JP2010195622A - Water reducing agent composition and mortar or concrete using the same - Google Patents

Water reducing agent composition and mortar or concrete using the same Download PDF

Info

Publication number
JP2010195622A
JP2010195622A JP2009041713A JP2009041713A JP2010195622A JP 2010195622 A JP2010195622 A JP 2010195622A JP 2009041713 A JP2009041713 A JP 2009041713A JP 2009041713 A JP2009041713 A JP 2009041713A JP 2010195622 A JP2010195622 A JP 2010195622A
Authority
JP
Japan
Prior art keywords
reducing agent
water reducing
mass
cement
mortar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009041713A
Other languages
Japanese (ja)
Other versions
JP5336881B2 (en
Inventor
Yoshiharu Watanabe
芳春 渡辺
Kiminobu Ashida
公伸 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2009041713A priority Critical patent/JP5336881B2/en
Publication of JP2010195622A publication Critical patent/JP2010195622A/en
Application granted granted Critical
Publication of JP5336881B2 publication Critical patent/JP5336881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water reducing agent composition which solves the problem that, in accordance with the lot and brand of the cement to be used, the fluidity of mortar or concrete admixed with a polycarboxylate based water reducing agent is remarkably different(reduced), and to provide mortar or concrete using the same. <P>SOLUTION: (1) The water reducing agent composition comprises: a polycarboxylate based water reducing agent: and cyanamide. (2) The mortar or concrete is obtained by adding a water reducing agent composition comprising cyanamide of 2 to 30 pts.mass to 100 pts.mass of the solid content of the polycarboxylate based water reducing agent based on 100 pts.mass of the cement or a cement bonder by 0.12 to 1.5 pts.mass in terms of a solid content. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、減水剤組成物に関する。詳しくは、ポリカルボン酸塩系減水剤にシアナマイドを含有させた減水剤組成物であり、ポリカルボン酸塩系減水剤の分散効果をより高め、土木・建築構造物及び二次製品に使用されるモルタルやコンクリートの流動性を改善するものである。   The present invention relates to a water reducing agent composition. Specifically, it is a water-reducing agent composition containing cyanamide in a polycarboxylate-based water reducing agent, which further enhances the dispersion effect of the polycarboxylate-based water reducing agent and is used in civil engineering / building structures and secondary products. It improves the fluidity of mortar and concrete.

近年、モルタルやコンクリートに使用される減水剤、なかでもポリカルボン酸塩系減水剤の性能は飛躍的に向上している。
しかしながら、ポリカルボン酸塩系減水剤は、使用するセメントのロットや銘柄、種類によって、流動性(モルタルフロー値、コンクリートスランプやスランプフロー値)が顕著に異なるという課題を有する。
すなわち、同じセメントで同一工場のものでもロットによって変わり、工場間、メーカー間、セメントの種類によっても変化するものである。
In recent years, the performance of water reducing agents used in mortar and concrete, in particular, polycarboxylate-based water reducing agents has been dramatically improved.
However, the polycarboxylate-based water reducing agent has a problem that the fluidity (mortar flow value, concrete slump and slump flow value) differs significantly depending on the lot, brand, and type of cement used.
That is, even the same cement and the same factory vary depending on the lot, and varies depending on the factory, manufacturer, and cement type.

セメントによって流動性が顕著に異なる理由の一つとして、それらに含まれる硫酸ナトリウム塩やカリウム塩から瞬時に溶解してくる硫酸イオンが、ポリカルボン酸塩系減水剤の吸着を妨害するためと云われており、これを改善するためには硫酸イオンを捕捉してナトリウム塩やカリウム塩よりも溶解速度の小さい塩を生ずるCa,Sr,Ba及びPbの塩化物、硝酸塩、亜硝酸塩、亜硫酸塩、チオ硫酸塩又は有機酸塩などの高溶解性のアルカリ土類塩が有効であることが知られている(特許文献1参照)。また、流動性と初期強度を向上させるために、セメント、ポゾラン質微粉末、水、減水剤、及び、セメントに対して亜硫酸カルシウム、硝酸カルシウム、蟻酸カルシウム、チオシアン酸カルシウム、酢酸カルシウムの一種以上を含むセメントスラリーも提案されている(特許文献2参照)。しかしながら、これらの提案は、使用するセメントのロット、銘柄などによる流動性の低下に対して、充分ではない。
本発明は、使用するセメントのロットや銘柄、種類によって、ポリカルボン酸塩系減水剤を添加したモルタル又はコンクリートの流動性が顕著に低下するなどの課題を解決するものである。
One of the reasons why the fluidity is remarkably different depending on the cement is that sulfate ions instantly dissolved from the sodium sulfate and potassium salts contained in the cement hinder the adsorption of the polycarboxylate-based water reducing agent. In order to improve this, Ca, Sr, Ba and Pb chlorides, nitrates, nitrites, sulfites that trap sulfate ions and produce salts with a lower dissolution rate than sodium and potassium salts, It is known that highly soluble alkaline earth salts such as thiosulfate and organic acid salts are effective (see Patent Document 1). In addition, in order to improve fluidity and initial strength, one or more of calcium sulfite, calcium nitrate, calcium formate, calcium thiocyanate and calcium acetate are added to cement, pozzolanic fine powder, water, water reducing agent, and cement. A cement slurry containing it has also been proposed (see Patent Document 2). However, these proposals are not sufficient for the decrease in fluidity due to the cement lot and brand used.
The present invention solves the problem that the fluidity of mortar or concrete to which a polycarboxylate-based water reducing agent is added is significantly reduced depending on the lot, brand, and type of cement used.

特開平11−180746号公報Japanese Patent Laid-Open No. 11-180746 特開2002−037653号公報JP 2002-037653 A

本発明は、使用するセメントのロットや銘柄、種類によって、ポリカルボン酸塩系減水剤を添加したモルタル又はコンクリートの流動性が顕著に異なる(低下する)という課題を解決するものであり、ポリカルボン酸塩系減水剤にシアナマイドを含有させることにより、達成できることを知見し、本発明を完成させたものである。   The present invention solves the problem that the fluidity of mortar or concrete to which a polycarboxylate-based water reducing agent is added differs significantly (decreases) depending on the lot, brand, and type of cement used. The present invention has been completed by finding out that it can be achieved by containing cyanamide in an acid salt water reducing agent.

すなわち、本発明は、(1)ポリカルボン酸塩系減水剤とシアナマイドを含有してなる減水剤組成物、(2)セメント又はセメント結合材100質量部に、ポリカルボン酸塩系減水剤の固形分100質量部に対してシアナマイド2〜30質量部を含有してなる減水剤組成物を固形分で0.12〜1.5質量部添加してなるモルタル又はコンクリート、である。   That is, the present invention provides (1) a water-reducing agent composition comprising a polycarboxylate-based water reducing agent and cyanamide, and (2) a solid of a polycarboxylate-based water reducing agent in 100 parts by mass of cement or cement binder. A mortar or concrete obtained by adding 0.12 to 1.5 parts by mass of a water reducing agent composition containing 2 to 30 parts by mass of cyanamide with respect to 100 parts by mass.

本発明は、(1)セメントのロットや銘柄、種類により、ポリカルボン酸塩系減水剤を添加したモルタル又はコンクリートの流動性が低下するなどの相性問題が解決され、流動性の小さいセメントでも良好な作業性が得られる。さらに流動性の大きいセメントではより大きな流動性が得られ、(2)単位水量とフロー値やスランプ及びスランプフロー値を一定とすると、ポリカルボン酸塩系減水剤の添加量を少なくできるので経済的となる、(3)ポゾラン質微粉末などの凝集に対しても分散性を高め、高い流動性が得られ、強度も改善する、(4)土木建築構造物やコンクリート二次製品を製造する上で、100N/mm2以上の超高強度が容易に得ることが出来るので、高耐久性で、経済的で有利な設計が可能となる、などの効果を奏する。 The present invention solves (1) compatibility problems such as deterioration of fluidity of mortar or concrete to which a polycarboxylate-based water reducing agent is added depending on the lot, brand, and type of cement. Workability can be obtained. In addition, cement with higher fluidity can achieve greater fluidity. (2) If the unit water amount, flow value, slump and slump flow value are kept constant, the amount of polycarboxylate-based water reducing agent added can be reduced. (3) Improves dispersibility even for agglomeration of pozzolanic fine powder, and provides high fluidity and improves strength. (4) To manufacture civil engineering structures and concrete secondary products. Thus, since an ultra-high strength of 100 N / mm 2 or more can be easily obtained, there is an effect that an economical and advantageous design is possible with high durability.

以下、本発明を詳しく説明する。   The present invention will be described in detail below.

本発明のポリカルボン酸塩系減水剤とは、通常、高性能AE減水剤と呼称される減水剤であり、不飽和カルボン酸モノマーを一成分として含む共重合体又はその塩である。例えば、ポリアルキレングリコールモノアクリル酸エステル、ポリアルキレングリコールモノメタクリル酸エステル、無水マレイン酸及びスチレンの共重合体やアクリル酸やメタクリル酸塩の共重合体及びこれらの単量体と共重合可能な単量体から導かれた共重合体などを挙げられる。
具体的には、BASFポゾリス(株)社商品名「レオビルドSP8SV/8RV、8HV、8HUなどのレオビルドSP8シリーズ」、日本シーカ(株)社商品名「シーカメント1100NT、1100NTRなどのシリーズ」、竹本油脂(株)社商品名「チュポールHPシリーズ、チュポールSR、チュポールSSP−104、チュポールNV−Gシリーズ」、グレースケミカルズ(株)社商品名「スーパー200、300,1000シリーズ」、花王(株)社商品名「マィティ21WH、21LV、21VS、21HF、21HP、マィティ3000S、3000Hシリーズ」、(株)フローリック社商品名「SF500S、SF500R、SF500H、SF500SKなどのSF500シリーズ」、その他の一般用、高強度用、超高強度用として市販されているものが使用される。
The polycarboxylate salt water reducing agent of the present invention is a water reducing agent generally called a high performance AE water reducing agent, and is a copolymer or a salt thereof containing an unsaturated carboxylic acid monomer as one component. For example, polyalkylene glycol monoacrylate, polyalkylene glycol monomethacrylate, a copolymer of maleic anhydride and styrene, a copolymer of acrylic acid or methacrylate, and a monomer copolymerizable with these monomers. And a copolymer derived from a monomer.
Specifically, BASF Pozzolith Co., Ltd. trade name “Leo Build SP8SV / 8RV, 8HV, 8HU etc. Leo Build SP8 Series”, Nippon Seika Co., Ltd. trade name “Sea Kament 1100NT, 1100NTR etc. Series”, Takemoto Yushi ( Co., Ltd. trade name "Tupol HP series, Chupole SR, Chupole SSP-104, Chupole NV-G series", Grace Chemicals Co., Ltd. trade name "Super 200, 300, 1000 series", Kao Co., Ltd. trade name "Mighty 21WH, 21LV, 21VS, 21HF, 21HP, Mighty 3000S, 3000H Series", Floric Co., Ltd. trade name "SF500 series such as SF500S, SF500R, SF500H, SF500SK", other general purpose, high strength, Super high Those commercially available as for degrees is used.

本発明は、これらのポリカルボン酸塩系減水剤にシアナマイドを含有させた減水剤組成物であり、ポリカルボン酸塩系減水剤の固形分100質量部に対してシアナマイド2〜30質量部を含有させるのが好ましい。流動性の小さいセメント、大きいセメントに拘わらず、シアナマイドが2質量部未満では充分な流動性の改善効果は得られなく、30質量部を超えて配合しても流動性の改善効果は頭打ちとなるものであり、6質量部以上がより好ましく、8〜25質量部が最も好ましい。
なお、ポリカルボン酸塩系減水剤は、通常、pH2〜3の状態で合成されるが、製造設備や貯蔵設備の金属の発錆や腐食を防止するために苛性ソーダを添加してpHを7〜8の弱アルカリ性とする。しかしながら、本発明の減水剤組成物は、pHを3〜6の範囲に調整して製造するものである。その理由は、シアナマイドは水溶液中ではpH3〜6の範囲で安定し、pHが3未満又は6を超えるとジシアンジアミドなどに変化し、流動性改善効果が低下するためである。
したがって、使用する市販のポリカルボン酸塩系減水剤が弱アルカリ性の場合は、酢酸や蟻酸、グルコン酸などでpH3〜6に調節するものである。なお、pH3未満の合成品を直接使用する場合は苛性ソーダで調節する。
本発明の減水剤組成物の添加量は、セメント又はセメント結合材100質量部に対してポリカルボン酸塩系減水剤の固形分とシアナマイド(固形分)を合量で0.12〜1.5質量部である。0.12質量部未満では充分な流動性の改善効果は示されなく、また、1.5質量部以上配合しても流動性の改善効果は頭打ちとなるものであり、0.15〜1.2質量部がより好ましい。
The present invention is a water reducing agent composition containing cyanamide in these polycarboxylate-based water reducing agents, and contains 2 to 30 parts by mass of cyanamide with respect to 100 parts by mass of the solid content of the polycarboxylate-based water reducing agent. It is preferable to do so. Regardless of cement with low fluidity or large cement, if the cyanamide is less than 2 parts by mass, sufficient fluidity improvement effect cannot be obtained, and even if it exceeds 30 parts by mass, the fluidity improvement effect reaches its peak. 6 parts by mass or more is more preferable, and 8 to 25 parts by mass is most preferable.
Polycarboxylate-based water reducing agents are usually synthesized at a pH of 2 to 3, but caustic soda is added to prevent rusting and corrosion of metal in production facilities and storage facilities to a pH of 7 to 7. 8 weak alkalinity. However, the water reducing agent composition of the present invention is produced by adjusting the pH to the range of 3-6. The reason is that cyanamide is stable in the range of pH 3 to 6 in an aqueous solution, and when the pH is less than 3 or more than 6, it changes to dicyandiamide or the like, and the fluidity improving effect is lowered.
Therefore, when the commercially available polycarboxylate-based water reducing agent to be used is weakly alkaline, the pH is adjusted to 3 to 6 with acetic acid, formic acid, gluconic acid or the like. If a synthetic product having a pH of less than 3 is used directly, adjust with caustic soda.
The addition amount of the water reducing agent composition of the present invention is 0.12 to 1.5 in total of solid content of cyanate (solid content) and solid content of polycarboxylate-based water reducing agent with respect to 100 parts by mass of cement or cement binder. Part by mass. If the amount is less than 0.12 parts by mass, sufficient fluidity improving effect is not shown, and even if 1.5 parts by mass or more is blended, the fluidity improving effect reaches a peak. 2 parts by mass is more preferable.

なお、本発明で使用されるシアナマイドの製造方法の一例としては、石灰窒素を熱水に溶解し、その濾液に炭酸ガスを吹き込んでカルシウムイオンを炭酸カルシウムとして沈殿させて濾過する。濾液中のシアナマイドは冷却すると結晶化するので固体としても容易に取り出せるが、減水剤組成物として再溶解するのは不経済となるので、シアナマイドの安定化のために酢酸などでpHを3〜6に調節し、かつ、シアナマイド濃度を調節した水溶液をそのまま使用する方が経済的である。これらは、通常、液体肥料として市販されているものと同様である。   In addition, as an example of the manufacturing method of cyanamide used by this invention, lime nitrogen is melt | dissolved in a hot water, Carbon dioxide gas is blown into the filtrate, and calcium ion is precipitated as calcium carbonate, and it filters. Cyanamide in the filtrate crystallizes when cooled, so it can be easily taken out as a solid, but it is uneconomical to redissolve as a water reducing agent composition. It is more economical to use the aqueous solution with the cyanamide concentration adjusted as it is. These are usually the same as those marketed as liquid fertilizers.

本発明で使用するセメントは、普通、早強、中庸熱、低熱、白色、耐硫酸塩などのポルトランドセメント及びフライアッシュセメント、高炉スラグセメントなどの混合セメント及びエコセメントである。流動性の観点では混合セメントや低熱、中庸熱、耐硫酸塩セメントが好ましく、初期強度の観点からでは普通、早強、超早強、中庸熱セメント、混合セメントが好ましい。   The cement used in the present invention is usually mixed cement and ecocement such as Portland cement and fly ash cement, blast furnace slag cement, such as early strength, moderate heat, low heat, white color, sulfate resistance. From the viewpoint of fluidity, mixed cement, low heat, medium heat, and sulfate-resistant cement are preferable, and from the viewpoint of initial strength, early strength, super early strength, medium heat cement, and mixed cement are preferable.

本発明のセメント結合材とは、セメントに、流動性の改善効果を助長する球状粒子形のポゾラン質微粉末や高強度混和材として利用されている石膏などを配合したものである。
球状粒子形のポゾラン質微粉末とは、電気炉によるシリコン合金や金属シリコン製造時に発生するシリカフューム及びジルコニア由来のシリカフューム、微粉炭焚き火力発電所から副生するフライアッシュを10〜20ミクロン以下に分級したもの、ガス化した石炭を燃焼させる火力発電所から副生する石炭ガス化フライアッシュ、溶融シリカ微粉末である。これらは、ポリカルボン酸塩系減水剤と併用されて高流動・高強度モルタル又はコンクリートの製造に多用されているものである。
ポゾラン質微粉末の中でも、流動性と高強度の両方を助長又は発現するシリカフュームは、最も重要な成分であるが、数ミクロン以下の超微粉末であることからモルタル又はコンクリートの中で凝集し易く、また、輸送効率を高めるために顆粒状に増粒されているために、より分散性が低下し、流動性の改善効果を充分に発揮できないという課題も有している。しかしながら、本発明の減水剤組成物と併用することにより、分散効果が大きくなり、流動性の改善効果も大きくなるものであり、その結果、必要な流動性を一定とすると減水剤組成物の添加量を減らすことが出来、かつ、反応性も向上することから強度も高くなるので、より経済的なモルタルやコンクリートが製造できる。
通常、球状のポゾラン質微粉末の1種以上を、セメント100質量部に対して40質量部以下配合される。
The cement binder of the present invention is a mixture of spherical particles of pozzolanic fine powder that promotes fluidity improvement effect, gypsum used as a high-strength admixture, and the like.
Spherical particle-shaped pozzolanic fine powder classifies silica fume generated during the production of silicon alloys and metal silicon in electric furnaces, silica fume derived from zirconia, and fly ash by-produced from pulverized coal-fired thermal power plants to 10-20 microns or less Coal gasification fly ash, a fused silica fine powder produced as a by-product from a thermal power plant that burns gasified coal. These are used in combination with polycarboxylate-based water reducing agents and are often used in the production of high fluidity / high strength mortar or concrete.
Among pozzolanic fine powders, silica fume that promotes or develops both fluidity and high strength is the most important component, but because it is an ultrafine powder of several microns or less, it easily aggregates in mortar or concrete. Moreover, since it is granulated in order to improve transport efficiency, it has the subject that dispersibility falls more and the improvement effect of fluidity | liquidity cannot fully be exhibited. However, when used together with the water reducing agent composition of the present invention, the dispersion effect is increased and the fluidity improving effect is also increased. As a result, when the necessary fluidity is made constant, the addition of the water reducing agent composition Since the amount can be reduced and the reactivity is improved, the strength is increased, so that more economical mortar and concrete can be produced.
Usually, 40 parts by mass or less of one or more spherical pozzolanic fine powders are blended with 100 parts by mass of cement.

また、高強度混和材として利用されている石膏とは、II型の無水石膏であり、その他、流動性は向上しないが粘土鉱物を熱処理したメタカオリンなどの微粉末、ケイ化木の焼却灰(非晶質SiO2が主成分)、ケイソウ土、オパール質シリカ粉末なども強度を高めるので、適宜利用可能である。
無水石膏は少量で強度的効果が大きく、通常、セメント100質量部に対して6質量部以下配合される。
Gypsum used as a high-strength admixture is type II anhydrous gypsum, and other fine powders such as metakaolin and silicified wood incinerated ash (not non-flowable) that have not been improved in fluidity but heat treated clay minerals. Crystalline SiO 2 is the main component), diatomaceous earth, opal silica powder and the like increase the strength and can be used as appropriate.
Anhydrous gypsum has a large strength effect in a small amount, and is usually blended in an amount of 6 parts by mass or less based on 100 parts by mass of cement.

本発明の減水剤組成物の添加方法は特に制限は無く、モルタル又はコンクリートを練り混ぜる時に、セメントや結合材、骨材などと一緒に、水に溶解して添加(同時添加方式)するか、セメントや結合材、骨材、水を先に練り混ぜ、その後、減水剤組成物原液のまま添加(後添加方式)して練り混ぜられる。
モルタルやコンクリートの製造に使用する細骨材や粗骨材の種類や最大寸法は、特に限定されなく、その配合割合も、適宜、目的や用途に応じて、好ましいものを組み合わせて用いる。
The method for adding the water reducing agent composition of the present invention is not particularly limited, and when kneading mortar or concrete, it is added together with cement, binder, aggregate, etc., dissolved in water (simultaneous addition method), Cement, binder, aggregate, and water are kneaded first, and then added as a water reducing agent composition stock solution (post-addition method) and kneaded.
There are no particular limitations on the types and maximum dimensions of fine aggregates and coarse aggregates used in the production of mortar and concrete, and the blending ratios are suitably used in combination according to the purpose and application.

本発明では、モルタル又はコンクリートを練り混ぜるときに、凝結調節剤や消泡剤、自己収縮を低減するために収縮低減剤及び/又は膨張材を適宜併用することができ、曲げ強度や靱性を高めるために有機繊維や金属繊維、ガラス繊維、その他の補強用繊維が利用できる。
本発明のモルタル又はコンクリートの養生は、蒸気養生しても、しなくても良いし、オートクレーブ養生も可能であり、打設した状態で現場養生しても良く、養生方法には制限されないものである。
成型方法は、特に限定されるものではなく、高流動による流し込み、適切なスランプによる振動成形、遠心力成形、固練りとした振動加圧成型なども可能である。
In the present invention, when kneading mortar or concrete, a coagulation regulator, an antifoaming agent, and a shrinkage reducing agent and / or an expanding material can be used as appropriate in order to reduce self-shrinkage, thereby increasing bending strength and toughness. Therefore, organic fibers, metal fibers, glass fibers, and other reinforcing fibers can be used.
The curing of the mortar or concrete according to the present invention may or may not be steam-cured, and can be cured by autoclave, and may be cured on-site in a placed state, and is not limited to the curing method. is there.
The molding method is not particularly limited, and casting by high flow, vibration molding using an appropriate slump, centrifugal force molding, solid pressure vibration pressing molding, and the like are possible.

以下、本発明を実施例にて詳細に説明するが、これらに限られるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, it is not restricted to these.

実施例で使用する材料と試験項目とその方法を以下にまとめて示す。   The materials, test items, and methods used in the examples are summarized below.

「使用材料」
ポリカルボン酸塩系減水剤:グレースケミカルズ社製、固形分濃度27質量%、pH4.0、高強度・超高強度用(表中固形分としてPCと略す)
シアナマイド:シアナマイド水溶液:シアナマイド固形分濃度36質量%の水溶液を、扱い易いように固形分濃度27質量%に調整したもの(pHは酢酸で4.0に調節した)、電気化学工業(株)社製(表中シアナマイドの固形分としてCNと略す)
高溶解性の無機塩:酢酸カルシウム1水塩(試薬)。比較用
セメント又はセメント結合材の種類(表中C又はC−Iなどと略す)
C−I:普通ポルトランドセメント(5銘柄より選択したJIS R 5201による抜き上げフロー値の最も小さい銘柄)
C−II:C−Iの普通ポルトランドセメント100質量部に顆粒状のシリカフュームを25質量部配合したセメント結合材
C−III:C−Iの普通ポルトランドセメント100質量部に顆粒状のシリカフュームを25質量部と無水石膏を2質量部配合したセメント結合材
C−IV:普通ポルトランドセメント(5銘柄より選択したJIS R 5201による抜き上げフロー値の最も大きい銘柄)100質量部に顆粒状のシリカフュームを25質量部と無水石膏を2質量部配合したセメント結合材
骨材:新潟県姫川産細骨材(1.2mm以下に調整した物と調整しない通常の5mm下
と新潟県姫川産粗骨材、砕石,最大寸法(13mm)
"Materials used"
Polycarboxylate-based water reducing agent: manufactured by Grace Chemicals, solid content concentration 27% by mass, pH 4.0, for high strength / ultra high strength (in the table, solid content is abbreviated as PC)
Cyanamide: Cyanamide aqueous solution: Cyanamide solid content concentration of 36% by mass adjusted to a solid content concentration of 27% by mass for easy handling (pH adjusted to 4.0 with acetic acid), Denki Kagaku Kogyo Co., Ltd. Made (abbreviated as CN as the solid content of cyanamide in the table)
Highly soluble inorganic salt: calcium acetate monohydrate (reagent). Type of comparison cement or cement binder (abbreviated as C or CI in the table)
CI: Ordinary Portland cement (brand with the smallest pick-up flow value according to JIS R 5201 selected from five brands)
C-II: Cement binding material in which 25 parts by mass of granular silica fume is blended with 100 parts by mass of ordinary portland cement of CI C-III: 25 parts by mass of granular silica fume in 100 parts by mass of ordinary portland cement of C-I Binder C-IV containing 2 parts by weight of styrene and anhydrous gypsum: normal Portland cement (a brand with the largest flow-up value according to JIS R 5201 selected from 5 brands) 25 parts by mass of granular silica fume in 100 parts by mass Cement binder aggregate containing 2 parts by weight of anhydrite and anhydrous gypsum: fine aggregate from Himekawa, Niigata (those adjusted to 1.2 mm or less and normal 5 mm underneath and coarse aggregate from Himekawa, Niigata, crushed stone, Maximum dimension (13mm)

「試験項目とその方法」
モルタルフローの測定:JIS R 5201に準じた。但し、抜き上げたときの自己流動による広がりを測定した。また、測定は、フローテーブルの上に50×50×2tcmのアクリル板を乗せ、その上で行った。
モルタルの成型、強度の測定方法:圧縮強度はφ5×10cmの型枠に、流し込み成型又はテーブル振動成型(フロー値が小さい場合)し、20℃室内で翌日まで標準養生し、脱型して70℃で24時間蒸気養生して冷却後、強度測定した。
コンクリートスランプの測定:JIS A 1101に準じて行った。但し、流動化した場合は横の広がりをスランプフロー値として測定した。
コンクリートの成型、圧縮強度の測定:圧縮強度はφ10×20cmの型枠に、テーブル振動成型し、20℃室内で翌日まで標準養生し、脱型して70℃で24時間蒸気養生して冷却後、強度を測定した。
"Test items and methods"
Measurement of mortar flow: According to JIS R 5201. However, the spread due to self-flow when it was pulled out was measured. The measurement was performed on a 50 × 50 × 2 tcm acrylic plate placed on the flow table.
Molding of mortar and strength measurement method: Compressive strength is cast mold or table vibration mold (when flow value is small) in a 5 × 10 cm mold, standard curing in the room at 20 ° C. until the next day, demolding and 70 The steam was cured at 24 ° C. for 24 hours, and after cooling, the strength was measured.
Measurement of concrete slump: Measured according to JIS A 1101. However, when fluidized, the lateral spread was measured as a slump flow value.
Molding of concrete, measurement of compressive strength: compressive strength is molded into a mold of φ10 × 20cm, table vibration molded, standard cured until 20 days in a room at 20 ℃, demolded, steam cured at 70 ℃ for 24 hours, and then cooled The strength was measured.

「モルタル又はコンクリートの練り混ぜ方法」
セメント又はセメント結合材と、細骨材や細骨材と粗骨材を30秒間空練りした後、本発明の減水剤組成物などを溶解した練り混ぜ水を添加して練り混ぜた。モルタルの場合は、JIS R 5201によるモルタルミキサで1L分練り混ぜ、コンクリートはオムニミキサで10L分練り混ぜた。
"Mortar or concrete mixing method"
Cement or cement binder, fine aggregate, fine aggregate and coarse aggregate were kneaded for 30 seconds, and then kneaded water in which the water reducing agent composition of the present invention was dissolved was added and kneaded. In the case of mortar, 1 L was mixed with a mortar mixer according to JIS R 5201, and concrete was mixed with 10 L for an omni mixer.

「実施例1」
C−IIとC−IIIのセメント結合材を使用し、その100質量部(単位量1210kg/m)に対して1.2mm下の細骨材を80質量部配合し、水結合材比を16質量%とし、ポリカルボン酸塩系減水剤の固形分とシアナマイドの固形分の比率および添加量を変えて、モルタルフロー値と圧縮強度を測定した。なお、一部比較として、従来から流動性の改善効果のある高溶解性の無機塩として知られている酢酸カルシウムも用いた。その結果を表1に示す。
なお、ポリカルボン酸塩系減水剤とシアナマイド水溶液中の水分は練り混ぜ水として水結合材比に組み入れた。
"Example 1"
C-II and C-III cement binders are used, and 80 parts by mass of fine aggregate below 1.2 mm is blended with respect to 100 parts by mass (unit amount 1210 kg / m 3 ). The mortar flow value and the compressive strength were measured by changing the ratio of solid content of the polycarboxylate-based water reducing agent and the solid content of cyanamide and the addition amount thereof to 16% by mass. For comparison, calcium acetate, which has been conventionally known as a highly soluble inorganic salt having an effect of improving fluidity, was also used. The results are shown in Table 1.
The water content in the polycarboxylate-based water reducing agent and the cyanamide aqueous solution was incorporated into the water binder ratio as kneaded water.

表1より、フロー値の小さいセメントを用いてシリカフュームを配合したC−IIのセメント結合材を使用した場合、実験No.1-1のポリカルボン酸塩系減水剤単独の比較例のフロー値は175mmであり、従来知られている酢酸カルシウムを添加した実験No.1-2の比較例では50mm程度の増加である。
C−IIのセメント結合材を使用して、ポリカルボン酸塩系減水剤固形分量を比較例の場合と同じとし、シアナマイドの固形分量を変えた実施例の実験No.1-3〜No.1-11では、シアナマイドの量を増加させてゆくとフロー値は急増するようになり、ポリカルボン酸塩系減水剤の固形分/シアナマイド(固形分)の質量比率が100/2より顕著な効果を発揮する。さらに、100/6以上がより好ましく、100/8以上が更に好ましい。100/30の比率よりもシアナマイド量を多くしても、それ以上にフロー値は大きくならなく、頭打ちとなる。したがって、ポリカルボン酸塩系減水剤の固形分/シアナマイド(固形分)質量比率は100/8〜100/25が最も好ましい。また、フロー値の向上に伴って強度も高くなることも示される。
シリカフュームと無水石膏を配合したC−IIIのセメント結合材を用いた実験No.1-12〜No.1-19では、ポリカルボン酸塩系減水剤の固形分/シアナマイド(固形分)の質量比率に拘わらず、シリカフュームのみ配合したC−IIの場合よりもフロー値は僅かに高くなる傾向を示し、無水石膏の溶解により生ずるSOイオンはフロー値を低下させなく、強度が20N/mm前後高くなることが分かる。
フロー値の最も大きいセメントを用い、C−IIIと同様にシリカフュームと無水石膏を配合したC−IVのセメント結合材を用いて、ポリカルボン酸塩系減水剤固形分量を一定としてシアナマイドの固形分量を変えた実施例の実験No.1-20〜No.1-27においてもフローの小さいセメントを用いた結合材の場合と同様に、ポリカルボン酸塩系減水剤の固形分/シアナマイド(固形分)の質量比率が100/2より顕著な効果を発揮する。さらに、100/6以上がより好ましく、100/8以上が更に好ましい。100/30の比率よりもシアナマイド量を多くしても、それ以上にフロー値は大きくならなく、頭打ちとなる。したがって、ポリカルボン酸塩系減水剤の固形分/シアナマイド(固形分)質量比率は100/8〜100/25が最も好ましい。また、フロー値の向上に伴って、C−IIIの場合よりも強度も高くなる傾向も示される。
フロー値の小さいセメントを用いたC−IIのセメント結合材を用い、ポリカルボン酸塩系減水剤の固形分/シアナマイド(固形分)の質量比率を100/20とし、その合量の添加量を変えた実験No.1-28〜No.1-33では、0.5質量部で比較例である実験No.1-1のポリカルボン酸塩系減水剤単独の0.810質量部と同等のフロー値が得られ、少ない量で同等のフロー値が得られる。さらに、添加量を増加させて行くとフロー値は急増するが、1.5質量部で頭打ちとなり、1.2質量部以下が経済的にも最も好ましい。
From Table 1, when a C-II cement binder containing silica fume using a cement having a small flow value is used, the flow value of the comparative example of the polycarboxylate-based water reducing agent of Experiment No. 1-1 is as follows: In the comparative example of Experiment No. 1-2 in which conventionally known calcium acetate is added, the increase is about 50 mm.
Experiments No. 1-3 to No. 1 of Examples in which the solid content of the polycarboxylate-based water reducing agent was the same as in the comparative example using the C-II cement binder, and the solid content of cyanamide was changed. -11, the flow value suddenly increases as the amount of cyanamide is increased, and the mass ratio of solid content / cyanamide (solid content) of the polycarboxylate-based water reducing agent is more remarkable than 100/2. Demonstrate. Furthermore, 100/6 or more is more preferable, and 100/8 or more is still more preferable. Even if the amount of cyanamide is increased more than the ratio of 100/30, the flow value does not increase more than that and reaches a peak. Therefore, the solid content / cyanamide (solid content) mass ratio of the polycarboxylate-based water reducing agent is most preferably 100/8 to 100/25. It is also shown that the strength increases as the flow value increases.
In experiments No.1-12 to No.1-19 using C-III cement binder containing silica fume and anhydrous gypsum, the solid content of polycarboxylate-based water reducing agent / the mass ratio of cyanamide (solid content) Despite this, the flow value tends to be slightly higher than in the case of C-II containing only silica fume, and SO 4 ions generated by dissolution of anhydrous gypsum do not decrease the flow value, and the strength is around 20 N / mm 2. It turns out that it becomes high.
Using the cement with the largest flow value, and using C-IV cement binder containing silica fume and anhydrous gypsum in the same way as C-III, the solid content of cyanamide was reduced with the solid content of polycarboxylate water reducing agent constant. In the experiment No.1-20 to No.1-27 of the changed example, as in the case of the binder using the cement having a small flow, the solid content / cyanamide (solid content) of the polycarboxylate-based water reducing agent The mass ratio is more remarkable than 100/2. Furthermore, 100/6 or more is more preferable, and 100/8 or more is still more preferable. Even if the amount of cyanamide is increased more than the ratio of 100/30, the flow value does not increase more than that and reaches a peak. Therefore, the solid content / cyanamide (solid content) mass ratio of the polycarboxylate-based water reducing agent is most preferably 100/8 to 100/25. Moreover, the tendency for intensity | strength to become higher than the case of C-III is also shown with the improvement of a flow value.
Using a C-II cement binder with cement having a small flow value, the mass ratio of solid content / cyanamide (solid content) of the polycarboxylate-based water reducing agent is 100/20, and the total amount added is In the changed Experiment Nos. 1-28 to 1-33, 0.5 parts by mass is equivalent to 0.810 parts by mass of the polycarboxylate-based water reducing agent of Experiment No. 1-1, which is a comparative example. A flow value is obtained, and an equivalent flow value is obtained with a small amount. Furthermore, the flow value increases rapidly as the amount added is increased, but it reaches a peak at 1.5 parts by mass, and 1.2 parts by mass or less is most preferable economically.

Figure 2010195622
Figure 2010195622

「実施例2」
C-Iのセメントを使用し、表2のコンクリート配合を用い、ポリカルボン酸塩系減水剤の固形分/シアナマイド(固形分)質量比率を100/0と100/20として、その添加量を変えて、スランプと標準養生材齢7日の圧縮強度を測定した。なお、細骨材は5.0mm以下の通常のコンクリート用細骨材を用いた。その結果を表3に示す。
"Example 2"
Using CI cement, using the concrete composition in Table 2, the polycarboxylate-based water reducing agent solid content / cyanamide (solid content) mass ratio was 100/0 and 100/20, and the addition amount was changed. Compressive strength of slump and standard curing material age 7 days was measured. In addition, the fine aggregate used the normal fine aggregate for concrete of 5.0 mm or less. The results are shown in Table 3.

Figure 2010195622
Figure 2010195622

表3より、比較例の実験No.2-1〜No.2-6と発明例の実験No.2-7〜No.2-12を比べて、本減水剤組成物は0.12質量%でスランプの増大及び強度の増加が認められ、0.15質量部でポリカルボン酸塩系減水剤単独の場合の0.20質量部以上のスランプが得られる。即ち、有効成分ベースで0.05質量部、水溶液換算で0.19質量部少なくてもよくなることから、経済的となる。更に添加量が多くなる毎に、両者のスランプの差は大きくなり、より経済的にモルタル又はコンクリートが製造できることが示される。また、分散効果が大きくなることにより、圧縮強度も増大する傾向が示される。   Table 3 shows that the present water reducing agent composition is 0.12% by mass, comparing the experiments No. 2-1 to No. 2-6 of the comparative example with the experiments No. 2-7 to No. 2-12 of the invention example. The increase in slump and the increase in strength are observed at 0.15 parts by mass, and a slump of 0.20 parts by mass or more in the case of the polycarboxylate-based water reducing agent alone is obtained at 0.15 parts by mass. That is, it is economical because 0.05 parts by mass on the basis of the active ingredient and 0.19 parts by mass in terms of aqueous solution may be required. As the amount of addition increases, the difference between the two slumps increases, indicating that mortar or concrete can be produced more economically. In addition, the compressive strength tends to increase as the dispersion effect increases.

Figure 2010195622
Figure 2010195622

本発明は、(1)セメントのロットや銘柄、種類により、ポリカルボン酸塩系減水剤を添加したモルタル又はコンクリートの流動性が低下するなどの相性問題が解決され、良好な作業性が得られる、(2)単位水量とフロー値やスランプ及びスランプフロー値を一定とすると、ポリカルボン酸塩系減水剤の添加量を少なくできるので経済的となる、(3)ポゾラン質微粉末などの凝集に対しても分散性を高め、高い流動性が得られ、かつ、強度も改善する、(4)土木建築構造物やコンクリート二次製品を製造する上で、100N/mm以上の超高強度が容易に得ることが出来るので、高耐久性で、経済的で有利な設計が可能となる、などの効果を奏するので、土木、建築分野で幅広く使用される。 In the present invention, (1) compatibility problems such as a decrease in fluidity of mortar or concrete to which a polycarboxylate-based water reducing agent is added are solved depending on the lot, brand, and type of cement, and good workability is obtained. (2) If the unit water amount and flow value, slump and slump flow value are constant, the amount of polycarboxylate-based water reducing agent can be reduced, which is economical. (3) Agglomeration of pozzolanic fine powder In contrast, dispersibility is improved, high fluidity is obtained, and strength is improved. (4) When manufacturing civil engineering structures and secondary concrete products, ultra-high strength of 100 N / mm 2 or more is achieved. Since it can be easily obtained, it is highly durable and economical and advantageous design can be achieved. Therefore, it is widely used in the civil engineering and construction fields.

Claims (2)

ポリカルボン酸塩系減水剤とシアナマイドを含有してなる減水剤組成物。   A water reducing agent composition comprising a polycarboxylate-based water reducing agent and cyanamide. セメント又はセメント結合材100質量部に、ポリカルボン酸塩系減水剤の固形分100質量部に対してシアナマイド2〜30質量部を含有してなる減水剤組成物を固形分で0.12〜1.5質量部添加してなるモルタル又はコンクリート。   A water reducing agent composition containing 2 to 30 parts by mass of cyanamide with respect to 100 parts by mass of a solid content of a polycarboxylate-based water reducing agent in 100 parts by mass of cement or cement binder is 0.12 to 1 in terms of solids. Mortar or concrete added by 5 parts by mass.
JP2009041713A 2009-02-25 2009-02-25 Water reducing agent composition and mortar or concrete using the same Active JP5336881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009041713A JP5336881B2 (en) 2009-02-25 2009-02-25 Water reducing agent composition and mortar or concrete using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041713A JP5336881B2 (en) 2009-02-25 2009-02-25 Water reducing agent composition and mortar or concrete using the same

Publications (2)

Publication Number Publication Date
JP2010195622A true JP2010195622A (en) 2010-09-09
JP5336881B2 JP5336881B2 (en) 2013-11-06

Family

ID=42820756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041713A Active JP5336881B2 (en) 2009-02-25 2009-02-25 Water reducing agent composition and mortar or concrete using the same

Country Status (1)

Country Link
JP (1) JP5336881B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102898056A (en) * 2012-10-17 2013-01-30 孝感恒盛建筑节能材料有限公司 Enhancement type water reducer capable of reducing slump loss
CN109437644A (en) * 2018-12-03 2019-03-08 苏州市兴邦化学建材有限公司 A kind of synthetic method improving polycarboxylate water-reducer cement adaptability
WO2019065314A1 (en) * 2017-09-28 2019-04-04 花王株式会社 Hydraulic composition for centrifugal molding
CN109705280A (en) * 2018-12-24 2019-05-03 广东科隆智谷新材料股份有限公司 A kind of preparation method of solid polycarboxylic acid water reducing agent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06122536A (en) * 1992-10-14 1994-05-06 Denki Kagaku Kogyo Kk Abrasion resistant cement composition
JPH11180746A (en) * 1997-12-19 1999-07-06 Taiheiyo Cement Corp Improving agent for fluidity of cement, cement composition, concrete and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06122536A (en) * 1992-10-14 1994-05-06 Denki Kagaku Kogyo Kk Abrasion resistant cement composition
JPH11180746A (en) * 1997-12-19 1999-07-06 Taiheiyo Cement Corp Improving agent for fluidity of cement, cement composition, concrete and production thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102898056A (en) * 2012-10-17 2013-01-30 孝感恒盛建筑节能材料有限公司 Enhancement type water reducer capable of reducing slump loss
WO2019065314A1 (en) * 2017-09-28 2019-04-04 花王株式会社 Hydraulic composition for centrifugal molding
CN109437644A (en) * 2018-12-03 2019-03-08 苏州市兴邦化学建材有限公司 A kind of synthetic method improving polycarboxylate water-reducer cement adaptability
CN109705280A (en) * 2018-12-24 2019-05-03 广东科隆智谷新材料股份有限公司 A kind of preparation method of solid polycarboxylic acid water reducing agent

Also Published As

Publication number Publication date
JP5336881B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP4789466B2 (en) Rapidly setting cement composition
JP5080714B2 (en) Cement composition
US8133317B2 (en) Cement additive and cement composition
JP5818579B2 (en) Neutralization suppression type early strong cement composition
TWI403484B (en) Cement admixture, cement composition and mortar or concrete product
JP2005537208A (en) High speed setting cement composition
JP2014501221A (en) Method for in situ production of lightweight fly ash-based aggregates
JP2004002155A (en) Cement admixture
WO2020157775A1 (en) An additive for increasing the supplementary cementitious materials content in cement, mortar and concrete
JP5336881B2 (en) Water reducing agent composition and mortar or concrete using the same
JP2001261415A (en) Cement mixing agent, cement composition and high fluidity concrete using the composition
JP5688069B2 (en) Cement composition, mortar or concrete using the same
JP2007197267A (en) Ultra-rapid-hardening/high-flow cement composition and mortar or concrete using the same
JP2003002726A (en) Producing method of concrete like solid body using steel making slag
US20060180052A1 (en) Chemical admixture for cementitious compositions
JP2004002080A (en) Cement composition
JP5193651B2 (en) Method for adjusting cement composition and method for producing mortar or concrete
JP2007326728A (en) Concrete production method and concrete
JP2003277111A (en) Hardening accelerator and cement composition
WO2022238376A1 (en) Accelerators for the reaction of steelmaking slag with water
JP4538108B2 (en) High performance water reducing agent composition and cement composition
JP2002068812A (en) Cement composition
JPWO2019093099A1 (en) Expandable cement admixture, expandable cement admixture slurry, expandable cement concrete using it, and its manufacturing method.
JP6011926B2 (en) Admixture for high strength concrete and cement composition for high strength concrete
JP2010195621A (en) Cement admixture and cement binder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130802

R151 Written notification of patent or utility model registration

Ref document number: 5336881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250