JPH07290531A - Controlling method for injection molding machine - Google Patents

Controlling method for injection molding machine

Info

Publication number
JPH07290531A
JPH07290531A JP6088121A JP8812194A JPH07290531A JP H07290531 A JPH07290531 A JP H07290531A JP 6088121 A JP6088121 A JP 6088121A JP 8812194 A JP8812194 A JP 8812194A JP H07290531 A JPH07290531 A JP H07290531A
Authority
JP
Japan
Prior art keywords
screw
resin
temperature
heat
heating cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6088121A
Other languages
Japanese (ja)
Other versions
JP3310772B2 (en
Inventor
Masahiro Kami
昌弘 紙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP08812194A priority Critical patent/JP3310772B2/en
Publication of JPH07290531A publication Critical patent/JPH07290531A/en
Application granted granted Critical
Publication of JP3310772B2 publication Critical patent/JP3310772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/74Heating or cooling of the injection unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To control a melted resin temperature by measuring temperatures of two positions of different depths separated near an inner wall of a heating cylinder, calculating heat quantity fed to the cylinder from its temperature gradient, calculating the heat quantity generated upon rotation of a screw, and controlling sum of both the calculated heat quantities. CONSTITUTION:When heat quantities of five zones of LA-LE of n entire axial length L0 are calculated, they become QA-QE, and total heat quantity QS to be transferred from a heating cylinder 3 to resin over the entire axial length L0 of the cylinder 3 becomes a formula I. When a starting time of a metering step is 0 and a completing time is T1, total heat quantity Eg given to the resin by the rotation of a screw 1 in a first metering step becomes a formula II. Accordingly, the sum J=QS+ES. When a temperature of a resin pellet 15a in a hopper 15 is Tp, a target resin temperature stored in a screw head front part 18 by melting in the cylinder 3 is Tm, a mean specific heat is C and a resin weight to be injected is T, a calculating step is so controlled as to become J=C.W.(Tm-Tp), the molten resin temperature can be controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プラスチック製品を成
形する射出成形機において、特に計量工程を高精度に制
御する射出成形機の制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an injection molding machine for molding a plastic product, and more particularly to a method for controlling an injection molding machine for controlling a measuring process with high accuracy.

【0002】[0002]

【従来の技術】図4は従来の射出成形機の要部構成を簡
略化して示す概要図である。図4において、射出装置3
0を構成する加熱シリンダ3内にはスクリュ1が回転と
前後進が自在なように挿入されており、加熱シリンダ3
の先端にはノズル4が取付けられている。
2. Description of the Related Art FIG. 4 is a schematic view showing a simplified structure of a main part of a conventional injection molding machine. In FIG. 4, the injection device 3
The screw 1 is inserted into the heating cylinder 3 constituting 0 so as to freely rotate and move forward and backward.
A nozzle 4 is attached to the tip of the.

【0003】また、後部にはスクリュ1を前後進させる
ピストン14を挿入した射出シリンダ20が取付けられ
ており、その後方にスクリュ1に回転を与えるスクリュ
回転用の油圧モータ5が装着されている。
An injection cylinder 20 in which a piston 14 for moving the screw 1 forward and backward is inserted is attached to the rear portion, and a hydraulic motor 5 for rotating the screw 1 for rotating the screw 1 is attached behind the injection cylinder 20.

【0004】射出シリンダ20の油圧室9はロッド側油
圧室9aとヘッド側油圧室9bから構成されており、こ
の油圧室9には図示省略した油圧ポンプから作動油が供
給され油圧作動バルブ11で制御される。この油圧作動
バルブ11は、ロッド側油圧室9aに通じるロッド側油
圧作動バルブ11aとヘッド側油圧室9bに通じるヘッ
ド側油圧作動バルブ11bから構成されている。
The hydraulic chamber 9 of the injection cylinder 20 is composed of a rod-side hydraulic chamber 9a and a head-side hydraulic chamber 9b. The hydraulic chamber 9 is supplied with hydraulic oil from a hydraulic pump (not shown) and is hydraulically operated by a hydraulic valve 11. Controlled. The hydraulically operated valve 11 is composed of a rod side hydraulically operated valve 11a communicating with the rod side hydraulic chamber 9a and a head side hydraulically operated valve 11b communicating with the head side hydraulic chamber 9b.

【0005】また、スクリュ回転用の油圧モータ5にも
図示を省略した油圧ポンプからの作動油が供給されてお
り、油圧作動バルブ11cを制御することにより回転
数、回転時間が制御できるようになっている。
Further, hydraulic oil from a hydraulic pump (not shown) is also supplied to the hydraulic motor 5 for rotating the screw, and the rotational speed and rotational time can be controlled by controlling the hydraulic operating valve 11c. ing.

【0006】加熱シリンダ3の外周部には熱を発生させ
るヒータ6が配設されるとともに、加熱シリンダ3の内
壁近傍には加熱シリンダ3の軸方向の温度を測定するた
めに熱電対7が所定間隔離間した距離で装着されてい
る。
A heater 6 for generating heat is arranged on the outer peripheral portion of the heating cylinder 3, and a thermocouple 7 is provided near the inner wall of the heating cylinder 3 for measuring the temperature of the heating cylinder 3 in the axial direction. It is installed at a distance.

【0007】符号33はヒータ制御装置であり、電源3
4から供給される電力を調整するとともに、ヒータ7で
発生する熱量を制御することにより加熱シリンダ3が所
望する温度になるように制御している。符号8はスクリ
ュ1の前後進距離を測定するスクリュ位置センサであ
る。スクリュ1の先端にはチェックシート1aを置いて
スクリュヘッド27が螺着されており、スクリュヘッド
27は先端に向かった略円錐形状で同円錐形状の後側
(図中右側)は段状になって小径になり、この小径部2
7aには軸方向摺動が自在なチェックリング2が嵌挿さ
れている。なお、符号15はホッパ、15aは樹脂ペレ
ット、18はスクリュヘッド前部、32は成形機制御装
置を示す。
Reference numeral 33 is a heater controller, which is a power source 3
The electric power supplied from the heater 4 is adjusted and the amount of heat generated by the heater 7 is controlled to control the heating cylinder 3 to a desired temperature. Reference numeral 8 is a screw position sensor for measuring the forward / backward travel distance of the screw 1. A screw head 27 is screwed onto the tip of the screw 1 with a check sheet 1a placed in the screw head 27. The screw head 27 has a substantially conical shape toward the tip, and the rear side (right side in the figure) of the conical shape is stepped. Becomes a small diameter, and this small diameter part 2
A check ring 2 which is slidable in the axial direction is fitted into 7a. Reference numeral 15 is a hopper, 15a is a resin pellet, 18 is a screw head front portion, and 32 is a molding machine control device.

【0008】こうした射出装置30からプラスチック製
品が得られるメカニズムは以下のようになる。ホッパ1
5へ投入された樹脂ペレット15aはホッパ供給口から
スクリュ1側へ落下し、落下した樹脂ペレット15aは
スクリュ1の回転運動により加熱シリンダ3前方(図4
中左方向)へ移送される。
The mechanism by which a plastic product is obtained from the injection device 30 is as follows. Hopper 1
5, the resin pellets 15a dropped into the hopper 5 are dropped to the screw 1 side from the hopper supply port, and the dropped resin pellets 15a are rotated in front of the heating cylinder 3 (see FIG. 4).
It is transferred to the middle left).

【0009】この時樹脂ペレット15aは加熱された加
熱シリンダ3の内面で加熱シリンダ3からの伝熱および
スクリュ1の回転による加熱シリンダ3内壁面での摩擦
発熱あるいは剪断発熱により加熱シリンダ3内壁面近く
で溶融され、溶融状態でスクリュヘッド前部18に貯留
される。
At this time, the resin pellet 15a is near the inner wall surface of the heating cylinder 3 due to heat transfer from the heating cylinder 3 on the heated inner surface of the heating cylinder 3 and frictional heat or shearing heat on the inner wall surface of the heating cylinder 3 due to the rotation of the screw 1. And is stored in the screw head front portion 18 in a molten state.

【0010】スクリュヘッド前部18に貯留される溶融
樹脂量が増加するに従いスクリュ1は後方へ移動し、ス
クリュ1の後退移動距離によって決まる溶融樹脂量が設
定された値に達するとスクリュ1の回転を停止し、計量
工程は完了する。
The screw 1 moves rearward as the amount of molten resin stored in the screw head front portion 18 increases, and when the amount of molten resin determined by the backward moving distance of the screw 1 reaches a set value, the screw 1 rotates. And the weighing process is completed.

【0011】引続く射出工程では射出シリンダ20内の
ヘッド側油圧室9bに図示しない油圧源より作動油が供
給されスクリュ1は前進し射出工程を開始するのであ
る。
In the subsequent injection process, hydraulic oil is supplied to the head side hydraulic chamber 9b in the injection cylinder 20 from a hydraulic source (not shown), and the screw 1 moves forward to start the injection process.

【0012】この射出工程の開始に伴ってスクリュヘッ
ド前部18に貯留された溶融樹脂はノズル4を介して図
示しない金型キャビティ部に射出充填され、金型内で溶
融樹脂は冷却固化された後、金型を型開されプラスチッ
ク成形品を得るのである。
With the start of this injection process, the molten resin stored in the front portion 18 of the screw head is injected and filled into a mold cavity (not shown) through the nozzle 4, and the molten resin is cooled and solidified in the mold. After that, the mold is opened to obtain a plastic molded product.

【0013】ところで、前記した射出工程において、金
型内に樹脂を充填する時の樹脂温度は、成形される製品
の品質に大きな影響を与える。例えば樹脂は温度による
体積膨張が激しいので、高い樹脂温度で成形した時の製
品重量は軽く、低い温度の時は重くなり、温度のバラつ
きが重量をバラつかせることになる。
By the way, in the above-mentioned injection step, the resin temperature at the time of filling the resin in the mold has a great influence on the quality of the molded product. For example, since resin has a large volume expansion due to temperature, the weight of the product when it is molded at a high resin temperature is light, and when it is low, it becomes heavy, and the variation in temperature causes the weight to vary.

【0014】また、樹脂温度は樹脂の粘度にも大きな影
響を及ぼす。即ち、高い温度では粘度は低いため射出工
程での射出圧力は小さくなり、低い温度では粘度が高い
ので射出圧力は大きく、射出工程での充填状態をバラつ
かせるため、品質もバラつかせることになる。このよう
なことから計量工程で、樹脂を精度よく安定した温度で
溶融しスクリュヘッド前部に溶融樹脂を貯留すること
は、良品の安定成形を実現するために不可欠な条件とな
る。
The resin temperature also has a great influence on the viscosity of the resin. That is, since the viscosity is low at a high temperature, the injection pressure in the injection process is small, and the viscosity is high at a low temperature, the injection pressure is large, and the filling state in the injection process is varied, so that the quality is also varied. Become. For this reason, it is indispensable to accurately melt the resin at a stable temperature and store the molten resin in the front part of the screw head in the measuring step in order to realize stable molding of a good product.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、従来の
計量工程時の制御では、スクリュ1の回転数が一定のま
まの状態で、加熱シリンダ3の温度があらかじめ設定し
た目標値になるようにヒータ6の発熱量を制御してお
り、このため、仮に溶融樹脂温度を200℃にしたいの
であれば、ノズル4側に近いゾーンの目標温度を200
℃に設定し、ホッパ15側に近づくに従って徐々に低く
なるようにしていた。
However, in the conventional control during the metering process, the heater 6 is controlled so that the temperature of the heating cylinder 3 reaches a preset target value while the rotation speed of the screw 1 remains constant. Therefore, if it is desired to set the molten resin temperature to 200 ° C., the target temperature in the zone near the nozzle 4 side is set to 200 ° C.
The temperature was set to 0 ° C., and the temperature gradually decreased as the temperature approached the hopper 15.

【0016】そのため、加熱シリンダ3の内壁部の温度
が十分に伝わらない時は200℃より低い温度の樹脂が
スクリュヘッド前部18に貯留されることになる。ま
た、逆にスクリュ1回転による剪断発熱や摩擦発熱が大
きい場合は200℃より高い温度の樹脂がスクリュヘッ
ド前部18に貯留され、金型のキャビティ(図示なし)
に充填されるといった問題点がある。
Therefore, when the temperature of the inner wall portion of the heating cylinder 3 is not sufficiently transmitted, the resin having a temperature lower than 200 ° C. is stored in the screw head front portion 18. On the contrary, when the shearing heat and the frictional heat generated by one rotation of the screw are large, the resin having a temperature higher than 200 ° C. is stored in the screw head front part 18 and the mold cavity (not shown) is formed.
There is a problem that it is filled.

【0017】また、射出シリンダ20内のピストン14
の摩擦抵抗やその他の摺動部の摩擦抵抗は成形機の機差
や雰囲気状態に左右されやすく、計量中にスクリュ1が
後退する時の速度に影響を与えるので計量時間がバラつ
くことから、溶融樹脂の温度をバラつかせる結果となっ
ていた。
Further, the piston 14 in the injection cylinder 20
The frictional resistance of and other frictional resistances of sliding parts are easily influenced by the machine difference of the molding machine and the atmospheric condition, and affect the speed at which the screw 1 moves backward during measuring, so the measuring time varies. The result was that the temperature of the molten resin varied.

【0018】さらに、樹脂の粘度は同種類、同グレード
の樹脂でも製造ロットによりバラつきやすい性質を持っ
ているため、同じ計量条件でも粘度の高い樹脂では剪断
発熱が大きくなって樹脂温度は高くなり、逆に樹脂の粘
度が低い樹脂では温度が低くなるなど、スクリュヘッド
前部18に貯留された樹脂温度がバラつくため、このよ
うな樹脂が金型キャビティに射出充填されると成形され
る製品の品質を不安定なものにするといった問題点があ
った。
Further, even if the resins of the same type and the same grade have the property of being easily varied depending on the production lot, even if the resin has a high viscosity under the same measurement conditions, the shear heat generation becomes large and the resin temperature becomes high. On the contrary, the temperature of the resin having a low viscosity becomes low, and the temperature of the resin stored in the front part 18 of the screw head varies, so that when the resin is injected and filled in the mold cavity, There was a problem of making the quality unstable.

【0019】本発明は上記問題点に鑑みてなされたもの
で、品質のよい成形品を安定して得られるようにした射
出成形機の計量方法を提供することを目的とするもので
ある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a measuring method for an injection molding machine, which is capable of stably obtaining a molded product of good quality.

【0020】[0020]

【課題を解決するための手段】本発明は上記目的を達成
するためになされたもので、スクリュを回動後退させな
がらスクリュヘッド前方に溶融樹脂を貯留する計量工程
であって、加熱シリンダの内壁近傍で離間した深さの異
なる2個所の温度を測定し、測定された温度勾配から加
熱シリンダ内に流入する熱量を算出するとともに、前記
スクリュの回転に伴って生じる熱量をスクリュ回転トル
クおよび回転時間より算出し、前記算出した熱量の総和
を制御することにより溶融樹脂の温度を制御するように
した。
The present invention has been made in order to achieve the above-mentioned object, and is a metering process for storing molten resin in front of a screw head while rotating and retracting the screw, and an inner wall of a heating cylinder. Temperatures at two locations with different depths, which are separated in the vicinity, are measured, the amount of heat flowing into the heating cylinder is calculated from the measured temperature gradient, and the amount of heat generated with the rotation of the screw is calculated as the screw rotation torque and rotation time. Then, the temperature of the molten resin was controlled by controlling the total amount of heat calculated above.

【0021】[0021]

【作用】加熱シリンダから樹脂に伝えられる熱量を算出
するためには、加熱シリンダの内壁近傍で離間した深さ
の違う2個所の温度を測定し、加熱シリンダの半径方向
の温度勾配を計算し、加熱シリンダの熱伝導係数から樹
脂側へ伝えられる熱量を算出する。また、スクリュが回
転することにより樹脂側に供給される熱量を算出するた
めには、摩擦力と剪断力がスクリュの回転トルクにより
発生することから、スクリュ回転トルクと回転時間を測
定しそれらより算出する。そして熱量の総和を制御する
ことによって所望の溶融樹脂温度を容易に得ることがで
きる。
[Function] In order to calculate the amount of heat transferred from the heating cylinder to the resin, the temperatures at two different depths in the vicinity of the inner wall of the heating cylinder are measured, and the temperature gradient in the radial direction of the heating cylinder is calculated. The amount of heat transferred to the resin side is calculated from the thermal conductivity coefficient of the heating cylinder. Further, in order to calculate the amount of heat supplied to the resin side due to the rotation of the screw, frictional force and shearing force are generated by the rotational torque of the screw, so the screw rotational torque and rotational time are measured and calculated from them. To do. Then, a desired molten resin temperature can be easily obtained by controlling the total amount of heat.

【0022】[0022]

【実施例】以下、本発明に係る射出成形機の計量方法を
図面に示す実施例に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The weighing method for an injection molding machine according to the present invention will be described in detail below with reference to the embodiments shown in the drawings.

【0023】図1は本発明に係る一実施例の射出成形機
の要部構成を簡略化して示す概要図、図2は深さの違う
2個所を熱電対で温度測定をする状態を示す加熱シリン
ダの横断面図、図3は加熱シリンダの縦断面図を示す。
FIG. 1 is a schematic diagram showing a simplified structure of a main part of an injection molding machine according to an embodiment of the present invention, and FIG. 2 is a view showing a state in which two thermocouples are used to measure temperature at two different depths. FIG. 3 shows a horizontal sectional view of the cylinder, and FIG. 3 shows a vertical sectional view of the heating cylinder.

【0024】図1において、射出装置30を構成する加
熱シリンダ3内にはスクリュ1が回転と前後進が自在な
ように挿入されており、加熱シリンダ3の先端にはノズ
ル4が取付けられている。
In FIG. 1, a screw 1 is inserted into a heating cylinder 3 constituting an injection device 30 so as to be rotatable and forward / backward, and a nozzle 4 is attached to the tip of the heating cylinder 3. .

【0025】また、後部にはスクリュ1を前後進させる
ピストン14を挿入した射出シリンダ20が取付けられ
ており、その後方にスクリュ1に回転を与えるスクリュ
回転用の油圧モータ5が設けられている。そしてこのス
クリュ回転用の油圧モータ5へ駆動源として適宜な量の
圧油を供給するスクリュモータ用の油圧作動バルブ11
cが設けられている。
An injection cylinder 20 into which a piston 14 for moving the screw 1 forward and backward is inserted is attached to the rear part, and a hydraulic motor 5 for rotating the screw 1 for rotating the screw 1 is provided behind the injection cylinder 20. A hydraulically operated valve 11 for a screw motor that supplies an appropriate amount of pressure oil as a drive source to the hydraulic motor 5 for screw rotation.
c is provided.

【0026】射出シリンダ20の油圧室9はロッド側油
圧室9aとヘッド側油圧室9bから構成されており、こ
の油圧室9には図示省略した油圧ポンプから作動油が供
給され油圧作動バルブ11で制御される。この油圧作動
バルブ11は、ロッド側油圧室9aに通じるロッド側油
圧作動バルブ11aとヘッド側油圧室9bに通じるヘッ
ド側油圧作動バルブ11bから構成されている。
The hydraulic chamber 9 of the injection cylinder 20 is composed of a rod-side hydraulic chamber 9a and a head-side hydraulic chamber 9b. The hydraulic chamber 9 is supplied with hydraulic oil from a hydraulic pump (not shown), and is operated by a hydraulic valve 11. Controlled. The hydraulically operated valve 11 is composed of a rod side hydraulically operated valve 11a communicating with the rod side hydraulic chamber 9a and a head side hydraulically operated valve 11b communicating with the head side hydraulic chamber 9b.

【0027】また、符号8はスクリュ1の前後進距離を
測定するスクリュ位置センサである。スクリュ1の先端
にはチェックシート1aを置いてスクリュヘッド27が
螺着されており、スクリュヘッド27は先端に向かった
略円錐形状で同円錐形状の後側(図中右側)は段状にな
って小径になり、この小径部27aには軸方向摺動が自
在なチェックリング2が嵌挿されている。
Reference numeral 8 is a screw position sensor for measuring the forward / backward travel distance of the screw 1. A screw head 27 is screwed onto the tip of the screw 1 with a check sheet 1a placed in the screw head 27. The screw head 27 has a substantially conical shape toward the tip, and the rear side (right side in the figure) of the conical shape is stepped. The check ring 2 which is slidable in the axial direction is fitted into the small diameter portion 27a.

【0028】加熱シリンダ3の外周軸方向に加熱用ヒー
タ6が装着されている。また、加熱シリンダ3の軸方向
には2本を1組とした熱電対7が一定間隔で装着され、
この2本を1組とした熱電対7a、7bは図2に示すよ
うに加熱シリンダ3の内壁近傍において深さの異なるも
のとなっている。
A heating heater 6 is mounted on the heating cylinder 3 in the direction of the outer peripheral axis thereof. Further, in the axial direction of the heating cylinder 3, two thermocouples 7 are attached at regular intervals,
As shown in FIG. 2, the thermocouples 7a and 7b, which are a set of the two, have different depths in the vicinity of the inner wall of the heating cylinder 3.

【0029】符号32は射出成形機の制御装置であり、
例えば温度センサ、圧力センサ、位置センサなどから得
られた測定値を受信し、目標値と比較することにより様
々な制御指令を出すようになっている。なお、符号13
はスクリュ油圧センサを示す。
Reference numeral 32 is a control device of the injection molding machine,
For example, various control commands are issued by receiving measured values obtained from a temperature sensor, a pressure sensor, a position sensor, etc. and comparing them with target values. Note that reference numeral 13
Indicates a screw oil pressure sensor.

【0030】また、符号10は金型であり、金型10は
雄金型10b、雌金型10aから構成され、前記雄金型
10bと雌金型10a間でキャビティ10cを形成して
いる。
Further, reference numeral 10 is a mold, and the mold 10 is composed of a male mold 10b and a female mold 10a, and a cavity 10c is formed between the male mold 10b and the female mold 10a.

【0031】以上のように構成した射出成形機の制御方
法について述べる。
A control method of the injection molding machine configured as described above will be described.

【0032】まず、加熱シリンダ3の内壁部からスクリ
ュ1によって搬送中の樹脂側へ伝熱される熱量の算出方
法について説明する。加熱シリンダ3の内壁に近い側
(スクリュ1中心から熱電対までの距離ra)の熱電対
7aによって測定された温度の測定値をTa、同様に内
壁から離れた側(スクリュ1中心から熱電対までの距離
rb)の熱電対7bによって測定された温度の測定値を
Tbとする(ここでrb>raとなる)とし、この時の
温度勾配をT′とすると
First, a method of calculating the amount of heat transferred from the inner wall of the heating cylinder 3 to the resin side being conveyed by the screw 1 will be described. The measured value of the temperature measured by the thermocouple 7a on the side close to the inner wall of the heating cylinder 3 (distance ra from the center of the screw 1 to the thermocouple) is Ta, and similarly on the side distant from the inner wall (from the center of the screw 1 to the thermocouple). Suppose that the measured value of the temperature measured by the thermocouple 7b at the distance rb) is Tb (here rb> ra), and the temperature gradient at this time is T '.

【0033】[0033]

【数1】 となる。[Equation 1] Becomes

【0034】また、加熱シリンダ3はヒータ6により均
一に加熱されているので、加熱シリンダ3の半径が同じ
である同円周上の点では温度は等しいと考えられるた
め、加熱シリンダ3の熱伝導率をλs とすると内側方向
(ヒータ6からスクリュ1方向)に伝えられる熱流束q
はq=λs T′となる。この部分の平均半径は(rb+
ra)/2であり、また軸方向長さをLとすると、ヒー
タ6の加熱によって加熱シリンダ3側からスクリュ1内
の樹脂側へ伝熱される単位時間当たりの熱量は、
Further, since the heating cylinder 3 is uniformly heated by the heater 6, it is considered that the temperatures are equal at the points on the same circumference where the radius of the heating cylinder 3 is the same, so that the heat conduction of the heating cylinder 3 is conducted. The heat flux q transmitted inward (from the heater 6 to the screw 1) when the coefficient is λs.
Becomes q = λs T '. The average radius of this part is (rb +
Ra) / 2 and the axial length is L, the amount of heat transferred per unit time from the heating cylinder 3 side to the resin side in the screw 1 by the heating of the heater 6 is

【0035】[0035]

【数2】 となる。[Equation 2] Becomes

【0036】ここでTa、Tbは時々刻々変化する値で
あるため熱量Qも時間の関数Q(t)となる。一旦射出
工程が完了した時刻tを0とし、次の射出工程が完了す
る時刻をT0 とすると、樹脂に伝えられる熱量Q0
Here, since Ta and Tb are values that change from moment to moment, the heat quantity Q also becomes a function Q (t) of time. When the time t at which the injection process is once completed is 0 and the time at which the next injection process is completed is T 0 , the heat quantity Q 0 transferred to the resin is

【0037】[0037]

【数3】 となる。ここで、測定する2個所の位置は加熱シリンダ
3の内壁部に近いほど算出される熱量Q0 の値はより精
度が良くなる。また、熱伝導解析に使う有限要素法や有
限差分法を用いて、温度の測定値Ta、Tbを代入する
ことにより熱流束を求め、精度良く熱量Q0 を算出する
こともできる。
[Equation 3] Becomes Here, the closer the two measured positions are to the inner wall portion of the heating cylinder 3, the more accurate the value of the calorie Q 0 calculated. Further, the heat flux can be obtained by substituting the measured values Ta and Tb of the temperature by using the finite element method or the finite difference method used for the heat conduction analysis, and the calorific value Q 0 can be calculated accurately.

【0038】こうした考えを加熱シリンダ3の軸方向全
長L0 に当てはめて考えてみる。図3に示すように軸方
向全長L0 をLA 、LB 、LC 、LD 、LE の5つのゾ
ーンに分け、それぞれの各ゾーン毎の熱量を算出すると
A 、QB 、QC 、QD 、Q E となり、加熱シリンダ3
の軸方向全長L0 にわたって加熱シリンダ3から樹脂へ
伝えられる総熱量QS は QS =QA +QB +QC +QD +QE となる。
This idea is applied to all the axial direction of the heating cylinder 3.
Long L0Apply to and think about. Axial as shown in Figure 3
Length L0To LA, LB, LC, LD, LEThe five zo
If you calculate the amount of heat in each zone
QA, QB, QC, QD, Q EAnd heating cylinder 3
Axial length L0From heating cylinder 3 to resin
Total heat transmitted QSIs QS= QA+ QB+ QC+ QD+ QE Becomes

【0039】次にスクリュ1の回転トルクにより樹脂に
剪断発熱や摩擦熱として伝熱される熱量を算出する。
Next, the amount of heat transferred to the resin as shearing heat or frictional heat is calculated by the rotation torque of the screw 1.

【0040】計量工程中にスクリュ油圧センサ13で測
定されるスクリュ回転トルクRは時間とともに変化する
ためR(t)とし、スクリュ回転数は一定速度に制御す
るためNとする。こうしたスクリュ1回転により単位時
間に樹脂に与えられる熱量E(t)とすると、
The screw rotation torque R measured by the screw oil pressure sensor 13 during the measuring process changes with time, so it is set to R (t), and the screw rotation speed is set to N for controlling at a constant speed. If the amount of heat E (t) given to the resin per unit time by one rotation of the screw is

【0041】[0041]

【数4】 となる。なお、スクリュ回転トルクRは油圧モータであ
れば油圧力、電気モータであれば電流値を測定すること
により算出できる。また、計量工程の開始時刻を0、完
了時刻をT1 とすると、1回の計量工程でスクリュ1の
回転により樹脂に与えられる総熱量ES は、
[Equation 4] Becomes The screw rotation torque R can be calculated by measuring the hydraulic pressure for a hydraulic motor and the current value for an electric motor. Further, when the start time of the measuring process is 0 and the completion time is T 1 , the total heat quantity E S given to the resin by the rotation of the screw 1 in one measuring process is

【0042】[0042]

【数5】 となる。[Equation 5] Becomes

【0043】よって1サイクル内に剪断発熱や摩擦熱と
して樹脂に伝熱される総熱量Jは、J=QS +ES とな
る。ホッパ15内での樹脂ペレット15aの温度をT
p、加熱シリンダ3内で溶融してスクリュヘッド前部1
8に貯留する目標の樹脂温度をTm、平均比熱C、射出
する樹脂重量をWとすると、J=C・W・(Tm−T
p)となるように計算工程の制御をすればよいのであ
る。
Therefore, the total heat quantity J transferred to the resin as shear heat generation and friction heat in one cycle is J = Q S + E S. The temperature of the resin pellet 15a in the hopper 15 is set to T
p, melted in the heating cylinder 3 and screw head front part 1
Assuming that the target resin temperature stored in No. 8 is Tm, the average specific heat C, and the injected resin weight is W, J = C · W · (Tm−T
It is only necessary to control the calculation process so that p).

【0044】ヒータ6から加熱シリンダ3を介して伝え
られる熱は加熱シリンダ3の厚みがあるため時間がかか
ることになる。このため、早いサイクルで成形する場合
は主としてスクリュ1回転からの熱量Esを制御し、総
熱量Jを一定値になるように調整する方がよい。
The heat transmitted from the heater 6 through the heating cylinder 3 takes time because of the thickness of the heating cylinder 3. Therefore, in the case of molding in a fast cycle, it is better to mainly control the heat quantity Es from one rotation of the screw and adjust the total heat quantity J to be a constant value.

【0045】そのためには、ヘッド側油圧作動バルブ1
1bを制御して、射出シリンダ20のヘッド側油圧室9
bに圧力を発生させ、スクリュ1が後退する速度を遅く
し、計量時間を調整すれば総熱量Jは容易に制御可能と
なる。
To this end, the head side hydraulically operated valve 1
1b to control the head side hydraulic chamber 9 of the injection cylinder 20.
If the pressure is generated in b, the speed at which the screw 1 retracts is slowed, and the metering time is adjusted, the total heat amount J can be easily controlled.

【0046】よって加熱シリンダ3から樹脂に与えられ
る熱量Qsと、スクリュ1回転により樹脂に与える熱量
Esを別々に測定し、その和(Qs+Es)が目標値に
一致するように制御すれば所望する温度を有した溶融樹
脂を金型キャビティ10cに射出充填することができ
る。
Therefore, the amount of heat Qs given to the resin from the heating cylinder 3 and the amount of heat Es given to the resin by one rotation of the screw are measured separately, and if the sum (Qs + Es) is controlled to match the target value, the desired temperature is obtained. It is possible to inject and fill the mold cavity 10c with the molten resin having the above.

【0047】[0047]

【発明の効果】以上説明したことから明らかなように、
本発明ではスクリュを回動後退させながらスクリュヘッ
ド前方に溶融樹脂を貯留する計量工程であって、加熱シ
リンダの内壁近傍で離間した深さの異なる2個所の温度
を測定し、測定された温度勾配から加熱シリンダ内に流
入する熱量を算出するとともに、前記スクリュの回転に
伴って生じる熱量をスクリュ回転トルクおよび回転時間
より算出し、前記算出した熱量の総和を制御することに
より溶融樹脂の温度を制御するようにしたことにより、
金型内に充填される溶融樹脂の温度が高精度かつ安定す
ることになり理想的な射出工程が実現でき、よって成形
されるプラスチック製品の品質も極めて高く安定する。
特に射出成形機による機差、雰囲気状態、樹脂の粘度の
バラつきの影響が補正されるので、良品の安定成形への
効果は絶大である。
As is apparent from the above description,
In the present invention, in the measuring step of storing the molten resin in front of the screw head while rotating and retreating the screw, the temperatures at two different depths separated in the vicinity of the inner wall of the heating cylinder are measured, and the measured temperature gradient The amount of heat flowing into the heating cylinder is calculated, and the amount of heat generated by the rotation of the screw is calculated from the screw rotation torque and the rotation time, and the temperature of the molten resin is controlled by controlling the total sum of the calculated amounts of heat. By doing so,
Since the temperature of the molten resin filled in the mold becomes highly accurate and stable, an ideal injection process can be realized, and therefore the quality of the plastic product molded becomes extremely high and stable.
In particular, the effects of machine differences due to the injection molding machine, atmospheric conditions, and variations in resin viscosity are corrected, so the effect of stable molding of non-defective products is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施例の射出成形機の要部構成
を簡略化して示す概要図である。
FIG. 1 is a schematic view showing a simplified configuration of a main part of an injection molding machine according to an embodiment of the present invention.

【図2】深さの違う2個所を熱電対で温度測定する状態
を示す加熱シリンダの横断面図である。
FIG. 2 is a cross-sectional view of a heating cylinder showing a state in which the temperature is measured with two thermocouples at two different depths.

【図3】加熱シリンダの縦断面図である。FIG. 3 is a vertical sectional view of a heating cylinder.

【図4】従来の射出成形機の要部構成を簡略化して示す
概要図である。
FIG. 4 is a schematic view showing a simplified configuration of a main part of a conventional injection molding machine.

【符号の説明】[Explanation of symbols]

1 スクリュ 2 チェックリング 3 加熱シリンダ 4 ノズル 5 油圧モータ 6 ヒータ 7(7a、7b) 熱電対 8 スクリュ位置センサ 9 油圧室 9a ロッド側油圧室 9b ヘッド側油圧室 10 金型 10c キャビティ 11 油圧作動バルブ 11a ロッド側油圧作動バルブ 11b ヘッド側油圧作動バルブ 11c スクリュモータ用油圧作動バルブ 13 スクリュ油圧センサ 14 ピストン 18 スクリュヘッド前部 20 射出シリンダ 27 スクリュヘッド 30 射出装置 32 成形機制御装置 33 ヒータ制御装置 34 電源 1 screw 2 check ring 3 heating cylinder 4 nozzle 5 hydraulic motor 6 heater 7 (7a, 7b) thermocouple 8 screw position sensor 9 hydraulic chamber 9a rod side hydraulic chamber 9b head side hydraulic chamber 10 mold 10c cavity 11 hydraulically actuated valve 11a Rod side hydraulic operation valve 11b Head side hydraulic operation valve 11c Screw motor hydraulic operation valve 13 Screw oil pressure sensor 14 Piston 18 Screw head front part 20 Injection cylinder 27 Screw head 30 Injection device 32 Molding machine control device 33 Heater control device 34 Power supply

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スクリュを回動後退させながらスクリュ
ヘッド前方に溶融樹脂を貯留する計量工程であって、加
熱シリンダの内壁近傍で離間した深さの異なる2個所の
温度を測定し、測定された温度勾配から加熱シリンダ内
に流入する熱量を算出するとともに、前記スクリュの回
転に伴って生じる熱量をスクリュ回転トルクおよび回転
時間より算出し、前記算出した熱量の総和を制御するこ
とにより溶融樹脂の温度を制御するようにしたことを特
徴とする射出成形機の制御方法。
1. A measuring step in which molten resin is stored in front of a screw head while rotating and retreating a screw, and the temperature is measured by measuring temperatures at two different depths separated in the vicinity of an inner wall of a heating cylinder. The amount of heat flowing into the heating cylinder is calculated from the temperature gradient, and the amount of heat generated with the rotation of the screw is calculated from the screw rotation torque and the rotation time, and the temperature of the molten resin is controlled by controlling the sum of the calculated amounts of heat. A method for controlling an injection molding machine, wherein the method is controlled.
JP08812194A 1994-04-26 1994-04-26 Control method of injection molding machine Expired - Fee Related JP3310772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08812194A JP3310772B2 (en) 1994-04-26 1994-04-26 Control method of injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08812194A JP3310772B2 (en) 1994-04-26 1994-04-26 Control method of injection molding machine

Publications (2)

Publication Number Publication Date
JPH07290531A true JPH07290531A (en) 1995-11-07
JP3310772B2 JP3310772B2 (en) 2002-08-05

Family

ID=13934080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08812194A Expired - Fee Related JP3310772B2 (en) 1994-04-26 1994-04-26 Control method of injection molding machine

Country Status (1)

Country Link
JP (1) JP3310772B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1658949A1 (en) * 2003-08-27 2006-05-24 Sumitomo Heavy Industries, Ltd. Injection molding machine, and temperature control method for injection molding machine
JP2008049676A (en) * 2006-08-28 2008-03-06 Sumitomo Heavy Ind Ltd Molding machine and its monitoring method
WO2008149742A1 (en) * 2007-05-31 2008-12-11 Sumitomo Heavy Industries, Ltd. Display device for injection molding apparatus
JP2009126112A (en) * 2007-11-26 2009-06-11 Sumitomo Heavy Ind Ltd Temperature indication apparatus of injection molding machine
JP2009137083A (en) * 2007-12-04 2009-06-25 Sumitomo Heavy Ind Ltd Temperature display device for injection molding machine
JP2015020344A (en) * 2013-07-19 2015-02-02 宇部興産機械株式会社 Control method for measuring process of injection molding machine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1658949A1 (en) * 2003-08-27 2006-05-24 Sumitomo Heavy Industries, Ltd. Injection molding machine, and temperature control method for injection molding machine
EP1658949A4 (en) * 2003-08-27 2009-11-11 Sumitomo Heavy Industries Injection molding machine, and temperature control method for injection molding machine
JP2008049676A (en) * 2006-08-28 2008-03-06 Sumitomo Heavy Ind Ltd Molding machine and its monitoring method
JP4684969B2 (en) * 2006-08-28 2011-05-18 住友重機械工業株式会社 Molding machine and monitoring method thereof
WO2008149742A1 (en) * 2007-05-31 2008-12-11 Sumitomo Heavy Industries, Ltd. Display device for injection molding apparatus
JPWO2008149742A1 (en) * 2007-05-31 2010-08-26 住友重機械工業株式会社 Display device for injection molding machine
JP5139428B2 (en) * 2007-05-31 2013-02-06 住友重機械工業株式会社 Display device for injection molding machine
DE112008001368B4 (en) * 2007-05-31 2020-11-05 Sumitomo Heavy Industries, Ltd. Display device for an injection molding device
JP2009126112A (en) * 2007-11-26 2009-06-11 Sumitomo Heavy Ind Ltd Temperature indication apparatus of injection molding machine
JP2009137083A (en) * 2007-12-04 2009-06-25 Sumitomo Heavy Ind Ltd Temperature display device for injection molding machine
JP2015020344A (en) * 2013-07-19 2015-02-02 宇部興産機械株式会社 Control method for measuring process of injection molding machine

Also Published As

Publication number Publication date
JP3310772B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
CA2700877C (en) Method of molding system, including changing temperature of feedstock responsive to a calculated amount of thermal energy
EP0409982B1 (en) Control unit for injection molding machines
JP2021535855A (en) A method for controlling the injection molding process based on the actual plastic melting pressure or cavity pressure
US20210206041A1 (en) Melt Pressure Control of Injection Molding
JP3310772B2 (en) Control method of injection molding machine
JP6022381B2 (en) Injection molding machine
JP6075693B2 (en) Control method of metering process of injection molding machine
TW200526394A (en) Injection molding machine and method
US20230234271A1 (en) Methods for controlling co-injection plastic pressure ratio between individual flow front layers
JP3141338B2 (en) Injection molding machine plasticization process control method
JP6544270B2 (en) Casting apparatus and method of manufacturing cast product
WO2021157737A1 (en) Injection molding assistance device and injection molding machine comprising same
JPH0890622A (en) Injection molding device
CN104175508B (en) The set supporting device of injection (mo(u)lding) machine and injection (mo(u)lding) machine
JP4367172B2 (en) Injection device and injection molding method
JPH07214613A (en) Resin temperature control method in injection molding machine
JP2622925B2 (en) Injection molding method
JPH10156907A (en) Heating of plasticizing material
JP2585104B2 (en) Injection molding equipment
WO2023223563A1 (en) Calculation device and program
JP3028281B2 (en) Temperature control method for injection molding machine
JP6094607B2 (en) Injection molding apparatus and injection molding method
JPH07256710A (en) Control method for injection molding machine
JPS6246615A (en) Injection molding and device thereof
WO2021157253A1 (en) Injection-molding assisting device and injection molding machine including same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees