/2 to 1/1000 of the average particle size of the latent hydraulic substance.

【0013】使用し得る超微粉状物質の具体例として
は、例えばシリカフューム、フライアッシュ、珪砂、珪
石粉、クレー、タルク、カオリン、炭酸カルシウム、陶
磁器粉砕物、徐冷高炉スラグ粉砕物、チタニア、ジルコ
ニア、アルミナ、アエロジル、等が挙げられるが、流込
み成形時の流動性等が向上する他、養生硬化後の硬化体
の機械的強度向上の効果が顕著なことから、シリカフュ
ームを使用することが特に好ましい。この超微粉状物質
の使用量は、潜在水硬性物質の大きさ(粒径)や種類、
必要に応じて添加する他の種々の混和材の種類や量によ
っても異なるが、通常、潜在水硬性物質100重量部に
対して2〜50重量部が好ましく、特に好ましくは5〜
25重量部である。
Specific examples of the ultrafine powder that can be used include silica fume, fly ash, silica sand, silica stone powder, clay, talc, kaolin, calcium carbonate, ground ceramics, slowly cooled blast furnace slag ground material, titania, Zirconia, alumina, aerosil, etc. can be mentioned, but in addition to improving the fluidity at the time of cast molding, the effect of improving the mechanical strength of the cured product after curing and curing is remarkable, so it is possible to use silica fume. Particularly preferred. The amount of ultrafine powder used depends on the size (particle size) and type of latent hydraulic substance,
Although it varies depending on the type and amount of other various admixtures to be added as necessary, it is usually preferably 2 to 50 parts by weight, and particularly preferably 5 to 100 parts by weight of the latent hydraulic substance.
25 parts by weight.

【0014】硬化刺激剤としては種々のアルカリ性物質
が使用できる。その具体例としては、例えば水酸化ナト
リウム、水酸化カリウム、水酸化リチウム等のアルカリ
金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸リ
チウム等のアルカリ金属炭酸塩、更に水酸化カルシウ
ム、水酸化マグネシウム等のアルカリ土類金属の水酸化
物、ピロ燐酸ナトリウム、ピロ燐酸カリウム、燐酸二カ
リウム、燐酸三カリウム、燐酸三ナトリウム等の燐酸
塩、(メタ)ケイ酸ナトリウム、(メタ)ケイ酸カリウ
ム等の珪酸塩が挙げられる。
Various alkaline substances can be used as the curing stimulant. Specific examples thereof include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide, alkali metal carbonates such as sodium carbonate, potassium carbonate and lithium carbonate, and calcium hydroxide and magnesium hydroxide. Alkaline earth metal hydroxides, sodium pyrophosphate, potassium pyrophosphate, dipotassium phosphate, tripotassium phosphate, trisodium phosphate and other phosphates, sodium (meth) silicate, potassium (meth) silicate and other silicic acids Examples include salt.

【0015】これらの硬化刺激剤の内、アルカリ金属水
酸化物が好ましく、中でも水酸化ナトリウムが特に好ま
しい。又、これらの硬化刺激剤は固形でも水溶液でも使
用できるが混練時に水硬性組成物中に均一に分散するよ
うに水溶液を用いることが好ましい。
Of these curing stimulants, alkali metal hydroxides are preferable, and sodium hydroxide is particularly preferable. Although these curing stimulants can be used as solids or aqueous solutions, it is preferable to use an aqueous solution so that they are uniformly dispersed in the hydraulic composition during kneading.

【0016】硬化刺激剤の使用量は、その塩基性度(ア
ルカリ性の強さ)、潜在水硬性物質の粒径、更に添加す
る種々の超微粉状物質の種類や量、及び後述する水の量
によっても異なるが、概ね潜在水硬性物質と超微粉状物
質の合計量100重量部に対して0.1〜20重量部が
好ましく、特に好ましくは0.2〜5重量部である。
The amount of the hardening stimulant to be used is its basicity (alkaline strength), the particle size of the latent hydraulic substance, the type and amount of various ultrafine powder substances to be added, and the water described later. Although it depends on the amount, it is preferably 0.1 to 20 parts by weight, and particularly preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the total amount of the latent hydraulic substance and the ultrafine powdery substance.

【0017】硬化刺激剤の量が少なすぎると、充分な強
度を発現しなかったり、養生硬化に長時間を要する等、
工業的に不利となる。また多すぎると硬化速度が速くな
りすぎ、混練工程や成形工程でのハンドリングが著しく
阻害されることがある。
If the amount of the curing stimulant is too small, sufficient strength may not be exhibited, or curing may take a long time.
It is an industrial disadvantage. On the other hand, if the amount is too large, the curing speed will be too fast, and handling in the kneading step or molding step may be significantly hindered.

【0018】本発明の水硬性組成物に使用する場合の本
発明の分散剤の分子量は好ましくは、1,000〜50
0,000、更に好ましくは、3,000〜100,0
00のである。分子量が1,000以下及び、500,
000以上では水硬性組成物の流動性が悪く、またその
硬化体の強度も弱い。また、分散剤は上記で例示した物
を単独でまたは2種以上を混合して使用することができ
る。
When used in the hydraulic composition of the present invention, the molecular weight of the dispersant of the present invention is preferably 1,000 to 50.
30,000, more preferably 3,000 to 100,0
00. The molecular weight is 1,000 or less and 500,
If it is 000 or more, the fluidity of the hydraulic composition is poor, and the strength of the cured product is weak. Further, as the dispersant, those exemplified above can be used alone or in combination of two or more kinds.

【0019】またこの場合の分散剤は、水硬性組成物を
混練する時に速やかに組成物中に分散される事が好まし
いので、これら分散剤の水溶液や、細かく粉砕したパウ
ダー状のものを用いることが好ましい。
In this case, it is preferable that the dispersant is rapidly dispersed in the composition when the hydraulic composition is kneaded. Therefore, an aqueous solution of these dispersants or a finely ground powder is used. Is preferred.

【0020】分散剤の使用量は、最終的に得られる硬化
体の要求特性等により異なるが潜在水硬性物質及び超微
粉状物質の合計量100重量部に対して通常0.1〜1
0重量部、好ましくは0.3〜6重量部、特に好ましく
は0.5〜3重量部である。分散剤の使用量が0.1重
量部より少ないと、後述する水の添加量にもよるが、混
練が困難になったり流動性が低下したりする。また、分
散剤の使用量が10重量部より多いと硬化しにくくなっ
たり、たとえ硬化したとしても、耐水性が悪くなる等の
問題が出てくる。
The amount of the dispersant used varies depending on the required properties of the finally obtained cured product, etc., but is usually 0.1 to 1 per 100 parts by weight of the total amount of the latent hydraulic substance and ultrafine powder substance.
It is 0 part by weight, preferably 0.3 to 6 parts by weight, particularly preferably 0.5 to 3 parts by weight. If the amount of the dispersant used is less than 0.1 part by weight, kneading may be difficult or the fluidity may decrease, depending on the amount of water to be described later. Further, if the amount of the dispersant used is more than 10 parts by weight, it will be difficult to cure, or even if it is cured, there will be problems such as poor water resistance.

【0021】本発明の水硬性組成物には、更に必要に応
じて種々の混和材を使用することが出来る。混和材の例
としては、例えば粉砕された徐冷スラグ、フェロクロム
スラグ、ワラストナイト、シリカ、アルミナ、タルク、
硅砂、硅石粉、クレー、カオリン、炭酸カルシウム、陶
磁器粉砕物、チタニア、ジルコニア、砂利等の無機充填
材、カーボン繊維、ガラス繊維、パルプ、ナイロン繊
維、ビニロン繊維、ポリエステル繊維、アクリル繊維等
の繊維材、砂糖、グルコース等の硬化遅延剤、シランカ
ップリング剤のような表面処理剤、顔料等が挙げられ
る。
If desired, various admixtures may be used in the hydraulic composition of the present invention. Examples of admixtures include, for example, crushed slowly cooled slag, ferrochrome slag, wollastonite, silica, alumina, talc,
Inorganic filler such as silica sand, silica powder, clay, kaolin, calcium carbonate, crushed ceramics, titania, zirconia, gravel, carbon fiber, glass fiber, pulp, nylon fiber, vinylon fiber, polyester fiber, acrylic fiber and other fiber materials , A setting retarder such as sugar and glucose, a surface treating agent such as a silane coupling agent, and a pigment.

【0022】これら種々の混和材を用いる場合、その使
用量は、無機充填材の場合には潜在水硬性物質100重
量部に対して通常10〜300重量部、又硬化遅延剤、
表面処理剤、顔料等の混和剤の場合には潜在水硬性物質
100重量部に対して通常0.1〜20重量部用いられ
る。
In the case of using these various admixtures, the amount used is usually 10 to 300 parts by weight with respect to 100 parts by weight of the latent hydraulic substance in the case of the inorganic filler, and a curing retarder,
In the case of an admixture such as a surface treatment agent or a pigment, it is usually used in an amount of 0.1 to 20 parts by weight with respect to 100 parts by weight of the latent hydraulic substance.

【0023】本発明の水硬性組成物は、例えば以下のよ
うにして得ることできる。即ち、潜在水硬性物質、超微
粉状物質、硬化刺激剤、本発明の分散剤及び必要により
混和材からなる混合物を調製し、オムニミキサー、(千
代田技研工業(株)製)のような揺動型ミキサー、ニー
ダールーダー型ミキサー、プラネタリーミキサー等で混
合して本発明の水硬性組成物を得ることができる。
The hydraulic composition of the present invention can be obtained, for example, as follows. That is, a mixture of a latent hydraulic substance, an ultrafine powder substance, a hardening stimulant, the dispersant of the present invention and, if necessary, an admixture is prepared and shaken with an omnimixer (Chiyoda Giken Kogyo Co., Ltd.). The hydraulic composition of the present invention can be obtained by mixing with a dynamic mixer, a kneader-ruder mixer, a planetary mixer or the like.

【0024】本発明の水硬性組成物を水と良く混練し、
混練物としたのち、適当な型枠に流し込み、更にこれを
湿潤養生することにより本発明の硬化物を得ることがで
きる。この場合の水の使用量は、使用する潜在水硬性物
質及び超微粉状物質の種類と量、硬化刺激剤の種類と
量、その他の混和材の種類と量によって異なり、混練物
が良好な混練性を示すように決めることが重要だが、通
常潜在水硬性物質と超微粉状物質の合計量100重量部
に対して8〜60重量部、好ましくは10〜45重量
部、より好ましくは12〜35重量部である。
The hydraulic composition of the present invention is thoroughly kneaded with water,
After the kneaded product, it is poured into an appropriate mold, and the product is wet-cured to obtain the cured product of the present invention. The amount of water used in this case depends on the type and amount of the latent hydraulic substance and ultrafine powder substance used, the type and amount of the hardening stimulant, and the type and amount of other admixtures, and the kneaded product is good. It is important to decide so as to show kneadability, but usually 8 to 60 parts by weight, preferably 10 to 45 parts by weight, more preferably 12 parts by weight based on 100 parts by weight of the total of the latent hydraulic substance and the ultrafine powdery substance. ~ 35 parts by weight.

【0025】次に本発明の水硬性組成物を水と混練する
方法について説明する。先ず、潜在水硬性物質及び、超
微粉状物質を混合し、細かく粉砕された、及び/または
水に溶解された本発明の分散剤、必要により種々の混和
材を上記で例示したミキサーに入れて混合する。次いで
この混合物に硬化刺激剤と所定量の水、または硬化刺激
剤を水に溶解した水溶液を所定量添加し、更に混練を行
う。
Next, a method of kneading the hydraulic composition of the present invention with water will be described. First, the latent hydraulic substance and the ultrafine powder substance are mixed, and the dispersant of the present invention finely ground and / or dissolved in water and, if necessary, various admixtures are put in the mixer exemplified above. And mix. Next, a predetermined amount of a hardening stimulant and a predetermined amount of water or an aqueous solution of the hardening stimulant dissolved in water is added to this mixture, and kneading is further performed.

【0026】別の方法として、潜在水硬性物質、超微粉
状物質、必要により種々の混和材を添加し、ミキサーに
より粉体混合する。次いでこの混合物に本発明の分散剤
のナトリウム塩水溶液、硬化刺激剤と所定量の水、また
は硬化刺激剤を水に溶解した水溶液を所定量添加し、更
に混練を行い流動性のある混練物を得る。
As another method, a latent hydraulic substance, an ultrafine powdery substance and, if necessary, various admixtures are added, and the powder is mixed by a mixer. Then, to this mixture, a sodium salt aqueous solution of the dispersant of the present invention, a curing stimulant and a predetermined amount of water, or a predetermined amount of an aqueous solution in which the curing stimulant is dissolved in water is added, and further kneaded to obtain a fluid kneaded product. obtain.

【0027】以上のようにして得られた混練物を硬化さ
せるための湿潤養生は、通常、5〜100℃の温度で飽
和蒸気圧下、2時間〜1カ月間の範囲で行われるが、1
00℃以上の温度で1〜20時間オートクレーブ処理を
行っても良い。湿潤養生温度が高い程、硬化が速い傾向
にあるが、一般的には、前記した範囲の温度である。湿
潤養生は、少なくとも混合物の水分が蒸発しない高湿度
雰囲気下で行うことが好ましい。一般的には相対湿度8
0%以上、好ましくは90%以上、更に好ましくは10
0%の雰囲気下で行う。また、湿潤養生初期の成形体を
水に浸漬して水中で養生を行うことも出来る。
The wet curing for curing the kneaded product obtained as described above is usually carried out at a temperature of 5 to 100 ° C. under a saturated vapor pressure for 2 hours to 1 month.
The autoclave treatment may be performed at a temperature of 00 ° C or higher for 1 to 20 hours. The higher the moisture curing temperature, the faster the curing tends to be, but generally, the temperature is within the above range. The wet curing is preferably performed in a high humidity atmosphere in which at least the water content of the mixture does not evaporate. Generally a relative humidity of 8
0% or more, preferably 90% or more, more preferably 10
Perform in an atmosphere of 0%. It is also possible to carry out curing in water by immersing the molded body in the early stage of wet curing in water.

【0028】以上のようにして得られた本発明の硬化体
は、その強度を生かした建築用構造材料、軽量高強度の
内外装材等の建築・建設材料として使用できる。具体的
には、打込み型枠材、床スラブ、カーテンウォール、内
外装材、等の建築材料に使用できる。また、本発明の分
散剤は、上記したような潜在水硬性物質、硬化刺激剤等
を含有する水硬性組成物以外に、一般に知られているセ
メント、各種混和材等からなる水硬性組成物用の分散剤
としても使用可能である。
The cured product of the present invention obtained as described above can be used as a building / construction material, such as a structural material for construction that takes advantage of its strength, and a lightweight and high strength interior / exterior material. Specifically, it can be used as a building material such as a driving form material, a floor slab, a curtain wall, and an interior / exterior material. Further, the dispersant of the present invention is used for a hydraulic composition comprising a generally known cement, various admixtures, etc., in addition to a hydraulic composition containing a latent hydraulic substance, a curing stimulant, etc. as described above. It can also be used as a dispersant.

【0029】[0029]

【実施例】以下、本発明を実施例で更に詳細に説明す
る。尚、以降の硬化物とは以上で説明した混練物を養生
硬化した後の硬化体をさす。
EXAMPLES The present invention will now be described in more detail by way of examples. The term "cured product" hereinafter refers to a cured product obtained by curing and curing the kneaded product described above.

【0030】また、実施例中のフロー値は、混練の終わ
った混練物又はモルタルをJISR5201に準じて測
定した。
The flow value in the examples was measured according to JIS R5201 for the kneaded product or mortar after kneading.

【0031】また、実施例中の圧縮強度は、硬化物をセ
メントモルタル用円柱状試験体で作った直径5cm、高
さ10cmの円柱をテンシロン((株)オリエンテック
製)を用い、載荷速度0.2mm/分で圧縮して破壊し
た時の強度(kgf/cm2)である。
Further, the compressive strength in the examples is obtained by using Tensilon (manufactured by Orientec Co., Ltd.) for a cylinder having a diameter of 5 cm and a height of 10 cm, which is a hardened material made of a cylindrical test specimen for cement mortar, and a loading speed of 0. It is the strength (kgf / cm 2 ) when it is compressed and broken at 0.2 mm / min.

【0032】又、曲げ強度は、4×4×16cmの角柱
状の試験体をテンシロン((株)オリエンテック製)を
用い、載荷速度0.5mm/分の条件で10cmのスパ
ン長で測定した時の強度(kgf/cm2 )である。
The bending strength was measured by using a Tensilon (manufactured by Orientec Co., Ltd.) with a 4 × 4 × 16 cm prismatic test body and a span length of 10 cm under a loading speed of 0.5 mm / min. It is the strength at time (kgf / cm 2 ).

【0033】また、引っ張り強度は、径5cm、長さ1
0cmの円柱状の試験体を、テンシロン((株)オリエ
ンテック製)を用い、載荷速度0.2mm/分の条件
で、直径方向から荷重をかけて、割裂したときの強度
(kgf/cm2 )である。また、本発明はこれら実施
例に限定されるものではない。尚、実施例、比較例にお
いて、部又は%は特に断らない限り、重量基準である。
The tensile strength is 5 cm in diameter and 1 in length.
The strength (kgf / cm 2 ) when a 0 cm columnar specimen was split using a Tensilon (manufactured by Orientec Co., Ltd.) at a loading speed of 0.2 mm / min by applying a load from the diameter direction ). Further, the present invention is not limited to these examples. In Examples and Comparative Examples, parts or% are by weight unless otherwise specified.

【0034】実施例1 還流管付きセパラブルフラスコに、無水マレイン酸21
0部、脱イオン水700部を仕込み、温度を90ないし
100℃に昇温し、アクリル酸840部、過硫酸アンモ
ニウム32部、次亜燐酸ソーダ20部、水680部の混
合物をを滴下して、10時間反応させた後、系を室温ま
で冷却し、45%苛性ソーダ1385部で中和して乾燥
し、本発明の分散剤のナトリウム塩(水溶性塩A)を得
た。この物の重量平均分子量は35,000(GPC
法、ポリスチレンスルホン酸ソーダ換算)であった。
Example 1 Maleic anhydride 21 was placed in a separable flask equipped with a reflux tube.
0 parts and 700 parts of deionized water were charged, the temperature was raised to 90 to 100 ° C., and a mixture of 840 parts of acrylic acid, 32 parts of ammonium persulfate, 20 parts of sodium hypophosphite and 680 parts of water was added dropwise. After reacting for 10 hours, the system was cooled to room temperature, neutralized with 1385 parts of 45% caustic soda and dried to obtain a sodium salt (water-soluble salt A) of the dispersant of the present invention. The weight average molecular weight of this product is 35,000 (GPC
Method, converted to sodium polystyrene sulfonate).

【0035】実施例2〜10 単量体の種類及び量を表1に示す種類及び量に変えたほ
かは実施例1と同様にして本発明の分散剤のナトリウム
塩(水溶性塩B〜J)を得た。得られた水溶性塩B〜J
の重合平均分子量(GPC法、ポリスチレンスルホン酸
ソーダ換算)を表1に示す。
Examples 2 to 10 The sodium salt of the dispersant of the present invention (water-soluble salts B to J) was prepared in the same manner as in Example 1 except that the kinds and amounts of the monomers were changed to those shown in Table 1. ) Got. Obtained water-soluble salts B to J
Table 1 shows the polymerization average molecular weight (GPC method, converted into sodium polystyrene sulfonate).

【0036】[0036]

【表1】 表 1 水溶性塩 単量体及びその共重合比 重量平均分子量 (重量比) a b c d e f g h B 66 10 24 25,000 C 80 10 10 30,000 D 70 20 10 45,000 E 90 10 42,000 F 60 10 30 37,000 G 80 10 10 29,000 H 70 10 10 10 23,000 I 75 10 10 5 19,000 J 85 10 5 59,000Table 1 Table 1 Water-soluble salts Monomers and their copolymerization ratio Weight average molecular weight (weight ratio) a b c def g h B 66 66 10 24 25,000 C 80 10 10 30,000 D 70 20 10 45,000 E 90 10 42,000 F 60 10 30 30 7,000 G 80 10 10 29 000 H 70 10 10 10 23,000 I 75 10 10 5 19 000 J 85 10 5 59,000

【0037】注)表1において a:アクリル酸 b:無水マレイン酸 c:フマル酸 d:アリルスルホン酸ソーダ e:メタリルスルホン酸ソーダ f:酢酸ビニル g:スチレン h:NービニルピロリドンNote) In Table 1, a: acrylic acid b: maleic anhydride c: fumaric acid d: sodium allyl sulfonate e: sodium methallyl sulfonate f: vinyl acetate g: styrene h: N-vinyl pyrrolidone

【0038】実施例11 オムニミキサーにブレーン比表面積4000cm2 /g
の高炉水砕スラグ(新日鉄製エスメント)900部、シ
リカフューム(平均粒径0.2μm、日本重化学工業
製)100部を入れて90秒間撹拌混合した。続いて、
水溶性塩A10部、硬化刺激剤として水酸化ナトリウム
20部と水220部、硬化調節剤として砂糖2部とから
成る水溶液を添加し、更に6分間混練した。
Example 11 Blaine specific surface area 4000 cm 2 / g in an omni mixer
900 parts of granulated blast furnace slag (manufactured by Nippon Steel Co., Ltd.) and 100 parts of silica fume (average particle size 0.2 μm, manufactured by Nippon Heavy Chemical Industry Co., Ltd.) were added and stirred and mixed for 90 seconds. continue,
An aqueous solution containing 10 parts of water-soluble salt A, 20 parts of sodium hydroxide and 220 parts of water as a hardening stimulant, and 2 parts of sugar as a hardening regulator was added, and the mixture was kneaded for 6 minutes.

【0039】これらの混練によって得られたペースト状
混練物のフロー値は、250mmであった。次に混練物
を圧縮、引っ張り、及び曲げ試験用の型枠にいれて、9
0℃の飽和蒸気圧の雰囲気下で1日間蒸気養生後の本発
明の硬化物の圧縮強度は1390kgf/cm2 、曲げ
強度219kgf/cm2 、引っ張り強度79kgf/
cm2 であった。
The flow value of the paste-like kneaded material obtained by these kneading was 250 mm. Next, the kneaded product is put into a mold for compression, tension, and bending test, and
Compressed strength of the cured product of the present invention after steam curing for 1 day in an atmosphere of saturated vapor pressure of 0 ° C. is 1390 kgf / cm 2 , bending strength 219 kgf / cm 2 , tensile strength 79 kgf /
It was cm 2 .

【0040】実施例12〜14 水溶性塩B,C,Dについて、実施例11と同様の操作
を繰り返し、試験した結果を表2に示す。(但し、水溶
性塩の添加量は表2に示したごとく変えた。)
Examples 12 to 14 The same operations as in Example 11 were repeated for the water-soluble salts B, C and D, and the test results are shown in Table 2. (However, the amount of water-soluble salt added was changed as shown in Table 2.)

【0041】[0041]

【表2】 表 2 水溶性塩 添加量 フロー値 圧縮強度 曲げ強度 引っ張り強度 種類 (部) mm kgf/cm2 〃 〃 B 12 210 1280 179 82 C 10 230 1360 188 78 D 10 220 1180 169 69[Table 2] Table 2 Addition amount of water-soluble salt Flow value Compressive strength Bending strength Tensile strength Type (part) mm kgf / cm 2 〃 〃 B 12 210 1280 179 82 82 C 10 230 1360 188 78 D 10 10 220 1180 169 69

【0042】実施例15 オムニミキサーにブレーン比表面積4000cm2 /g
の高炉水砕スラグ(新日鉄製、エスメント)900部、
シリカフューム(平均粒径0.2μm、日本重化学工業
製)100部、細骨材として、フェロクロムスラグ(商
品名NJサンド7号、日本磁力選鉱製)1000部を入
れて90秒間撹拌混合した。続いて、水溶性塩E13
部、水酸化ナトリウム20部と硬化調節剤として、砂糖
1部、水260部とから成る水溶液を添加し、更に3分
間混練した後、実施例11と同様に養生して、本発明の
硬化物を得た。得られた硬化物について実施例1と同様
の試験を行った結果を表3に示す。
Example 15 Blaine specific surface area 4000 cm 2 / g in an omni mixer
900 parts of granulated blast furnace slag (made by Nippon Steel, Essent)
100 parts of silica fume (average particle diameter 0.2 μm, manufactured by Nippon Heavy Chemical Industry Co., Ltd.) and 1000 parts of ferrochrome slag (trade name NJ Sand No. 7, manufactured by Nippon Magnetic Co., Ltd.) were added as fine aggregate and stirred and mixed for 90 seconds. Then, water-soluble salt E13
Part, 20 parts of sodium hydroxide and an aqueous solution consisting of 1 part of sugar and 260 parts of water as a hardening regulator are added, and the mixture is kneaded for a further 3 minutes and then cured in the same manner as in Example 11 to give a cured product of the present invention. Got Table 3 shows the results of the same tests as in Example 1 performed on the obtained cured product.

【0043】実施例16 水溶性塩E13部を水溶性塩F10部に変えたほかは、
実施例15と同様にして、本発明の硬化物を得た。得ら
れた硬化物について実施例11と同様の試験を行った結
果を表3に示す。
Example 16 Except that 13 parts of the water-soluble salt E was changed to 10 parts of the water-soluble salt F,
A cured product of the present invention was obtained in the same manner as in Example 15. The results of the same test as in Example 11 on the obtained cured product are shown in Table 3.

【0044】[0044]

【表3】 表 3 水溶性塩 フロー値 圧縮強度 曲げ強度 引っ張り強度 種類 mm kgf/cm2 〃 〃 E 260 1098 237 89 F 220 1189 245 95[Table 3] Table 3 Flow rate of water-soluble salt Compressive strength Bending strength Tensile strength Type mm kgf / cm 2 〃 〃 E 260 1098 237 89 F 220 220 1189 245 95

【0045】実施例17 コンクリートミキサーにブレーン比表面積4000cm
2 /gの高炉水砕スラグ(新日鉄製、エスメント)95
0部、シリカフューム(平均粒径0.2μm、日本重化
学工業製)50部、珪砂(日光珪砂(川鉄工業製))1
000部、ワラストナイト200部を入れて90秒間撹
拌混合した。続いて水溶性塩G15部、水酸化ナトリウ
ム20部と、水290部とから成るアルカリ性水溶液と
硬化調節剤として、砂糖2部を添加し、更に5分間撹拌
混練した。これらを実施例11と同様に養生して、本発
明の硬化物を得た。得られた硬化物について実施例11
と同様の試験を行った結果を表4に示す。
Example 17 Brane specific surface area 4000 cm in a concrete mixer
2 / g granulated blast furnace slag (Nippon Steel, Essent) 95
0 parts, silica fume (average particle size 0.2 μm, made by Nippon Heavy Chemical Industry Co., Ltd.) 50 parts, silica sand (Nikko silica sand (made by Kawatetsu Kogyo)) 1
000 parts and 200 parts of wollastonite were added and stirred and mixed for 90 seconds. Subsequently, an alkaline aqueous solution consisting of 15 parts of water-soluble salt G, 20 parts of sodium hydroxide, and 290 parts of water, and 2 parts of sugar as a curing modifier were added, and the mixture was further stirred and kneaded for 5 minutes. These were cured in the same manner as in Example 11 to obtain the cured product of the present invention. Example 11 of the obtained cured product
The results of the same test as in Table 4 are shown in Table 4.

【0046】実施例18 水溶性塩G15部を水溶性塩H14部に変えたほかは、
実施例17と同様にして、本発明の硬化物を得た。得ら
れた硬化物について実施例11と同様の試験を行った結
果を表4に示す。
Example 18 Except that 15 parts of the water-soluble salt G was changed to 14 parts of the water-soluble salt H,
A cured product of the present invention was obtained in the same manner as in Example 17. The results of the same test as in Example 11 on the obtained cured product are shown in Table 4.

【0047】実施例19 水溶性塩G15部を水溶性塩I10部に変えたほかは、
実施例17と同様にして、本発明の硬化物を得た。得ら
れた硬化物について実施例11と同様の試験を行った結
果を表4に示す。
Example 19 Except that 15 parts of water-soluble salt G was changed to 10 parts of water-soluble salt I,
A cured product of the present invention was obtained in the same manner as in Example 17. The results of the same test as in Example 11 on the obtained cured product are shown in Table 4.

【0048】 表 4 水溶性塩 フロー値 圧縮強度 曲げ強度 引っ張り強度 種類 mm kgf/cm2 〃 〃 G 220 1079 235 105 H 200 1098 258 85 I 290 1430 245 114Table 4 Water-soluble salt flow value Compressive strength Bending strength Tensile strength Type mm kgf / cm 2 〃 〃 G 220 2079 235 105 105 H 200 1098 258 85 I 290 1430 245 114

【0049】実施例20 コンクリートミキサーにブレーン比表面積4000cm
2 /gの高炉水砕スラグ(新日鉄製エスメント)900
部、シリカフューム(平均粒径0.2μm、日本重化学
工業製)100部、豊浦砂1000部、ポリアクリル酸
ナトリウム(商品名パナカヤク−B(日本化薬(株)
製))10部を仕込み、1分間良く混合した。次いで、
水溶性塩J10部、水酸化ナトリウム20部と砂糖3
部、水350部とから成る水溶液を添加し5分間撹拌混
練し混練物を得た。これらの混練によって得られた混練
物のフロー値は、180mmであった。これを実施例1
1と同様に蒸気養生して得た硬化物の圧縮強度は、11
80kgf/cm2 、曲げ強度258kgf/cm2
引っ張り強度109kgf/cm2 であった。
Example 20 Brane specific surface area 4000 cm in a concrete mixer
2 / g granulated blast furnace slag (Nippon Steel Essent) 900
Parts, silica fume (average particle size 0.2 μm, manufactured by Nippon Heavy Chemical Industry Co., Ltd.) 100 parts, Toyoura sand 1000 parts, sodium polyacrylate (trade name Panakayak-B (Nippon Kayaku Co., Ltd.)
(Manufactured)) was charged and mixed well for 1 minute. Then
Water-soluble salt J 10 parts, sodium hydroxide 20 parts and sugar 3
Part, and 350 parts of water were added, and the mixture was stirred and kneaded for 5 minutes to obtain a kneaded product. The flow value of the kneaded product obtained by these kneading was 180 mm. This is Example 1
The compressive strength of the cured product obtained by steam curing in the same manner as in 1 was 11
80 kgf / cm 2 , flexural strength 258 kgf / cm 2 ,
The tensile strength was 109 kgf / cm 2 .

【0050】比較例1 混合機に普通ポルトランドセメント(アサノセメント)
1000部、豊浦砂1000部を仕込み2分間良く混合
した。次いで水350部を添加し更に5分間混練しモル
タルを調製した。このモルタルのフロー値は130mm
であった。また、このモルタルを実施例11と同様に養
生硬化を行った後の硬化物の圧縮強度は、580kgf
/cm2 、曲げ強度95kgf/cm2 、引っ張り強度
35kgf/cm2 であった。
Comparative Example 1 Normal Portland cement (Asano cement) was added to the mixer.
1000 parts and Toyoura sand 1000 parts were charged and mixed well for 2 minutes. Next, 350 parts of water was added and kneading was continued for 5 minutes to prepare a mortar. The flow value of this mortar is 130mm
Met. Moreover, the compressive strength of the cured product after curing and curing this mortar in the same manner as in Example 11 was 580 kgf.
/ Cm 2 , bending strength was 95 kgf / cm 2 , and tensile strength was 35 kgf / cm 2 .

【0051】以上の実施例11〜20及び表2〜4に示
したように本発明の水硬性組成物と水との混練物の硬化
物は、公知のモルタルより大きいフロー値を持ち、かつ
その硬化物は、圧縮、曲げ、引っ張り強度とも公知の硬
化物に較べ優れている。
As shown in the above Examples 11 to 20 and Tables 2 to 4, the cured product of the kneaded product of the hydraulic composition of the present invention and water has a flow value larger than that of known mortar, and The cured product is superior in compression, bending and tensile strength to known cured products.

【0052】[0052]

【発明の効果】本発明の分散剤を含む水硬性組成物は、
流動性に優れ、しかも圧縮強度、曲げ強度、引っ張り強
度共に優れていることから建築、建設、景観材料等の広
範な分野で用いることが出来る。
The hydraulic composition containing the dispersant of the present invention is
Since it has excellent fluidity and excellent compressive strength, bending strength, and tensile strength, it can be used in a wide range of fields such as construction, construction, and landscape materials.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 //(C04B 28/08 22:06 A 24:26 E H Z 22:06 Z 24:38) Z 103:40 Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display area // (C04B 28/08 22:06 A 24:26 E H Z 22:06 Z 24:38) Z 103: 40

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】アクリル酸と次の化合物群(a)から選ば
れる1種 (a)マレイン酸、無水マレイン酸、フマル酸 とを共重合してなる無機水硬性組成物用分散剤。
1. A dispersant for an inorganic hydraulic composition, which is obtained by copolymerizing acrylic acid and one kind selected from the following compound group (a) (a) maleic acid, maleic anhydride, and fumaric acid.
【請求項2】アクリル酸と請求項1記載の化合物群
(a)から選ばれる1種とこれらと共重合可能な他の単
量体とを共重合してなる無機水硬性組成物用分散剤。
2. A dispersant for an inorganic hydraulic composition, which is obtained by copolymerizing acrylic acid, one kind selected from the compound group (a) according to claim 1 and another monomer copolymerizable therewith. .
【請求項3】共重合可能な単量体がヒドロキシエチル
(メタ)アクリレート、Nービニルピロリドン、スチレ
ンスルホン酸ソーダ、(メタ)アリルスルホン酸ソー
ダ、スチレン、酢酸ビニルから選ばれる1種以上である
請求項2記載の分散剤。
3. The copolymerizable monomer is one or more selected from hydroxyethyl (meth) acrylate, N-vinylpyrrolidone, sodium styrenesulfonate, sodium (meth) allylsulfonate, styrene and vinyl acetate. The dispersant according to claim 2.
【請求項4】分子量が、1000〜500,000であ
る請求項1、2または3記載の分散剤。
4. The dispersant according to claim 1, 2 or 3 having a molecular weight of 1,000 to 500,000.
【請求項5】潜在水硬性物質、超微粉状物質、硬化刺激
剤、請求項1、2、3または4記載の分散剤を含有して
成る水硬性組成物。
5. A hydraulic composition comprising a latent hydraulic substance, an ultrafine powdery substance, a curing stimulant, and the dispersant according to claim 1, 2, 3 or 4.
【請求項6】潜在水硬性物質が高炉水砕スラグ、転炉ス
ラグ、フライアッシュから選ばれる1種以上である請求
項5記載の水硬性組成物。
6. The hydraulic composition according to claim 5, wherein the latent hydraulic substance is one or more selected from granulated blast furnace slag, converter slag and fly ash.
【請求項7】超微粉状物質がシリカフュームである請求
項5または6記載の水硬性組成物。
7. The hydraulic composition according to claim 5, wherein the ultrafine powdery substance is silica fume.
【請求項8】硬化刺激剤がアルカリ金属の水酸化物、炭
酸塩、珪酸塩から選ばれた一種以上である請求項5、6
または7記載の水硬性組成物。
8. The curing stimulant is one or more selected from hydroxides, carbonates and silicates of alkali metals.
Alternatively, the hydraulic composition according to item 7.
【請求項9】硬化刺激剤が苛性ソーダ、炭酸ソーダ、苛
性カリ、珪酸ソーダから選ばれる1種以上である請求項
5、6、7または8記載の水硬性組成物。
9. The hydraulic composition according to claim 5, 6, 7 or 8, wherein the curing stimulant is at least one selected from caustic soda, sodium carbonate, caustic potash and sodium silicate.
【請求項10】請求項5、6、7、8または9記載の水
硬性組成物を水と混練した後、湿潤養生してなる硬化
物。
10. A cured product obtained by kneading the hydraulic composition according to claim 5, 6, 7, 8 or 9 with water and then subjecting it to wet curing.
JP10319594A 1994-04-19 1994-04-19 Dispersant for inorganic hydraulic composition, hydraulic composition and cured product thereof Expired - Fee Related JP3315523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10319594A JP3315523B2 (en) 1994-04-19 1994-04-19 Dispersant for inorganic hydraulic composition, hydraulic composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10319594A JP3315523B2 (en) 1994-04-19 1994-04-19 Dispersant for inorganic hydraulic composition, hydraulic composition and cured product thereof

Publications (2)

Publication Number Publication Date
JPH07291691A true JPH07291691A (en) 1995-11-07
JP3315523B2 JP3315523B2 (en) 2002-08-19

Family

ID=14347741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10319594A Expired - Fee Related JP3315523B2 (en) 1994-04-19 1994-04-19 Dispersant for inorganic hydraulic composition, hydraulic composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP3315523B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000002827A3 (en) * 1998-07-09 2000-05-18 Sueddeutsche Kalkstickstoff Use of water-soluble mixed polymers as a flowing medium and/or as a hardening retarder for refractory materials which contain aluminate cement
JP2005119302A (en) * 2003-10-14 2005-05-12 Hewlett-Packard Development Co Lp Organic-inorganic hybrid composition for solid-molding
JP2005288294A (en) * 2004-03-31 2005-10-20 Kao Corp Dispersant for electronic material
WO2008032798A1 (en) * 2006-09-13 2008-03-20 Toho Chemical Industry Co., Ltd. Cement dispersant
JP2009161380A (en) * 2007-12-28 2009-07-23 Toho Chem Ind Co Ltd Novel cement dispersant
JP2009161379A (en) * 2007-12-28 2009-07-23 Toho Chem Ind Co Ltd Cement dispersant
WO2015141667A1 (en) * 2014-03-18 2015-09-24 株式会社日本触媒 Cement composition and cement curing retarder
JP2015193691A (en) * 2014-03-31 2015-11-05 株式会社日本触媒 Copolymer and manufacturing method
JP2021504558A (en) * 2017-11-28 2021-02-15 アルケマ フランス Copolymer composition with neutral pH and water solubility

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209943A (en) * 1985-03-12 1986-09-18 日本ゼオン株式会社 Admixing agent for cement
JPH04175254A (en) * 1990-11-06 1992-06-23 N M B:Kk Cement dispersing agent preventing lowering of fluidity
JPH07257951A (en) * 1994-03-18 1995-10-09 Fujisawa Pharmaceut Co Ltd Water reducing agent for cement added viscous soil
JPH07286011A (en) * 1994-04-19 1995-10-31 Nippon Kayaku Co Ltd New copolymer, hydraulic composition and cured product thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209943A (en) * 1985-03-12 1986-09-18 日本ゼオン株式会社 Admixing agent for cement
JPH04175254A (en) * 1990-11-06 1992-06-23 N M B:Kk Cement dispersing agent preventing lowering of fluidity
JPH07257951A (en) * 1994-03-18 1995-10-09 Fujisawa Pharmaceut Co Ltd Water reducing agent for cement added viscous soil
JPH07286011A (en) * 1994-04-19 1995-10-31 Nippon Kayaku Co Ltd New copolymer, hydraulic composition and cured product thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000002827A3 (en) * 1998-07-09 2000-05-18 Sueddeutsche Kalkstickstoff Use of water-soluble mixed polymers as a flowing medium and/or as a hardening retarder for refractory materials which contain aluminate cement
US6995105B1 (en) * 1998-07-09 2006-02-07 Skw Polymers Gmbh Use of water-soluble mixed polymers as a flowing medium and/or as a hardening retarder for refractory materials which contain aluminate cement
JP2005119302A (en) * 2003-10-14 2005-05-12 Hewlett-Packard Development Co Lp Organic-inorganic hybrid composition for solid-molding
US7422713B2 (en) 2003-10-14 2008-09-09 Hewlett-Packard Development Company, L.P. Hybrid organic-inorganic composition for solid freeform fabrication
JP2005288294A (en) * 2004-03-31 2005-10-20 Kao Corp Dispersant for electronic material
WO2008032798A1 (en) * 2006-09-13 2008-03-20 Toho Chemical Industry Co., Ltd. Cement dispersant
JP2009161380A (en) * 2007-12-28 2009-07-23 Toho Chem Ind Co Ltd Novel cement dispersant
JP2009161379A (en) * 2007-12-28 2009-07-23 Toho Chem Ind Co Ltd Cement dispersant
WO2015141667A1 (en) * 2014-03-18 2015-09-24 株式会社日本触媒 Cement composition and cement curing retarder
JP2015193691A (en) * 2014-03-31 2015-11-05 株式会社日本触媒 Copolymer and manufacturing method
JP2021504558A (en) * 2017-11-28 2021-02-15 アルケマ フランス Copolymer composition with neutral pH and water solubility

Also Published As

Publication number Publication date
JP3315523B2 (en) 2002-08-19

Similar Documents

Publication Publication Date Title
JP4155616B2 (en) Cement admixture, cement composition using the same, and preparation method thereof
EP1136508B1 (en) Cement admixture for improved slump life
JPH0211542B2 (en)
US20200207670A1 (en) Hybrid foam
JP2005139060A (en) Setting accelerator for cement
JP3315523B2 (en) Dispersant for inorganic hydraulic composition, hydraulic composition and cured product thereof
JP2007063090A (en) Super-quick hardening cement composition and dispersing agent for super-quick hardening cement composition
WO2020209057A1 (en) Additive for cement, cement admixture, cement composition, molded article, and strength improvement method for molded article
JP2022526217A (en) Highly water-reducing powder preparation for dry mortar
JP2001302307A (en) Cement additive and concrete composition produced by using the same
JP2905963B2 (en) Lightweight high-strength concrete
JP4118375B2 (en) Cement admixture, cement composition using the same, and preparation method thereof
EP1194482B1 (en) Improved workability and board life in masonry mortar and method for obtaining same
JP2010195622A (en) Water reducing agent composition and mortar or concrete using the same
JPH08119709A (en) Water-hardening composition, hardened article and its production
JP2018529618A (en) Block copolymers as dispersants for alkali activated binders
JPH08319146A (en) Liquid composition and production of high-strength inorganic material using the same
JPH07286011A (en) New copolymer, hydraulic composition and cured product thereof
JPH07330402A (en) Dispersant for inorganic hydraulic composition, hydraulic composition using the same and hardened material formed therefrom
JPH1036161A (en) Hydraulic composition and its hardened product
JP2585959B2 (en) Precast cement product composition for construction
JP2004244625A (en) Agent for treating wet soil and method for granulating wet soil
JPH0834645A (en) Portland cement for centrifugal forming, hydraulic compound and production of its hardened body
JPH1045457A (en) Nonshrinkage-hardening composition and its hardened body
JP2000072505A (en) Cement admixture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees