WO2023223563A1 - Calculation device and program - Google Patents

Calculation device and program Download PDF

Info

Publication number
WO2023223563A1
WO2023223563A1 PCT/JP2022/021021 JP2022021021W WO2023223563A1 WO 2023223563 A1 WO2023223563 A1 WO 2023223563A1 JP 2022021021 W JP2022021021 W JP 2022021021W WO 2023223563 A1 WO2023223563 A1 WO 2023223563A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
temperature
molding material
amount
cylinder
Prior art date
Application number
PCT/JP2022/021021
Other languages
French (fr)
Japanese (ja)
Inventor
京祐 中村
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to JP2022547312A priority Critical patent/JP7189395B1/en
Priority to PCT/JP2022/021021 priority patent/WO2023223563A1/en
Publication of WO2023223563A1 publication Critical patent/WO2023223563A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/74Heating or cooling of the injection unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature

Definitions

  • the present disclosure relates to an arithmetic device and a program.
  • injection molding machines have been known that melt pellets placed in a hopper in a cylinder and inject them into a mold.
  • a heater is arranged around the outer periphery of the cylinder of the injection molding machine. When the heater heats the cylinder, the pellets (molding material) are melted. Further, by rotating a screw disposed within the cylinder, the molding material is kneaded and plasticized. In this way, the molding material is plasticized by the heat transfer from the heater and the shear heat generated by the shear action when the screw rotates.
  • the ratio of heat transfer and shear heat generation in the heat applied to the molding material is closely related to the molten state (quality) of the plasticized molding material.
  • quality the molten state of the plasticized molding material.
  • Patent Document 1 the energy amount of heat transfer and shear heat generation is not specifically calculated. Therefore, it is difficult to use heat transfer and shear heat generation to help determine molding conditions. Since the relationship between heat transfer and shear heat generation is a trade-off between quality and efficiency, it is preferable if the relationship between heat transfer and shear heat generation can be easily obtained as an index of molding conditions.
  • the present disclosure provides an arithmetic device that calculates the proportion of heat added to a molding material in an injection molding machine that includes a cylinder, a heater placed around the cylinder, and a screw placed inside the cylinder. a temperature acquisition unit that acquires the temperature of the molding material before heating and the temperature of the molding material injected from the cylinder as temperature information; and a motor that operates the screw and operating states of the heater.
  • an operation information acquisition section that acquires the characteristics of the molding material and the injection molding machine as characteristic information
  • a characteristic information acquisition section that acquires the characteristics of the molding material and the injection molding machine as characteristic information, based on the acquired temperature information, operation information, and characteristic information , relates to an arithmetic device comprising: an arithmetic unit that calculates a shear heat amount of the screw and an amount of heater heat transfer from the heater; and an output unit that outputs the arithmetic results.
  • the present disclosure also provides an injection molding machine that includes a cylinder, a heater disposed around the cylinder, and a screw disposed inside the cylinder, in which the ratio of the amount of heat applied to the molding material is calculated.
  • a program for operating a computer as an arithmetic device the computer operating a temperature acquisition unit that acquires the temperature of the molding material before heating and the temperature of the molding material injected from the cylinder as temperature information, and operating the screw.
  • an operation information acquisition unit that acquires the operating state of the motor and the heater as operation information
  • a characteristic information acquisition unit that acquires the characteristics of the molding material and the injection molding machine as characteristic information, the acquired temperature information, and the operation.
  • the present invention relates to a program that functions as a calculation unit that calculates the shear heat generation amount of the screw and the heater heat transfer amount from the heater based on the information and the characteristic information, and an output unit that outputs the calculation results.
  • FIG. 1 is a schematic diagram showing an injection molding machine including a control device according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram showing the relationship between the amount of heat generated and the amount of heat dissipated by the heater of the control device according to one embodiment.
  • FIG. 1 is a block diagram showing the configuration of a control device according to an embodiment. It is a graph showing the relationship between the flow of time, temperature, and calorific value of the control device of one embodiment.
  • FIG. 3 is a screen diagram showing a screen output by the output unit of the control device according to one embodiment. It is another example of the screen diagram which shows the screen output by the output part of the control device of one embodiment. It is a flowchart which shows the flow of operation of a control device of one embodiment.
  • the injection molding machine 10 is a device that molds pellets (hereinafter also referred to as molding material) by melting them and injecting them into a mold (not shown).
  • the injection molding machine 10 includes, for example, a cylinder 101, a heater 102, and a safety cover 103, as shown in FIG.
  • the cylinder 101 is, for example, a cylindrical body.
  • the diameter of one axial end of the cylinder 101 decreases toward the end.
  • the cylinder 101 has a screw (not shown) inside along the axial direction. The screw moves the molten molding material to one end of the cylinder 101 while stirring it.
  • the heater 102 is arranged around the cylinder 101.
  • a plurality of heaters 102 are arranged along the axial direction of the cylinder 101.
  • a plurality of heaters 102 are arranged from the nozzle portion at the axial tip of the cylinder 101 to the base end.
  • four heaters 102 are arranged along the axial direction so as to cover the outer periphery of the cylinder 101.
  • the heater 102 heats the cylinder 101 to 200 degrees or more, for example.
  • the safety cover 103 is a concave body placed around the heater 102.
  • the safety cover 103 is arranged to avoid contact with the heater 102, which is relatively hot.
  • the molding material is melted inside the cylinder 101 which is heated to 200 degrees or more by the heater 102.
  • the screw injects the molten molding material from one end of the cylinder 101 into the mold.
  • the injection molding machine 10 molds, for example, a plastic product.
  • a safety cover 103 is arranged around the heater 102.
  • the total amount of heat E M received by the molding material can be expressed by the following equation 1, where E T is the amount of heat transferred from the heater 102, and E S is the amount of heat generated by shearing.
  • the calculation device 1 calculates the amount of heat transfer ET using the temperature change of the molding material and the above correlation. This calculates the ratio between the amount of heat transfer and the amount of heat generated by shearing. This makes it possible to easily obtain the relationship between heat transfer and shear heat generation as an index of molding conditions.
  • the calculation device 1 is a device that calculates the proportion of heat added to the molding material in the injection molding machine 10. As shown in FIG. 3, the calculation device 1 includes a temperature acquisition section 11, a molding condition acquisition section 12, an operation information acquisition section 13, a characteristic information storage section 14, a characteristic information acquisition section 15, and a calculation section 16. , an output section 17, and a comparison section 18.
  • the temperature acquisition unit 11 is realized, for example, by the operation of a CPU.
  • the temperature acquisition unit 11 acquires the temperature of the molding material before heating and the temperature of the molding material injected from the cylinder 101 as temperature information.
  • the temperature acquisition unit 11 acquires, for example, the temperature of the molding material introduced into the material input port of the cylinder 101.
  • the temperature acquisition unit 11 acquires, for example, the actual temperature measured by a sensor (not shown) disposed at the material input port of the cylinder 101. Further, the temperature acquisition unit 11 acquires, for example, the temperature of the molding material injected from the cylinder 101.
  • the temperature acquisition unit 11 acquires, for example, an actual temperature measured by a sensor (not shown) placed at the tip of the cylinder 101.
  • the temperature acquisition unit 11 acquires, as temperature information, the temperature obtained by averaging the measured values of the molding material injected from the cylinder 101 over a predetermined period of time.
  • the molding condition acquisition unit 12 is realized by, for example, operating a CPU.
  • the molding condition acquisition unit 12 acquires molding conditions set in the injection molding machine 10.
  • the molding condition acquisition unit 12 acquires, for example, a metering stroke, metering back pressure, cooling time, metering rotation speed, etc. as molding conditions.
  • the operation information acquisition unit 13 is realized, for example, by the operation of a CPU.
  • the operation information acquisition unit 13 acquires the operation state of the motor that operates the screw and the heater 102 as operation information.
  • the operation information acquisition unit acquires the current load factor of the motor that rotationally drives the screw, the screw rotational angular velocity, and the operating rate of each heater 102 at each sampling period.
  • the characteristic information storage unit 14 is, for example, a storage medium such as a hard disk.
  • the characteristic information storage unit 14 stores the characteristics of the injection molding machine 10 as characteristic information.
  • the characteristic information storage unit 14 stores, for example, the specific heat of the molding material, the density at the time of melting, information about the motor (torque constant, reduction ratio, mechanical efficiency), information about the heater 102 (heater capacity), the shape of the heating cylinder 101 and the screw, etc. are stored as characteristic information.
  • the characteristic information acquisition unit 15 is realized, for example, by the operation of a CPU.
  • the characteristic information acquisition unit 15 acquires characteristic information of the injection molding machine 10.
  • the characteristic information acquisition unit 15 acquires the characteristic information by reading the characteristic information from the characteristic information storage unit 14, for example.
  • the calculation unit 16 is realized by, for example, operating a CPU.
  • the calculation unit 16 calculates the energy change amount of the molding material, the shear heat amount of the screw, and the heater heat transfer amount from the heater 102 based on the acquired temperature information, operation information, and characteristic information, and calculates the shear heat amount. Calculate the ratio between and the heater heat transfer amount. Further, the calculation unit 16 calculates the energy change amount of the molding material, the shear heat generation amount of the screw, the heater heat generation amount by the heater 102, and the heater transmission from the heater 102, based on the acquired temperature information, operation information, and characteristic information.
  • the ratio between the sum of the heater heat amount and the shear heat amount and the energy change amount, and the ratio between the heater heat amount and the heater heat transfer amount are calculated.
  • the calculation unit 16 calculates, for example, the amount of energy change of the molding material, the shear heat amount of the screw, and the amount of heat transfer from the heater for each molding cycle.
  • the calculation unit 16 calculates, for example, the temperature of the molding material before heating and the temperature of the molding material at the time of injection, which are obtained with a time difference between the timing when the molding material is introduced into the cylinder 101 and the time when the molding material moves to the injection port of the cylinder 101. Calculate the ratio using the temperature of the material as temperature information.
  • the calculation unit 16 calculates the ratio by using the temperature of the molding material before movement and the temperature of the molding material after movement as temperature information, taking into account the travel time from the injection of the molding material to the injection. Further, the calculation unit 16 calculates the shear heat generation amount using, for example, the time during which the shear torque is transmitted to the molding material by the screw. Further, the calculation unit 16 calculates the amount of heat generated by the heater using the heat transfer time to the molding material by the heater. For example, as shown in FIG. 4, the calculation unit 16 calculates calculation results for each predetermined section (one molding cycle). In FIG.
  • the calculation unit 16 calculates the amount of energy change, taking into consideration the travel time from the injection of the molding material to the injection, when the molding material input from the input port is injected in three cycles. ing. Furthermore, the shear heat generation amount and heater heat generation amount are determined using the operation information for three cycles.
  • the calculation section 16 includes an energy change amount calculation section 161 , a shear heat generation amount calculation section 162 , a heater heat transfer amount calculation section 163 , a heater heat generation amount calculation section 164 , and a ratio calculation section 165 .
  • the energy change amount calculation unit 161 calculates the amount of heat used for plasticizing the molding material as the energy change amount of the molding material. For example, the energy change amount calculation unit 161 calculates the following number as the energy change amount E M , the mass m of the molding material, the specific heat c of the molding material, and the temperature difference ⁇ T of the molding material between the material input port and the tip of the cylinder 101. Calculate 2.
  • the mass m of the molding material may be calculated by the product of the measured volume V and the melted density ⁇ of the molding material.
  • the specific heat c is not constant and changes depending on the temperature.
  • the energy change calculation unit 161 performs calculation using, for example, the specific heat c determined from the average value of the inlet temperature and the outlet temperature.
  • the shear calorific value calculation unit 162 calculates the shear calorific value based on the operation information and the characteristic information.
  • the shear calorific value calculation unit 162 calculates the shear calorific value E S by, for example, time-integrating the screw torque T and the rotational angular velocity ⁇ during metering.
  • the shear calorific value calculation unit 162 calculates the friction torque from the screw torque at the time of measurement by using the torque at the time of screw idling measured in advance at each rotation speed.
  • the shear heat generation amount ES may be calculated by subtracting it.
  • the shear calorific value calculation unit 162 calculates the shear calorific value E S by the torque constant K T of the screw rotating motor, the motor current value r M at the time of measurement, the motor current value r F at the time of idling, and the deceleration between the motor and the screw.
  • the ratio R, the rotational angular velocity ⁇ of the screw, the mechanical efficiency ⁇ , the measurement start time T 0 , and the measurement end time T 1 may be calculated using Equation 3 or Equation 4 below.
  • the current value rF of the motor during idling may be a value measured in advance according to the model, screw size, screw shape, and rotation speed.
  • the shear heat generation amount ES may be determined by further subtracting the acceleration torque from the screw torque.
  • the heater heat transfer amount calculating section 163 calculates the heat transfer amount of the heater 102.
  • the heater heat transfer amount calculation unit 163 calculates the heater heat transfer amount E T by finding the difference between the shear heat generation amount E S from the calculated energy change amount E M.
  • the heater calorific value calculation unit 164 calculates the total calorific value E Hi of the heater 102 by integrating the product of the operating rate of each heater 102 and the capacity of the heater 102 over time.
  • the heater calorific value calculation unit 164 calculates the following Equation 5 using the capacity W i of the heater 102, the operating rate r i of each heater 102, the calculation start time t 2 , and the calculation end time t 3 . good.
  • the heater heat generation amount calculation unit 164 may calculate the total heat generation amount E Hi of the heater 102 by correcting the power supply voltage during molding acquired as the operation information.
  • the ratio calculation unit 165 calculates the ratio between the heat transfer amount of the heater 102 and the shear heat generation amount in the energy change amount of the molding material. Further, the ratio calculation unit 165 calculates the plasticization energy efficiency, which indicates the efficiency of energy transmitted to the molding material during plasticization. The ratio calculation unit 165 calculates the plasticizing energy efficiency, for example, by calculating the ratio of the sum of the heat generation amount E H of the heater 102 and the shear heat generation amount E S and the energy change amount E M. Further, the ratio calculation unit 165 calculates the energy efficiency of the heater during plasticization that is transmitted to the molding material. The ratio calculation unit 165 calculates the heater energy efficiency, for example, by calculating the ratio between the heat generation amount EH of the heater 102 and the heat transfer amount Er of the heater 102.
  • the output unit 17 is realized by, for example, operating a CPU.
  • the output unit 17 outputs the calculation result.
  • the output unit 17 outputs the calculation result to a display device such as a display.
  • the output unit 17 outputs, for example, the calculation results of the calculation unit 16 in the form of a scatter diagram for each predetermined section. Further, the output unit 17 arranges the calculation results by the calculation unit 16 in chronological order, and outputs a cursor that can select the arranged calculation results in chronological order.
  • the output unit 17 shows the calculation result using, for example, a numerical value, a pie chart, or a bar graph. Further, the output unit 17 outputs the calculation results for each predetermined section (cycle) as a scatter diagram, as shown in FIG. 5, for example.
  • the output unit 17 selectably displays each cycle using a cursor, and also displays the amount of heat transfer, the amount of heat generated by shearing, the ratio of the amount of heat transferred and the amount of heat generated by shearing, the plasticization energy efficiency, the energy efficiency of the heater 102, and outputs the molding conditions.
  • the comparison unit 18 is realized by, for example, operating a CPU.
  • the comparison unit 18 compares molding conditions selected by a plurality of cursors. For example, as shown in FIG. 6, the comparison unit 18 compares the calculation results and molding conditions of a predetermined section selected by a plurality of cursors.
  • the output unit 17 outputs different molding conditions among the plurality of cursors. For example, as shown in FIG. 6, the output unit 17 outputs different molding conditions regarding the metering rotation speed and metering back pressure in two predetermined sections.
  • the characteristic information acquisition unit 15 acquires characteristic information (step S1).
  • the temperature acquisition unit 11 acquires temperature information (step S2).
  • the molding condition acquisition unit 12 acquires molding conditions (step S3).
  • the energy change amount calculation unit 161 calculates the energy change amount (step S4).
  • the heater calorific value calculation unit 164 calculates the heater calorific value (step S5).
  • the shear calorific value calculation unit 162 calculates the shear calorific value (step S6).
  • the heater heat transfer amount calculation unit 163 calculates the heater heat transfer amount (step S7).
  • the ratio calculation unit 165 calculates the ratio between the shear heat generation amount and the heater heat transfer amount, the ratio between the sum of the heater heat generation amount and the shear heat generation amount and the energy change amount, and the ratio between the heater heat generation amount and the heater heat transfer amount ( Step S8).
  • the output unit 17 outputs the calculation result (step S9).
  • step S10 it is determined whether or not to end. If it ends (step S10: YES), the process according to this flow ends. On the other hand, if the process does not end (step S10: NO), the process returns to step S2.
  • Each configuration included in the arithmetic device 1 can be realized by hardware, software, or a combination thereof.
  • being realized by software means being realized by a computer reading and executing a program.
  • Non-transitory computer-readable media include various types of tangible storage media. Examples of non-transitory computer-readable media are magnetic recording media (e.g., flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (e.g., magneto-optical disks), CD-ROMs (Read Only Memory), CD-ROMs, R, CD-R/W, semiconductor memory (for example, mask ROM, PROM (programmable ROM), EPROM (erasable PROM), flash ROM, RAM (random access memory)).
  • the display program may also be provided to the computer via various types of transitory computer readable media. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can provide the program to the computer via wired communication channels, such as electrical wires and fiber optics, or wireless communication channels.
  • an injection molding machine 10 that includes a cylinder 101, a heater 102 arranged around the cylinder 101, and a screw arranged inside the cylinder 101, a calculation device 1 that calculates the ratio of the amount of heat added to the molding material
  • a temperature acquisition unit 11 that acquires the temperature of the molding material before heating and the temperature of the molding material injected from the cylinder 101 as temperature information, and the operating state of the motor and heater 102 that operate the screw as the operation information.
  • An operation information acquisition unit 13 acquires the characteristics of the molding material and the injection molding machine 10
  • a characteristic information acquisition unit 15 acquires the characteristics of the molding material and the injection molding machine 10 as characteristic information.
  • a calculation unit 16 that calculates the amount of energy change, the shear heat generation amount of the screw, and the heater heat transfer amount from the heater 102, and also calculates the ratio of the shear heat generation amount and the heater heat transfer amount, and an output unit 17 that outputs the calculation results. , is provided. Thereby, the relationship between heat transfer and shear heat generation can be easily obtained as an index of molding conditions.
  • the calculation unit 16 calculates the amount of energy change of the molding material based on the acquired temperature information, operation information, and characteristic information. Thereby, energy efficiency for the molding material can be easily obtained.
  • the calculation unit 16 calculates the ratio between the shear heat generation amount and the heater heat transfer amount, and the output unit 17 outputs the calculated ratio. Thereby, the relationship between heat transfer and shear heat generation can be obtained as a value that is easier to understand as an index of molding conditions.
  • the calculation unit 16 calculates the ratio between the sum of the heater heat generation amount and the shear heat generation amount and the energy change amount, and the ratio of at least one of the heater heat generation amount and the heater heat transfer amount, and the output unit 17 Output the calculated ratio. This makes it possible to easily obtain more detailed information regarding the indicators of molding conditions.
  • the temperature acquisition unit 11 acquires the temperature obtained by averaging the actual measured values of the molding material injected from the cylinder 101 over a predetermined period of time as temperature information. Thereby, the temperature of the molding material can be obtained with high accuracy.
  • the calculation unit 16 uses the temperature of the molding material before heating and at the time of injection, which is obtained by taking a time interval between the timing at which the molding material is introduced into the cylinder 101 and the timing at which it moves to the injection port of the cylinder 101, as temperature information. Calculate percentages. As a result, it is possible to focus on the molding material input from the input port and obtain the temperature change of the molding material injected after moving inside the cylinder 101 as temperature information, so the amount of energy change can be calculated with high accuracy. Can be done.
  • the calculation unit 16 calculates the shear heat generation amount using the transmission time of the shear torque to the molding material by the screw. Thereby, the shear heat generation amount can be calculated with high accuracy.
  • the calculation unit 16 calculates the amount of heat generated by the heater using the heat transfer time to the molding material by the heater 102. Thereby, the amount of heat generated by the heater can be calculated with high accuracy.
  • the calculation unit 16 calculates the amount of energy change of the molding material, the shear heat amount of the screw, and the amount of heat transfer from the heater for each cycle, with metering and injection as one cycle. Thereby, the index of the molding conditions can be calculated for each cycle, so that later verification of the molding conditions can be made more efficient.
  • the output unit 17 outputs the calculation results of the calculation unit 16 in the form of a scatter diagram for each predetermined section. Thereby, the calculation result of the calculation unit 16 can be outputted more clearly.
  • the calculation device 1 further includes a molding condition acquisition unit 12 that acquires molding conditions set in the injection molding machine 10, and the output unit 17 arranges and outputs the calculation results by the calculation unit 16 in chronological order. At the same time, it outputs a cursor that allows the placed calculation results to be selected in chronological order and molding conditions corresponding to the calculation results selected by the cursor. Thereby, the calculation result of the calculation unit 16 can be outputted more clearly.
  • the arithmetic device 1 further includes a comparison unit 18 that compares molding conditions selected by a plurality of cursors, and an output unit 17 outputs molding conditions that differ between the plurality of cursors. Thereby, the calculation result of the calculation unit 16 can be outputted more clearly.
  • the calculation unit 16 calculates the ratio between the sum of the heater heat generation amount and the shear heat generation amount and the energy change amount, and the ratio of at least one of the heater heat generation amount and the heater heat transfer amount. It's okay.
  • the temperature acquisition unit 11 may acquire the actual temperature measured by a control temperature sensor for the molding machine to control the temperature of the material input port. Further, the temperature acquisition unit 11 may acquire the temperature (constant) input to the molding machine as the set temperature of the material input port. Furthermore, the temperature acquisition unit 11 may acquire any temperature (constant) input by the user. As a result, an additional sensor for measuring the temperature of the resin is not required, so that costs can be reduced.
  • the temperature acquisition unit 11 may acquire the actual temperature measured by a control temperature sensor for the molding machine to control the temperature at the tip of the heating cylinder 101. Further, the temperature acquisition unit 11 may acquire the temperature (constant) input to the molding machine as the set temperature of the tip of the heating cylinder 101. Furthermore, the temperature acquisition unit 11 may acquire any temperature (constant) input by the user. This eliminates the need for an additional sensor to measure the temperature of the resin, thereby reducing costs, freeing molding conditions from restrictions due to sensor strength, and avoiding reduction in cylinder strength.
  • the mass of the molded product measured by the user may be used as the mass m of the molding material. Although this increases the time and effort required for measurement, it is possible to accurately measure the mass of the weighed resin. Since the mass of the molded product during injection molding varies very little, it may be set to a constant value.
  • the calculation unit 16 is not limited to one cycle of the injection molding machine 10, but calculates the energy change amount of the molding material, the shear heat amount of the screw, the heater heat transfer amount from the heater 102, and calculates several cycles at once. , the ratio between the shear heat generation amount and the heater heat transfer amount, the ratio between the sum of the heater heat generation amount and the shear heat generation amount and the energy change amount, and the ratio between the heater heat generation amount and the heater heat transfer amount may be calculated. Thereby, calculation results can be stabilized by performing calculations for multiple cycles at once. For example, when comparing ratios under different molding conditions, it is desirable to compare values for multiple cycles.
  • the temperature acquisition unit 11 acquires the temperature of any one of the injection nozzle (not shown), the nozzle adapter (not shown), and the tip of the cylinder 101 of the injection molding machine 10. You can do it. Depending on the size of the cylinder volume and injection volume, which part of the nozzle, nozzle adapter, or cylinder the resin is present in the most immediately before injection changes. Therefore, calculation accuracy can be improved by using appropriate component temperatures accordingly.
  • the temperature acquisition unit 11 may acquire the temperature of the molding material to be injected and the temperature of the input port using a plurality of sensors.
  • the temperature acquisition unit 11 may use only the value of a specific sensor among the plurality of sensors. Further, the temperature acquisition unit 11 may use an average value of a plurality of sensors. By acquiring data from multiple sensors, it is possible to calculate the amount of energy change with higher accuracy.
  • the temperature acquisition unit 11 may directly measure the temperature of the material. Accuracy can be improved by directly measuring the temperature of the material. Moreover, the temperature acquisition unit 11 may acquire the temperature inside the wall. Thereby, temperature can be measured without considering the strength of the sensor.
  • the temperature acquisition unit 11 may acquire only the temperature of a specific control point, or may acquire the average value or the like. good. Further, when a plurality of temperature settings can be used, the temperature acquisition unit 11 may acquire only a specific temperature setting, or may acquire an average value or the like. In cases where the measured resin is evenly distributed in each part, accuracy can be improved by using the average value of each control point temperature or set temperature.
  • the ratio calculation unit 165 may convert the calculation result into a score.
  • the output unit 17 may output the scored results.
  • the ratio calculation unit 165 may score the ratio between heat transfer and shearing, or energy efficiency, for example.
  • the ratio calculation unit 165 may score the appropriateness of the ratio of heat transfer and shearing with respect to a preset target value emphasizing quality or molding efficiency.
  • the ratio calculation unit 165 may score the suitability of energy efficiency in actual operation with respect to energy efficiency set in advance as a target value.

Abstract

The objective of the present invention is to provide a calculation device and a program that make it possible to easily obtain, as an index of a molding condition, the relationship between heat transfer and shearing heat generation. This calculation device calculates a ratio of the amount of heat applied to a molding material in an injection molding machine provided with a cylinder, a heater disposed around the cylinder, and a screw disposed inside the cylinder. The calculation device is provided with: a temperature acquisition unit that acquires, as temperature information, a temperature of the molding material before heating and a temperature of the molding material being injected from the cylinder; an operation information acquisition unit that acquires, as operation information, operation states of a motor operating a screw and a heater; a characteristic information acquisition unit that acquires, as characteristic information, characteristics of the molding material and the injection molding machine; a calculation unit that calculates a shearing heat generation amount of the screw and a heater heat transfer amount from the heater, on the basis of the temperature information, the operation information, and the characteristic information that have been acquired; and an output unit that outputs a calculation result.

Description

演算装置及びプログラムArithmetic device and program
 本開示は、演算装置及びプログラムに関する。 The present disclosure relates to an arithmetic device and a program.
 従来より、ホッパに入れられたペレットをシリンダ内で溶融して、金型に注入する射出成形機が知られている。射出成形機のシリンダの外周には、ヒータが配置される。ヒータがシリンダを加熱することにより、ペレット(成形材料)が溶融される。また、シリンダ内に配置されるスクリュを回転させることにより、成形材料が混錬されて、可塑化される。このように、成形材料は、ヒータからの伝熱と、スクリュ回転時のせん断作用により発生するせん断発熱とによって可塑化される。 Conventionally, injection molding machines have been known that melt pellets placed in a hopper in a cylinder and inject them into a mold. A heater is arranged around the outer periphery of the cylinder of the injection molding machine. When the heater heats the cylinder, the pellets (molding material) are melted. Further, by rotating a screw disposed within the cylinder, the molding material is kneaded and plasticized. In this way, the molding material is plasticized by the heat transfer from the heater and the shear heat generated by the shear action when the screw rotates.
 このような射出成形機の制御方法として、ヒータ熱量における加熱シリンダ温度と、予め測定されたシリンダ温度との温度差をせん断発熱による温度情報として検出する方法が提案されている(例えば、特許文献1参照)。 As a control method for such an injection molding machine, a method has been proposed in which the temperature difference between the heating cylinder temperature based on the heater heat amount and the cylinder temperature measured in advance is detected as temperature information due to shear heat generation (for example, Patent Document 1 reference).
特開2001-225372号公報Japanese Patent Application Publication No. 2001-225372
 ところで、成形材料へ付与される熱における伝熱とせん断発熱の割合は、可塑化された成形材料の溶融状態(品質)と密接な関係がある。一般的には、伝熱主体で可塑化を行えば、良好な品質の成形材料が得られると言われている。一方で、せん断主体の場合には、効率的に可塑化を行うことができる。 By the way, the ratio of heat transfer and shear heat generation in the heat applied to the molding material is closely related to the molten state (quality) of the plasticized molding material. Generally, it is said that a molding material of good quality can be obtained if plasticization is performed mainly through heat transfer. On the other hand, if shear is the main component, plasticization can be performed efficiently.
 特許文献1では、伝熱とせん断発熱とのエネルギ量が具体的に計算されない。そのため、伝熱とせん断発熱とを成形条件の決定の助けとすることが難しい。伝熱とせん断発熱との関係は品質と効率とのトレードオフの関係にあることから、伝熱とせん断発熱との関係を成形条件の指標として容易に得ることができれば好適である。 In Patent Document 1, the energy amount of heat transfer and shear heat generation is not specifically calculated. Therefore, it is difficult to use heat transfer and shear heat generation to help determine molding conditions. Since the relationship between heat transfer and shear heat generation is a trade-off between quality and efficiency, it is preferable if the relationship between heat transfer and shear heat generation can be easily obtained as an index of molding conditions.
(1)本開示は、シリンダと、その周囲に配置されるヒータと、前記シリンダの内部に配置されるスクリュと、を備える射出成形機において、成形材料に加えられる熱量の割合を演算する演算装置であって、加熱前の前記成形材料の温度及び前記シリンダから射出される前記成形材料の温度を温度情報として取得する温度取得部と、前記スクリュを動作させるモータと前記ヒータの動作状態とを動作情報として取得する動作情報取得部と、前記成形材料及び前記射出成形機の特性を特性情報として取得する特性情報取得部と、取得された前記温度情報、前記動作情報、及び前記特性情報に基づいて、前記スクリュのせん断発熱量及び前記ヒータからのヒータ伝熱量を演算する演算部と、演算結果を出力する出力部と、を備える演算装置に関する。 (1) The present disclosure provides an arithmetic device that calculates the proportion of heat added to a molding material in an injection molding machine that includes a cylinder, a heater placed around the cylinder, and a screw placed inside the cylinder. a temperature acquisition unit that acquires the temperature of the molding material before heating and the temperature of the molding material injected from the cylinder as temperature information; and a motor that operates the screw and operating states of the heater. an operation information acquisition section that acquires the characteristics of the molding material and the injection molding machine as characteristic information; and a characteristic information acquisition section that acquires the characteristics of the molding material and the injection molding machine as characteristic information, based on the acquired temperature information, operation information, and characteristic information , relates to an arithmetic device comprising: an arithmetic unit that calculates a shear heat amount of the screw and an amount of heater heat transfer from the heater; and an output unit that outputs the arithmetic results.
(2)また、本開示は、シリンダと、その周囲に配置されるヒータと、前記シリンダの内部に配置されるスクリュと、を備える射出成形機において、成形材料に加えられる熱量の割合を演算する演算装置としてコンピュータを動作させるプログラムであって、前記コンピュータを、加熱前の前記成形材料の温度及び前記シリンダから射出される前記成形材料の温度を温度情報として取得する温度取得部、前記スクリュを動作させるモータと前記ヒータの動作状態とを動作情報として取得する動作情報取得部、前記成形材料及び前記射出成形機の特性を特性情報として取得する特性情報取得部、取得された前記温度情報、前記動作情報、及び前記特性情報に基づいて、前記スクリュのせん断発熱量及び前記ヒータからのヒータ伝熱量を演算する演算部、演算結果を出力する出力部、として機能させるプログラムに関する。 (2) The present disclosure also provides an injection molding machine that includes a cylinder, a heater disposed around the cylinder, and a screw disposed inside the cylinder, in which the ratio of the amount of heat applied to the molding material is calculated. A program for operating a computer as an arithmetic device, the computer operating a temperature acquisition unit that acquires the temperature of the molding material before heating and the temperature of the molding material injected from the cylinder as temperature information, and operating the screw. an operation information acquisition unit that acquires the operating state of the motor and the heater as operation information, a characteristic information acquisition unit that acquires the characteristics of the molding material and the injection molding machine as characteristic information, the acquired temperature information, and the operation. The present invention relates to a program that functions as a calculation unit that calculates the shear heat generation amount of the screw and the heater heat transfer amount from the heater based on the information and the characteristic information, and an output unit that outputs the calculation results.
 本開示によれば、伝熱とせん断発熱との関係を成形条件の指標として容易に得ることが可能な演算装置及びプログラムを提供することができる。 According to the present disclosure, it is possible to provide an arithmetic device and a program that can easily obtain the relationship between heat transfer and shear heat generation as an index of molding conditions.
本開示の一実施形態に係る制御装置を含む射出成形機を示す概略図である。1 is a schematic diagram showing an injection molding machine including a control device according to an embodiment of the present disclosure. 一実施形態の制御装置のヒータの発熱量と放熱量の関係を示す概略図である。FIG. 3 is a schematic diagram showing the relationship between the amount of heat generated and the amount of heat dissipated by the heater of the control device according to one embodiment. 一実施形態の制御装置の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of a control device according to an embodiment. 一実施形態の制御装置の時間の流れと温度と発熱量との関係を示すグラフである。It is a graph showing the relationship between the flow of time, temperature, and calorific value of the control device of one embodiment. 一実施形態の制御装置の出力部によって出力される画面を示す画面図である。FIG. 3 is a screen diagram showing a screen output by the output unit of the control device according to one embodiment. 一実施形態の制御装置の出力部によって出力される画面を示す画面図の他の例である。It is another example of the screen diagram which shows the screen output by the output part of the control device of one embodiment. 一実施形態の制御装置の動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation of a control device of one embodiment.
 以下、本開示の一実施形態に係る演算装置1及びプログラムについて、図1から図7を参照して説明する。
 まず、本実施形態により制御される射出成形機について説明する。
 射出成形機10は、ペレット(以下、成形材料ともいう)を溶融して金型(図示せず)に注入することで成形する装置である。射出成形機10は、例えば、図1に示すように、シリンダ101と、ヒータ102と、安全カバー103と、を備える。
Hereinafter, an arithmetic device 1 and a program according to an embodiment of the present disclosure will be described with reference to FIGS. 1 to 7.
First, an injection molding machine controlled by this embodiment will be explained.
The injection molding machine 10 is a device that molds pellets (hereinafter also referred to as molding material) by melting them and injecting them into a mold (not shown). The injection molding machine 10 includes, for example, a cylinder 101, a heater 102, and a safety cover 103, as shown in FIG.
 シリンダ101は、例えば、筒状体である。シリンダ101の軸方向一端部は、端部に向けて縮径する。シリンダ101は、軸方向に沿って、内部にスクリュ(図示せず)を有する。スクリュは、溶融した成形材料を攪拌しつつシリンダ101の一端側に移動させる。 The cylinder 101 is, for example, a cylindrical body. The diameter of one axial end of the cylinder 101 decreases toward the end. The cylinder 101 has a screw (not shown) inside along the axial direction. The screw moves the molten molding material to one end of the cylinder 101 while stirring it.
 ヒータ102は、シリンダ101の周囲に配置される。ヒータ102は、例えば、シリンダ101の軸方向に沿って、複数配置される。具体的には、ヒータ102は、シリンダ101の軸方向先端のノズル部から基端まで複数配置される。本実施形態において、ヒータ102はシリンダ101の外周を覆うように、軸方向に沿って4つ配置される。ヒータ102は、例えば、シリンダ101を200度以上に加熱する。 The heater 102 is arranged around the cylinder 101. For example, a plurality of heaters 102 are arranged along the axial direction of the cylinder 101. Specifically, a plurality of heaters 102 are arranged from the nozzle portion at the axial tip of the cylinder 101 to the base end. In this embodiment, four heaters 102 are arranged along the axial direction so as to cover the outer periphery of the cylinder 101. The heater 102 heats the cylinder 101 to 200 degrees or more, for example.
 安全カバー103は、ヒータ102の周囲に配置される凹状体である。安全カバー103は、比較的高温となるヒータ102への接触を回避するために配置される。 The safety cover 103 is a concave body placed around the heater 102. The safety cover 103 is arranged to avoid contact with the heater 102, which is relatively hot.
 以上の射出成形機10によれば、ヒータ102によって200度以上に加熱されたシリンダ101の内部において、成形材料が溶融される。スクリュは、溶融した成形材料をシリンダ101の一端から金型に注入する。これにより、射出成形機10は、例えば、プラスチック製品を成形する。ヒータ102の周囲には、安全カバー103が配置される。 According to the injection molding machine 10 described above, the molding material is melted inside the cylinder 101 which is heated to 200 degrees or more by the heater 102. The screw injects the molten molding material from one end of the cylinder 101 into the mold. Thereby, the injection molding machine 10 molds, for example, a plastic product. A safety cover 103 is arranged around the heater 102.
 ここで、図2に示すように、成形材料が受け取る総熱量Eは、ヒータ102からの伝熱量をE、せん断発熱量をEとすると、以下の数1で示され得る。 Here, as shown in FIG. 2, the total amount of heat E M received by the molding material can be expressed by the following equation 1, where E T is the amount of heat transferred from the heater 102, and E S is the amount of heat generated by shearing.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 以下の実施形態に係る演算装置1は、成形材料の温度変化と、上記相関を用いて、伝熱量Eを演算する。これにより、伝熱量とせん断発熱量との割合を演算するものである。これにより、伝熱とせん断発熱との関係を成形条件の指標として容易に得ることを図ったものである。 The calculation device 1 according to the embodiment below calculates the amount of heat transfer ET using the temperature change of the molding material and the above correlation. This calculates the ratio between the amount of heat transfer and the amount of heat generated by shearing. This makes it possible to easily obtain the relationship between heat transfer and shear heat generation as an index of molding conditions.
 次に、本開示の一実施形態に係る演算装置1について、図1から図7を参照して説明する。
 演算装置1は、射出成形機10において、成形材料に加えられる熱量の割合を演算する装置である。演算装置1は、図3に示すように、温度取得部11と、成形条件取得部12と、動作情報取得部13と、特性情報格納部14と、特性情報取得部15と、演算部16と、出力部17と、比較部18と、を備える。
Next, an arithmetic device 1 according to an embodiment of the present disclosure will be described with reference to FIGS. 1 to 7.
The calculation device 1 is a device that calculates the proportion of heat added to the molding material in the injection molding machine 10. As shown in FIG. 3, the calculation device 1 includes a temperature acquisition section 11, a molding condition acquisition section 12, an operation information acquisition section 13, a characteristic information storage section 14, a characteristic information acquisition section 15, and a calculation section 16. , an output section 17, and a comparison section 18.
 温度取得部11は、例えば、CPUが動作することにより実現される。温度取得部11は、加熱前の前記成形材料の温度及びシリンダ101から射出される成形材料の温度を温度情報として取得する。温度取得部11は、例えば、シリンダ101の材料投入口に投入される成形材料の温度を取得する。温度取得部11は、例えば、シリンダ101の材料投入口に配置されるセンサ(図示せず)の実測温度を取得する。また、温度取得部11は、例えば、シリンダ101から射出される成形材料の温度を取得する。温度取得部11は、例えば、シリンダ101の先端に配置されたセンサ(図示せず)の実測温度を取得する。温度取得部11は、例えば、シリンダ101から射出される成形材料の実測値を所定時間で平均した温度を温度情報として取得する。 The temperature acquisition unit 11 is realized, for example, by the operation of a CPU. The temperature acquisition unit 11 acquires the temperature of the molding material before heating and the temperature of the molding material injected from the cylinder 101 as temperature information. The temperature acquisition unit 11 acquires, for example, the temperature of the molding material introduced into the material input port of the cylinder 101. The temperature acquisition unit 11 acquires, for example, the actual temperature measured by a sensor (not shown) disposed at the material input port of the cylinder 101. Further, the temperature acquisition unit 11 acquires, for example, the temperature of the molding material injected from the cylinder 101. The temperature acquisition unit 11 acquires, for example, an actual temperature measured by a sensor (not shown) placed at the tip of the cylinder 101. For example, the temperature acquisition unit 11 acquires, as temperature information, the temperature obtained by averaging the measured values of the molding material injected from the cylinder 101 over a predetermined period of time.
 成形条件取得部12は、例えば、CPUが動作することにより実現される。成形条件取得部12は、射出成形機10に設定される成形条件を取得する。成形条件取得部12は、例えば、計量ストローク、計量背圧、冷却時間、及び計量回転数等を成形条件として取得する。 The molding condition acquisition unit 12 is realized by, for example, operating a CPU. The molding condition acquisition unit 12 acquires molding conditions set in the injection molding machine 10. The molding condition acquisition unit 12 acquires, for example, a metering stroke, metering back pressure, cooling time, metering rotation speed, etc. as molding conditions.
 動作情報取得部13は、例えば、CPUが動作することにより実現される。動作情報取得部13は、スクリュを動作させるモータとヒータ102の動作状態とを動作情報として取得する。動作情報取得部は、スクリュを回転駆動するモータの電流負荷率、スクリュ回転角速度、各ヒータ102の稼働率をサンプリング周期毎に取得する。 The operation information acquisition unit 13 is realized, for example, by the operation of a CPU. The operation information acquisition unit 13 acquires the operation state of the motor that operates the screw and the heater 102 as operation information. The operation information acquisition unit acquires the current load factor of the motor that rotationally drives the screw, the screw rotational angular velocity, and the operating rate of each heater 102 at each sampling period.
 特性情報格納部14は、例えば、ハードディスク等の記憶媒体である。特性情報格納部14は、射出成形機10の特性を特性情報として格納する。特性情報格納部14は、例えば、成形材料の比熱、溶融時の密度、モータに関する情報(トルク定数、減速比、機械効率)、ヒータ102に関する情報(ヒータ容量)、加熱シリンダ101やスクリュの形状、等を特性情報として格納する。 The characteristic information storage unit 14 is, for example, a storage medium such as a hard disk. The characteristic information storage unit 14 stores the characteristics of the injection molding machine 10 as characteristic information. The characteristic information storage unit 14 stores, for example, the specific heat of the molding material, the density at the time of melting, information about the motor (torque constant, reduction ratio, mechanical efficiency), information about the heater 102 (heater capacity), the shape of the heating cylinder 101 and the screw, etc. are stored as characteristic information.
 特性情報取得部15は、例えば、CPUが動作することにより実現される。特性情報取得部15は、射出成形機10の特性情報を取得する。特性情報取得部15は、例えば、特性情報格納部14から特性情報を読み出すことにより特性情報を取得する。 The characteristic information acquisition unit 15 is realized, for example, by the operation of a CPU. The characteristic information acquisition unit 15 acquires characteristic information of the injection molding machine 10. The characteristic information acquisition unit 15 acquires the characteristic information by reading the characteristic information from the characteristic information storage unit 14, for example.
 演算部16は、例えば、CPUが動作することにより実現される。演算部16は、取得された温度情報、動作情報、及び特性情報に基づいて、成形材料のエネルギ変化量、スクリュのせん断発熱量、及びヒータ102からのヒータ伝熱量を演算するとともに、せん断発熱量とヒータ伝熱量との割合を演算する。また、演算部16は、取得された温度情報、動作情報、及び特性情報に基づいて、成形材料のエネルギ変化量、スクリュのせん断発熱量、ヒータ102によるヒータ発熱量、及びヒータ102からのヒータ伝熱量を演算するとともに、ヒータ発熱量及びせん断発熱量の和とエネルギ変化量との割合、及びヒータ発熱量とヒータ伝熱量の割合とを演算する。演算部16は、例えば、1成形サイクルごとに成形材料のエネルギ変化量、スクリュのせん断発熱量、及びヒータからのヒータ伝熱量を演算する。演算部16は、例えば、成形材料のシリンダ101に投入されるタイミングからシリンダ101の射出口に移動するまでのタイミングの時間差を開けて取得された加熱前の成形材料の温度及び射出時の前記成形材料の温度を温度情報として割合を演算する。すなわち、演算部16は、成形材料の投入から射出までの移動時間を考慮して、移動前の成形材料の温度と移動後の成形材料の温度とを温度情報として割合を演算する。また、演算部16は、例えば、スクリュによる成形材料へのせん断トルクの伝達時間を用いてせん断発熱量を演算する。また、演算部16は、ヒータによる成形材料への伝熱時間を用いてヒータ発熱量を演算する。演算部16は、例えば、図4に示すように、所定区間(1成形サイクル)ごとの演算結果を演算する。図4において、演算部16は、例えば、投入口から投入された成形材料について、3サイクルで射出される場合に、成形材料の投入から射出までの移動時間を考慮して、エネルギ変化量を求めている。また、3サイクル分の動作情報を使用して、せん断発熱量およびヒータ発熱量を求めている。演算部16は、エネルギ変化量演算部161と、せん断発熱量演算部162と、ヒータ伝熱量演算部163と、ヒータ発熱量演算部164と、割合演算部165と、を備える。 The calculation unit 16 is realized by, for example, operating a CPU. The calculation unit 16 calculates the energy change amount of the molding material, the shear heat amount of the screw, and the heater heat transfer amount from the heater 102 based on the acquired temperature information, operation information, and characteristic information, and calculates the shear heat amount. Calculate the ratio between and the heater heat transfer amount. Further, the calculation unit 16 calculates the energy change amount of the molding material, the shear heat generation amount of the screw, the heater heat generation amount by the heater 102, and the heater transmission from the heater 102, based on the acquired temperature information, operation information, and characteristic information. In addition to calculating the amount of heat, the ratio between the sum of the heater heat amount and the shear heat amount and the energy change amount, and the ratio between the heater heat amount and the heater heat transfer amount are calculated. The calculation unit 16 calculates, for example, the amount of energy change of the molding material, the shear heat amount of the screw, and the amount of heat transfer from the heater for each molding cycle. The calculation unit 16 calculates, for example, the temperature of the molding material before heating and the temperature of the molding material at the time of injection, which are obtained with a time difference between the timing when the molding material is introduced into the cylinder 101 and the time when the molding material moves to the injection port of the cylinder 101. Calculate the ratio using the temperature of the material as temperature information. That is, the calculation unit 16 calculates the ratio by using the temperature of the molding material before movement and the temperature of the molding material after movement as temperature information, taking into account the travel time from the injection of the molding material to the injection. Further, the calculation unit 16 calculates the shear heat generation amount using, for example, the time during which the shear torque is transmitted to the molding material by the screw. Further, the calculation unit 16 calculates the amount of heat generated by the heater using the heat transfer time to the molding material by the heater. For example, as shown in FIG. 4, the calculation unit 16 calculates calculation results for each predetermined section (one molding cycle). In FIG. 4, the calculation unit 16 calculates the amount of energy change, taking into consideration the travel time from the injection of the molding material to the injection, when the molding material input from the input port is injected in three cycles. ing. Furthermore, the shear heat generation amount and heater heat generation amount are determined using the operation information for three cycles. The calculation section 16 includes an energy change amount calculation section 161 , a shear heat generation amount calculation section 162 , a heater heat transfer amount calculation section 163 , a heater heat generation amount calculation section 164 , and a ratio calculation section 165 .
 エネルギ変化量演算部161は、成形材料のエネルギ変化量として、成形材料の可塑化に用いられた熱量を演算する。エネルギ変化量演算部161は、例えば、エネルギ変化量Eについて、成形材料の質量m、成形材料の比熱c、材料投入口とシリンダ101の先端との成形材料の温度差ΔTとして、以下の数2を演算する。ここで、成形材料の質量mは、計量体積Vと成形材料の溶融時密度ρの積によって演算されてもよい。なお、比熱cは、一定ではなく、温度依存で変化する。エネルギ変化量演算部161は、例えば、入口温度から出口温度の平均値によって求められる比熱cを用いて演算する。 The energy change amount calculation unit 161 calculates the amount of heat used for plasticizing the molding material as the energy change amount of the molding material. For example, the energy change amount calculation unit 161 calculates the following number as the energy change amount E M , the mass m of the molding material, the specific heat c of the molding material, and the temperature difference ΔT of the molding material between the material input port and the tip of the cylinder 101. Calculate 2. Here, the mass m of the molding material may be calculated by the product of the measured volume V and the melted density ρ of the molding material. Note that the specific heat c is not constant and changes depending on the temperature. The energy change calculation unit 161 performs calculation using, for example, the specific heat c determined from the average value of the inlet temperature and the outlet temperature.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 せん断発熱量演算部162は、動作情報及び特性情報に基づいて、せん断発熱量を演算する。せん断発熱量演算部162は、例えば、計量時のスクリュトルクTと回転角速度ωとを時間積分することにより、せん断発熱量Eを演算する。なお、せん断発熱量演算部162は、成形材料に加えられたトルクを正確に演算するため、予め各回転速度で測定したスクリュ空転時のトルクを用いて、摩擦トルク分を計量時のスクリュトルクから差し引いてせん断発熱量Eを演算してもよい。せん断発熱量演算部162は、せん断発熱量Eについて、スクリュ回転モータのトルク定数K、計量時のモータの電流値r、空転時のモータの電流値r、モータとスクリュ間の減速比R、スクリュの回転角速度ω、機械効率η、計量開始時刻T、計量終了時刻Tとして、以下の数3又は数4で演算されてもよい。なお、空転時のモータの電流値rは、機種、スクリュサイズ、スクリュ形状、及び回転数に応じて事前に測定される値であってよい。また、せん断発熱量Eは、スクリュトルクから加速トルク分をさらに差し引いて求められてもよい。 The shear calorific value calculation unit 162 calculates the shear calorific value based on the operation information and the characteristic information. The shear calorific value calculation unit 162 calculates the shear calorific value E S by, for example, time-integrating the screw torque T and the rotational angular velocity ω during metering. In order to accurately calculate the torque applied to the molding material, the shear calorific value calculation unit 162 calculates the friction torque from the screw torque at the time of measurement by using the torque at the time of screw idling measured in advance at each rotation speed. The shear heat generation amount ES may be calculated by subtracting it. The shear calorific value calculation unit 162 calculates the shear calorific value E S by the torque constant K T of the screw rotating motor, the motor current value r M at the time of measurement, the motor current value r F at the time of idling, and the deceleration between the motor and the screw. The ratio R, the rotational angular velocity ω of the screw, the mechanical efficiency η, the measurement start time T 0 , and the measurement end time T 1 may be calculated using Equation 3 or Equation 4 below. Note that the current value rF of the motor during idling may be a value measured in advance according to the model, screw size, screw shape, and rotation speed. Further, the shear heat generation amount ES may be determined by further subtracting the acceleration torque from the screw torque.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ヒータ伝熱量演算部163は、ヒータ102の伝熱量を演算する。ヒータ伝熱量演算部163は、演算されたエネルギ変化量Eからせん断発熱量Eの差を求めることにより、ヒータ伝熱量Eを演算する。 The heater heat transfer amount calculating section 163 calculates the heat transfer amount of the heater 102. The heater heat transfer amount calculation unit 163 calculates the heater heat transfer amount E T by finding the difference between the shear heat generation amount E S from the calculated energy change amount E M.
 ヒータ発熱量演算部164は、各ヒータ102の稼働率と、ヒータ102の容量との積を時間積分することにより、ヒータ102の総発熱量EHiを演算する。ヒータ発熱量演算部164は、ヒータ102の容量W、各ヒータ102の稼働率r,計算開始時刻t,計算終了時刻tとして、以下の数5を演算することにより求められてもよい。また、ヒータ発熱量演算部164は、動作情報として取得した成形時の電源電圧を補正することにより、ヒータ102の総発熱量EHiを求めてもよい。 The heater calorific value calculation unit 164 calculates the total calorific value E Hi of the heater 102 by integrating the product of the operating rate of each heater 102 and the capacity of the heater 102 over time. The heater calorific value calculation unit 164 calculates the following Equation 5 using the capacity W i of the heater 102, the operating rate r i of each heater 102, the calculation start time t 2 , and the calculation end time t 3 . good. Furthermore, the heater heat generation amount calculation unit 164 may calculate the total heat generation amount E Hi of the heater 102 by correcting the power supply voltage during molding acquired as the operation information.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 割合演算部165は、成形材料のエネルギ変化量におけるヒータ102の伝熱量とせん断発熱量との割合を演算する。また、割合演算部165は、成形材料に伝達される可塑化時のエネルギの効率を示す可塑化エネルギ効率を演算する。割合演算部165は、例えば、ヒータ102の発熱量E及びせん断発熱量Eの和とエネルギ変化量Eとの比を演算することにより、可塑化エネルギ効率を演算する。また、割合演算部165は、成形材料に伝達される可塑化時のヒータのエネルギ効率を演算する。割合演算部165は、例えば、ヒータ102の発熱量Eとヒータ102の伝熱量Eとの比を演算することにより、ヒータエネルギ効率を演算する。 The ratio calculation unit 165 calculates the ratio between the heat transfer amount of the heater 102 and the shear heat generation amount in the energy change amount of the molding material. Further, the ratio calculation unit 165 calculates the plasticization energy efficiency, which indicates the efficiency of energy transmitted to the molding material during plasticization. The ratio calculation unit 165 calculates the plasticizing energy efficiency, for example, by calculating the ratio of the sum of the heat generation amount E H of the heater 102 and the shear heat generation amount E S and the energy change amount E M. Further, the ratio calculation unit 165 calculates the energy efficiency of the heater during plasticization that is transmitted to the molding material. The ratio calculation unit 165 calculates the heater energy efficiency, for example, by calculating the ratio between the heat generation amount EH of the heater 102 and the heat transfer amount Er of the heater 102.
 出力部17は、例えば、CPUが動作することにより実現される。出力部17は、演算結果を出力する。出力部17は、例えば、ディスプレイ等の表示装置に演算結果を出力する。出力部17は、例えば、演算部16の演算結果を所定区間ごとに散布図で出力する。また、出力部17は、演算部16による演算結果を時系列的に配置するとともに、配置された演算結果を時系列に沿って選択可能なカーソルを出力する。出力部17は、例えば、数値、円グラフ、又は棒グラフで演算結果を示す。また、出力部17は、例えば、図5に示すように、所定区間(サイクル)ごとの演算結果を散布図として出力する。出力部17は、カーソルを用いて各サイクルを選択可能に示すとともに、選択されたサイクルにおける伝熱量、せん断発熱量、伝熱量及びせん断発熱量の割合、可塑化エネルギ効率、ヒータ102のエネルギ効率、及び成形条件を出力する。 The output unit 17 is realized by, for example, operating a CPU. The output unit 17 outputs the calculation result. The output unit 17 outputs the calculation result to a display device such as a display. The output unit 17 outputs, for example, the calculation results of the calculation unit 16 in the form of a scatter diagram for each predetermined section. Further, the output unit 17 arranges the calculation results by the calculation unit 16 in chronological order, and outputs a cursor that can select the arranged calculation results in chronological order. The output unit 17 shows the calculation result using, for example, a numerical value, a pie chart, or a bar graph. Further, the output unit 17 outputs the calculation results for each predetermined section (cycle) as a scatter diagram, as shown in FIG. 5, for example. The output unit 17 selectably displays each cycle using a cursor, and also displays the amount of heat transfer, the amount of heat generated by shearing, the ratio of the amount of heat transferred and the amount of heat generated by shearing, the plasticization energy efficiency, the energy efficiency of the heater 102, and outputs the molding conditions.
 比較部18は、例えば、CPUが動作することにより実現される。比較部18は、複数のカーソルによって選択された成形条件を比較する。比較部18は、例えば、図6に示すように、複数のカーソルで選択された所定区間の演算結果及び成形条件を比較する。 The comparison unit 18 is realized by, for example, operating a CPU. The comparison unit 18 compares molding conditions selected by a plurality of cursors. For example, as shown in FIG. 6, the comparison unit 18 compares the calculation results and molding conditions of a predetermined section selected by a plurality of cursors.
 以上の比較部18及び出力部17によれば、出力部17は、複数のカーソルの間で異なる成形条件を出力する。出力部17は、例えば、図6に示すように、2つの所定区間において計量回転数、計量背圧について異なる成形条件として出力する。 According to the above comparison unit 18 and output unit 17, the output unit 17 outputs different molding conditions among the plurality of cursors. For example, as shown in FIG. 6, the output unit 17 outputs different molding conditions regarding the metering rotation speed and metering back pressure in two predetermined sections.
 次に、演算装置1による処理の流れについて、図7を参照して説明する。
 まず、特性情報取得部15は、特性情報を取得する(ステップS1)。次いで、温度取得部11は、温度情報を取得する(ステップS2)。次いで、成形条件取得部12は、成形条件を取得する(ステップS3)。
Next, the flow of processing by the arithmetic device 1 will be explained with reference to FIG.
First, the characteristic information acquisition unit 15 acquires characteristic information (step S1). Next, the temperature acquisition unit 11 acquires temperature information (step S2). Next, the molding condition acquisition unit 12 acquires molding conditions (step S3).
 次いで、エネルギ変化量演算部161は、エネルギ変化量を演算する(ステップS4)。次いで、ヒータ発熱量演算部164は、ヒータ発熱量を演算する(ステップS5)。次いで、せん断発熱量演算部162は、せん断発熱量を演算する(ステップS6)。次いで、ヒータ伝熱量演算部163は、ヒータ伝熱量を演算する(ステップS7)。次いで、割合演算部165は、せん断発熱量とヒータ伝熱量との割合、ヒータ発熱量及びせん断発熱量の和とエネルギ変化量との割合、及びヒータ発熱量とヒータ伝熱量の割合を演算する(ステップS8)。次いで、出力部17は、演算結果を出力する(ステップS9)。 Next, the energy change amount calculation unit 161 calculates the energy change amount (step S4). Next, the heater calorific value calculation unit 164 calculates the heater calorific value (step S5). Next, the shear calorific value calculation unit 162 calculates the shear calorific value (step S6). Next, the heater heat transfer amount calculation unit 163 calculates the heater heat transfer amount (step S7). Next, the ratio calculation unit 165 calculates the ratio between the shear heat generation amount and the heater heat transfer amount, the ratio between the sum of the heater heat generation amount and the shear heat generation amount and the energy change amount, and the ratio between the heater heat generation amount and the heater heat transfer amount ( Step S8). Next, the output unit 17 outputs the calculation result (step S9).
 次いで、終了するか否かが判断される(ステップS10)。終了する場合(ステップS10:YES)、本フローによる処理は、終了する。一方、終了しない場合(ステップS10:NO)、処理は、ステップS2に戻る。 Next, it is determined whether or not to end (step S10). If it ends (step S10: YES), the process according to this flow ends. On the other hand, if the process does not end (step S10: NO), the process returns to step S2.
 次に、本実施形態のプログラムについて説明する。
 演算装置1に含まれる各構成は、ハードウェア、ソフトウェア又はこれらの組み合わせによりそれぞれ実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。
Next, the program of this embodiment will be explained.
Each configuration included in the arithmetic device 1 can be realized by hardware, software, or a combination thereof. Here, being realized by software means being realized by a computer reading and executing a program.
 プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、フレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、表示プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 The program can be stored and provided to a computer using various types of non-transitory computer readable media. Non-transitory computer-readable media include various types of tangible storage media. Examples of non-transitory computer-readable media are magnetic recording media (e.g., flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (e.g., magneto-optical disks), CD-ROMs (Read Only Memory), CD-ROMs, R, CD-R/W, semiconductor memory (for example, mask ROM, PROM (programmable ROM), EPROM (erasable PROM), flash ROM, RAM (random access memory)). The display program may also be provided to the computer via various types of transitory computer readable media. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves. The temporary computer-readable medium can provide the program to the computer via wired communication channels, such as electrical wires and fiber optics, or wireless communication channels.
 以上、一実施形態に係る演算装置1及びプログラムによれば、以下の効果を奏する。
(1)シリンダ101と、その周囲に配置されるヒータ102と、シリンダ101の内部に配置されるスクリュと、を備える射出成形機10において、成形材料に加えられる熱量の割合を演算する演算装置1であって、加熱前の成形材料の温度及びシリンダ101から射出される成形材料の温度を温度情報として取得する温度取得部11と、スクリュを動作させるモータとヒータ102の動作状態とを動作情報として取得する動作情報取得部13と、成形材料及び射出成形機10の特性を特性情報として取得する特性情報取得部15と、取得された温度情報、動作情報、及び特性情報に基づいて、成形材料のエネルギ変化量、スクリュのせん断発熱量、及びヒータ102からのヒータ伝熱量を演算するとともに、せん断発熱量とヒータ伝熱量との割合を演算する演算部16と、演算結果を出力する出力部17と、を備える。これにより、伝熱とせん断発熱との関係を成形条件の指標として容易に得ることができる。
As described above, according to the arithmetic device 1 and the program according to the embodiment, the following effects are achieved.
(1) In an injection molding machine 10 that includes a cylinder 101, a heater 102 arranged around the cylinder 101, and a screw arranged inside the cylinder 101, a calculation device 1 that calculates the ratio of the amount of heat added to the molding material A temperature acquisition unit 11 that acquires the temperature of the molding material before heating and the temperature of the molding material injected from the cylinder 101 as temperature information, and the operating state of the motor and heater 102 that operate the screw as the operation information. An operation information acquisition unit 13 acquires the characteristics of the molding material and the injection molding machine 10, and a characteristic information acquisition unit 15 acquires the characteristics of the molding material and the injection molding machine 10 as characteristic information. A calculation unit 16 that calculates the amount of energy change, the shear heat generation amount of the screw, and the heater heat transfer amount from the heater 102, and also calculates the ratio of the shear heat generation amount and the heater heat transfer amount, and an output unit 17 that outputs the calculation results. , is provided. Thereby, the relationship between heat transfer and shear heat generation can be easily obtained as an index of molding conditions.
(2)演算部16は、取得された温度情報、動作情報、及び特性情報に基づいて、成形材料のエネルギ変化量を算出する。これにより、成形材料に対するエネルギ効率を容易に得ることができる。 (2) The calculation unit 16 calculates the amount of energy change of the molding material based on the acquired temperature information, operation information, and characteristic information. Thereby, energy efficiency for the molding material can be easily obtained.
(3)演算部16は、せん断発熱量とヒータ伝熱量との割合を演算し、出力部17は、演算された割合を出力する。これにより、伝熱とせん断発熱との関係を成形条件の指標としてより分かりやすい値として得ることができる。 (3) The calculation unit 16 calculates the ratio between the shear heat generation amount and the heater heat transfer amount, and the output unit 17 outputs the calculated ratio. Thereby, the relationship between heat transfer and shear heat generation can be obtained as a value that is easier to understand as an index of molding conditions.
(4)演算部16は、ヒータ発熱量及びせん断発熱量の和とエネルギ変化量との割合、及びヒータ発熱量とヒータ伝熱量の割合との少なくとも一方の割合を演算し、出力部17は、演算された割合を出力する。これにより、成形条件の指標について、より詳細な情報を容易に得ることができる。 (4) The calculation unit 16 calculates the ratio between the sum of the heater heat generation amount and the shear heat generation amount and the energy change amount, and the ratio of at least one of the heater heat generation amount and the heater heat transfer amount, and the output unit 17 Output the calculated ratio. This makes it possible to easily obtain more detailed information regarding the indicators of molding conditions.
(5)温度取得部11は、シリンダ101から射出される成形材料の実測値を所定時間で平均した温度を温度情報として取得する。これにより、成形材料の温度を精度よく得ることができる。 (5) The temperature acquisition unit 11 acquires the temperature obtained by averaging the actual measured values of the molding material injected from the cylinder 101 over a predetermined period of time as temperature information. Thereby, the temperature of the molding material can be obtained with high accuracy.
(6)演算部16は、成形材料のシリンダ101に投入されるタイミングからシリンダ101の射出口に移動するタイミングの時間を開けて取得された加熱前及び射出時の成形材料の温度を温度情報として割合を演算する。これにより、投入口から投入される成形材料に着目して、シリンダ101内を移動した後に射出される成形材料の温度変化を温度情報として得ることができるので、エネルギ変化量を精度よく演算することができる。 (6) The calculation unit 16 uses the temperature of the molding material before heating and at the time of injection, which is obtained by taking a time interval between the timing at which the molding material is introduced into the cylinder 101 and the timing at which it moves to the injection port of the cylinder 101, as temperature information. Calculate percentages. As a result, it is possible to focus on the molding material input from the input port and obtain the temperature change of the molding material injected after moving inside the cylinder 101 as temperature information, so the amount of energy change can be calculated with high accuracy. Can be done.
(7)演算部16は、スクリュによる成形材料へのせん断トルクの伝達時間を用いてせん断発熱量を演算する。これにより、せん断発熱量を精度よく演算することができる。 (7) The calculation unit 16 calculates the shear heat generation amount using the transmission time of the shear torque to the molding material by the screw. Thereby, the shear heat generation amount can be calculated with high accuracy.
(8)演算部16は、ヒータ102による成形材料への伝熱時間を用いてヒータ発熱量を演算する。これにより、ヒータ発熱量を精度よく演算することができる。 (8) The calculation unit 16 calculates the amount of heat generated by the heater using the heat transfer time to the molding material by the heater 102. Thereby, the amount of heat generated by the heater can be calculated with high accuracy.
(9)演算部16は、計量及び射出を1サイクルとして、1サイクルごとに成形材料のエネルギ変化量、スクリュのせん断発熱量、及びヒータからのヒータ伝熱量を演算する。これにより、サイクルごとに成形条件の指標を演算することができるので、後の成形条件の検証をより効率的にすることができる。 (9) The calculation unit 16 calculates the amount of energy change of the molding material, the shear heat amount of the screw, and the amount of heat transfer from the heater for each cycle, with metering and injection as one cycle. Thereby, the index of the molding conditions can be calculated for each cycle, so that later verification of the molding conditions can be made more efficient.
(10)出力部17は、演算部16の演算結果を所定区間ごとに散布図で出力する。これにより、演算部16の演算結果をより分かりやすく出力することができる。 (10) The output unit 17 outputs the calculation results of the calculation unit 16 in the form of a scatter diagram for each predetermined section. Thereby, the calculation result of the calculation unit 16 can be outputted more clearly.
(11)演算装置1は、射出成形機10に設定される成形条件を取得する成形条件取得部12をさらに備え、出力部17は、演算部16による演算結果を時系列的に配置して出力するとともに、配置された演算結果を時系列に沿って選択可能なカーソルとカーソルによって選択された演算結果に対応する成形条件を出力する。これにより、演算部16の演算結果をより分かりやすく出力することができる。 (11) The calculation device 1 further includes a molding condition acquisition unit 12 that acquires molding conditions set in the injection molding machine 10, and the output unit 17 arranges and outputs the calculation results by the calculation unit 16 in chronological order. At the same time, it outputs a cursor that allows the placed calculation results to be selected in chronological order and molding conditions corresponding to the calculation results selected by the cursor. Thereby, the calculation result of the calculation unit 16 can be outputted more clearly.
(12)演算装置1は、複数のカーソルによって選択された成形条件を比較する比較部18をさらに備え、出力部17は、複数のカーソルの間で異なる成形条件を出力する。これにより、演算部16の演算結果をより分かりやすく出力することができる。 (12) The arithmetic device 1 further includes a comparison unit 18 that compares molding conditions selected by a plurality of cursors, and an output unit 17 outputs molding conditions that differ between the plurality of cursors. Thereby, the calculation result of the calculation unit 16 can be outputted more clearly.
 以上、本開示の演算装置及びプログラムの好ましい各実施形態につき説明したが、本開示は、上述の実施形態に制限されるものではなく、適宜変更が可能である。
 例えば、上記実施形態において、演算部16は、ヒータ発熱量及びせん断発熱量の和とエネルギ変化量との割合、及びヒータ発熱量とヒータ伝熱量の割合との少なくとも一方の割合を演算するようにしてもよい。
Although preferred embodiments of the arithmetic device and program of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments and can be modified as appropriate.
For example, in the above embodiment, the calculation unit 16 calculates the ratio between the sum of the heater heat generation amount and the shear heat generation amount and the energy change amount, and the ratio of at least one of the heater heat generation amount and the heater heat transfer amount. It's okay.
 また、上記実施形態において、温度取得部11は、成形機が材料投入口の温度を制御するための、制御用温度センサの実測温度を取得してもよい。また、温度取得部11は、材料投入口の設定温度として、成形機に入力された温度(定数)を取得してもよい。また、温度取得部11は、使用者により入力された任意の温度(定数)を取得してもよい。これにより、樹脂の温度を測定するための追加のセンサを必要としないため、低コスト化を図ることができる。 Furthermore, in the embodiment described above, the temperature acquisition unit 11 may acquire the actual temperature measured by a control temperature sensor for the molding machine to control the temperature of the material input port. Further, the temperature acquisition unit 11 may acquire the temperature (constant) input to the molding machine as the set temperature of the material input port. Furthermore, the temperature acquisition unit 11 may acquire any temperature (constant) input by the user. As a result, an additional sensor for measuring the temperature of the resin is not required, so that costs can be reduced.
 また、上記実施形態において、温度取得部11は、成形機が加熱シリンダ101の先端の温度を制御するための、制御用温度センサの実測温度を取得してもよい。また、温度取得部11は、加熱シリンダ101の先端の設定温度として、成形機に入力された温度(定数)を取得してもよい。また、温度取得部11は、使用者により入力された任意の温度(定数)を取得してもよい。これにより、樹脂の温度を測定するための追加のセンサを必要としないため、低コスト化、センサ強度による成形条件の制約からの解放、シリンダ強度の低下の回避等を図ることができる。 Furthermore, in the embodiment described above, the temperature acquisition unit 11 may acquire the actual temperature measured by a control temperature sensor for the molding machine to control the temperature at the tip of the heating cylinder 101. Further, the temperature acquisition unit 11 may acquire the temperature (constant) input to the molding machine as the set temperature of the tip of the heating cylinder 101. Furthermore, the temperature acquisition unit 11 may acquire any temperature (constant) input by the user. This eliminates the need for an additional sensor to measure the temperature of the resin, thereby reducing costs, freeing molding conditions from restrictions due to sensor strength, and avoiding reduction in cylinder strength.
 また、上記実施形態において、成形材料の質量mは、使用者によって測定される成形品の質量が用いられてもよい。これにより、測定の手間は増えるが、計量された樹脂の質量を正確に測定することができる。射出成形における成形品の質量の変動は非常に小さいので、一定値としてもよい。 Furthermore, in the above embodiment, the mass of the molded product measured by the user may be used as the mass m of the molding material. Although this increases the time and effort required for measurement, it is possible to accurately measure the mass of the weighed resin. Since the mass of the molded product during injection molding varies very little, it may be set to a constant value.
 また、上記実施形態において、演算部16は、射出成形機10の1サイクルに限定されず、数サイクルをまとめて、成形材料のエネルギ変化量、スクリュのせん断発熱量、ヒータ102からのヒータ伝熱量、せん断発熱量とヒータ伝熱量との割合、ヒータ発熱量及びせん断発熱量の和とエネルギ変化量との割合、及びヒータ発熱量とヒータ伝熱量の割合を演算してもよい。これにより、複数サイクル分の計算をまとめて行うことにより、計算結果を安定化することができる。例えば、異なる成形条件における割合を比較する際などは複数サイクル分の値を比較するのが望ましい。 Further, in the above embodiment, the calculation unit 16 is not limited to one cycle of the injection molding machine 10, but calculates the energy change amount of the molding material, the shear heat amount of the screw, the heater heat transfer amount from the heater 102, and calculates several cycles at once. , the ratio between the shear heat generation amount and the heater heat transfer amount, the ratio between the sum of the heater heat generation amount and the shear heat generation amount and the energy change amount, and the ratio between the heater heat generation amount and the heater heat transfer amount may be calculated. Thereby, calculation results can be stabilized by performing calculations for multiple cycles at once. For example, when comparing ratios under different molding conditions, it is desirable to compare values for multiple cycles.
 また、上記実施形態において、温度取得部11は、射出成形機10の射出ノズル(図示せず)、ノズルアダプタ(図示せず)、及びシリンダ101の先端の温度のいずれかの温度を取得するようにしてよい。シリンダ体積や射出体積の大小によって、射出直前の樹脂がノズル・ノズルアダプタ・シリンダのどの部品内に最も多く存在しているかが変わる。そこで、それに応じて適する部品の温度を使用することにより、演算精度を向上することができる。 Furthermore, in the above embodiment, the temperature acquisition unit 11 acquires the temperature of any one of the injection nozzle (not shown), the nozzle adapter (not shown), and the tip of the cylinder 101 of the injection molding machine 10. You can do it. Depending on the size of the cylinder volume and injection volume, which part of the nozzle, nozzle adapter, or cylinder the resin is present in the most immediately before injection changes. Therefore, calculation accuracy can be improved by using appropriate component temperatures accordingly.
 また、上記実施形態において、温度取得部11は、複数本のセンサを用いて射出される成形材料の温度及び投入口の温度を取得してもよい。温度取得部11は、複数のセンサのうち、特定のセンサの値だけを使用してもよい。また、温度取得部11は、複数のセンサの平均値等を使用してもよい。複数のセンサのデータを取得することで、より精度よくエネルギ変化量の計算をすることができる。 Furthermore, in the embodiment described above, the temperature acquisition unit 11 may acquire the temperature of the molding material to be injected and the temperature of the input port using a plurality of sensors. The temperature acquisition unit 11 may use only the value of a specific sensor among the plurality of sensors. Further, the temperature acquisition unit 11 may use an average value of a plurality of sensors. By acquiring data from multiple sensors, it is possible to calculate the amount of energy change with higher accuracy.
 また、温度取得部11は、材料の温度を直接測定してもよい。材料の温度を直接測定することにより、精度を向上することができる。また、温度取得部11は、壁内温度を取得してもよい。これにより、センサの強度を考慮せずに温度を測定することができる。 Additionally, the temperature acquisition unit 11 may directly measure the temperature of the material. Accuracy can be improved by directly measuring the temperature of the material. Moreover, the temperature acquisition unit 11 may acquire the temperature inside the wall. Thereby, temperature can be measured without considering the strength of the sensor.
 また、温度取得部11は、ノズル、ノズルアダプタ、加熱シリンダ101等、複数の制御点温度が使用できる場合、特定の制御点の温度だけを取得してもよく、平均値等を取得してもよい。また、温度取得部11は、複数の設定温度が使用できる場合、特定の設定温度だけを取得してもよく、平均値等を取得してもよい。計量された樹脂が各部品に満遍なく存在する場合等では、各制御点温度や設定温度の平均値等を使用すると精度を向上することができる。 Furthermore, when multiple control point temperatures can be used for the nozzle, nozzle adapter, heating cylinder 101, etc., the temperature acquisition unit 11 may acquire only the temperature of a specific control point, or may acquire the average value or the like. good. Further, when a plurality of temperature settings can be used, the temperature acquisition unit 11 may acquire only a specific temperature setting, or may acquire an average value or the like. In cases where the measured resin is evenly distributed in each part, accuracy can be improved by using the average value of each control point temperature or set temperature.
 また、上記実施形態において、割合演算部165は、演算結果をスコア化してもよい。出力部17は、スコア化した結果を出力してもよい。割合演算部165は、例えば、伝熱とせん断との割合、又はエネルギ効率をスコア化してもよい。割合演算部165は、例えば、予め設定された品質重視又は成形効率重視の目標値に対して、伝熱とせん断との割合の適否をスコア化してもよい。また、割合演算部165は、予め目標値として設定されるエネルギ効率に対して、実際の動作におけるエネルギ効率の適否をスコア化してもよい。 Furthermore, in the above embodiment, the ratio calculation unit 165 may convert the calculation result into a score. The output unit 17 may output the scored results. The ratio calculation unit 165 may score the ratio between heat transfer and shearing, or energy efficiency, for example. For example, the ratio calculation unit 165 may score the appropriateness of the ratio of heat transfer and shearing with respect to a preset target value emphasizing quality or molding efficiency. Further, the ratio calculation unit 165 may score the suitability of energy efficiency in actual operation with respect to energy efficiency set in advance as a target value.
 1 演算装置
 10 射出成形機
 11 温度取得部
 12 成形条件取得部
 13 動作情報取得部
 14 特性情報取得部
 16 演算部
 17 出力部
 101 シリンダ
 102 ヒータ
1 Arithmetic device 10 Injection molding machine 11 Temperature acquisition section 12 Molding condition acquisition section 13 Operation information acquisition section 14 Characteristic information acquisition section 16 Arithmetic section 17 Output section 101 Cylinder 102 Heater

Claims (13)

  1.  シリンダと、その周囲に配置されるヒータと、前記シリンダの内部に配置されるスクリュと、を備える射出成形機において、成形材料に加えられる熱量の割合を演算する演算装置であって、
     加熱前の前記成形材料の温度及び前記シリンダから射出される前記成形材料の温度を温度情報として取得する温度取得部と、
     前記スクリュを動作させるモータと前記ヒータの動作状態とを動作情報として取得する動作情報取得部と、
     前記成形材料及び前記射出成形機の特性を特性情報として取得する特性情報取得部と、
     取得された前記温度情報、前記動作情報、及び前記特性情報に基づいて、前記スクリュのせん断発熱量及び前記ヒータからのヒータ伝熱量を演算する演算部と、
     演算結果を出力する出力部と、
    を備える演算装置。
    In an injection molding machine including a cylinder, a heater disposed around the cylinder, and a screw disposed inside the cylinder, an arithmetic device that computes the proportion of heat added to a molding material,
    a temperature acquisition unit that acquires the temperature of the molding material before heating and the temperature of the molding material injected from the cylinder as temperature information;
    an operation information acquisition unit that acquires, as operation information, a motor that operates the screw and an operation state of the heater;
    a characteristic information acquisition unit that acquires characteristics of the molding material and the injection molding machine as characteristic information;
    a calculation unit that calculates a shear heat amount of the screw and a heater heat transfer amount from the heater based on the acquired temperature information, the operation information, and the characteristic information;
    an output section that outputs the calculation results;
    A calculation device comprising:
  2.  前記演算部は、取得された前記温度情報、前記動作情報、及び前記特性情報に基づいて、前記成形材料のエネルギ変化量を算出する請求項1に記載の演算装置。 The arithmetic device according to claim 1, wherein the arithmetic unit calculates the amount of energy change of the molding material based on the acquired temperature information, operation information, and characteristic information.
  3.  前記演算部は、前記せん断発熱量と前記ヒータ伝熱量との割合を演算し、
     前記出力部は、演算された割合を出力する請求項1に記載の演算装置。
    The calculation unit calculates a ratio between the shear heat amount and the heater heat transfer amount,
    The arithmetic device according to claim 1, wherein the output section outputs the calculated ratio.
  4.  前記演算部は、前記ヒータによるヒータ発熱量及び前記せん断発熱量の和と前記エネルギ変化量との割合、及び前記ヒータ発熱量と前記ヒータ伝熱量の割合との少なくとも一方の割合を演算し、
     前記出力部は、演算された割合を出力する請求項2に記載の演算装置。
    The calculation unit calculates a ratio between the sum of the heater heat generation amount and the shear heat generation amount by the heater and the energy change amount, and a ratio of at least one of the heater heat generation amount and the heater heat transfer amount,
    The arithmetic device according to claim 2, wherein the output section outputs the calculated ratio.
  5.  前記温度取得部は、前記シリンダから射出される前記成形材料の実測値を所定時間で平均した温度を温度情報として取得する請求項1に記載の演算装置。 The arithmetic device according to claim 1, wherein the temperature acquisition unit acquires, as temperature information, a temperature obtained by averaging actual measured values of the molding material injected from the cylinder over a predetermined period of time.
  6.  前記演算部は、前記成形材料の前記シリンダに投入されるタイミングから前記シリンダの射出口に移動するタイミングの時間を開けて取得された加熱前の前記成形材料の温度及び射出時の前記成形材料の温度を温度情報として割合を演算する請求項1に記載の演算装置。 The calculation unit calculates the temperature of the molding material before heating and the temperature of the molding material at the time of injection, which are obtained after a time interval between the timing at which the molding material is introduced into the cylinder and the timing at which the molding material moves to the injection port of the cylinder. The calculation device according to claim 1, which calculates a ratio using temperature as temperature information.
  7.  前記演算部は、前記スクリュによる前記成形材料へのせん断トルクの伝達時間を用いて前記せん断発熱量を演算する請求項1に記載の演算装置。 The computing device according to claim 1, wherein the computing unit computes the shear heat generation amount using the transmission time of shear torque to the molding material by the screw.
  8.  前記演算部は、前記ヒータによる前記成形材料への伝熱時間を用いて前記ヒータ発熱量を演算する請求項4に記載の演算装置。 The arithmetic device according to claim 4, wherein the arithmetic unit calculates the amount of heat generated by the heater using the heat transfer time to the molding material by the heater.
  9.  前記演算部は、1成形サイクルごとに前記成形材料のエネルギ変化量、前記スクリュのせん断発熱量、及び前記ヒータからのヒータ伝熱量を演算する請求項2に記載の演算装置。 The arithmetic device according to claim 2, wherein the arithmetic unit calculates an energy change amount of the molding material, a shear heat amount of the screw, and a heater heat transfer amount from the heater for each molding cycle.
  10.  前記出力部は、前記演算部の演算結果を所定区間ごとに散布図で出力する請求項1に記載の演算装置。 The arithmetic device according to claim 1, wherein the output section outputs the arithmetic results of the arithmetic section in the form of a scatter diagram for each predetermined section.
  11.  前記射出成形機に設定される成形条件を取得する成形条件取得部をさらに備え、
     前記出力部は、前記演算部による演算結果を時系列的に配置して出力するとともに、配置された演算結果を時系列に沿って選択可能なカーソルと前記カーソルによって選択された演算結果に対応する成形条件を出力する請求項1に記載の演算装置。
    further comprising a molding condition acquisition unit that acquires molding conditions set in the injection molding machine,
    The output unit arranges and outputs the calculation results by the calculation unit in chronological order, and also corresponds to a cursor that can select the arranged calculation results in chronological order and the calculation result selected by the cursor. The arithmetic device according to claim 1, which outputs molding conditions.
  12.  複数のカーソルによって選択された前記成形条件を比較する比較部をさらに備え、
     前記出力部は、複数のカーソルの間で異なる成形条件を出力する請求項11に記載の演算装置。
    further comprising a comparison unit that compares the molding conditions selected by a plurality of cursors,
    The arithmetic device according to claim 11, wherein the output unit outputs different molding conditions among a plurality of cursors.
  13.  シリンダと、その周囲に配置されるヒータと、前記シリンダの内部に配置されるスクリュと、を備える射出成形機において、成形材料に加えられる熱量の割合を演算する演算装置としてコンピュータを動作させるプログラムであって、
     前記コンピュータを、
     加熱前の前記成形材料の温度及び前記シリンダから射出される前記成形材料の温度を温度情報として取得する温度取得部、
     前記スクリュを動作させるモータと前記ヒータの動作状態とを動作情報として取得する動作情報取得部、
     前記成形材料及び前記射出成形機の特性を特性情報として取得する特性情報取得部、
     取得された前記温度情報、前記動作情報、及び前記特性情報に基づいて、前記スクリュのせん断発熱量及び前記ヒータからのヒータ伝熱量を演算する演算部、
     演算結果を出力する出力部、
    として機能させるプログラム。
    A program that causes a computer to operate as a calculation device that calculates the proportion of heat added to molding material in an injection molding machine that includes a cylinder, a heater placed around the cylinder, and a screw placed inside the cylinder. There it is,
    The computer,
    a temperature acquisition unit that acquires the temperature of the molding material before heating and the temperature of the molding material injected from the cylinder as temperature information;
    an operation information acquisition unit that acquires, as operation information, a motor that operates the screw and an operation state of the heater;
    a characteristic information acquisition unit that acquires characteristics of the molding material and the injection molding machine as characteristic information;
    a calculation unit that calculates a shear heat amount of the screw and a heater heat transfer amount from the heater based on the acquired temperature information, the operation information, and the characteristic information;
    an output section that outputs the calculation results;
    A program that functions as
PCT/JP2022/021021 2022-05-20 2022-05-20 Calculation device and program WO2023223563A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022547312A JP7189395B1 (en) 2022-05-20 2022-05-20 Arithmetic device and program
PCT/JP2022/021021 WO2023223563A1 (en) 2022-05-20 2022-05-20 Calculation device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021021 WO2023223563A1 (en) 2022-05-20 2022-05-20 Calculation device and program

Publications (1)

Publication Number Publication Date
WO2023223563A1 true WO2023223563A1 (en) 2023-11-23

Family

ID=84441457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021021 WO2023223563A1 (en) 2022-05-20 2022-05-20 Calculation device and program

Country Status (2)

Country Link
JP (1) JP7189395B1 (en)
WO (1) WO2023223563A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246808A (en) * 1993-02-25 1994-09-06 Japan Steel Works Ltd:The Injection molding method
JP2001225372A (en) * 2000-02-16 2001-08-21 Sumitomo Heavy Ind Ltd Method for controlling injection molding machine
JP2004255607A (en) * 2003-02-24 2004-09-16 Fanuc Ltd Monitor of injection molding machine
JP2014042998A (en) * 2012-08-24 2014-03-13 Sumitomo Heavy Ind Ltd Injection molding machine
WO2021246524A1 (en) * 2020-06-05 2021-12-09 ファナック株式会社 Control device and program for injection molding machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246808A (en) * 1993-02-25 1994-09-06 Japan Steel Works Ltd:The Injection molding method
JP2001225372A (en) * 2000-02-16 2001-08-21 Sumitomo Heavy Ind Ltd Method for controlling injection molding machine
JP2004255607A (en) * 2003-02-24 2004-09-16 Fanuc Ltd Monitor of injection molding machine
JP2014042998A (en) * 2012-08-24 2014-03-13 Sumitomo Heavy Ind Ltd Injection molding machine
WO2021246524A1 (en) * 2020-06-05 2021-12-09 ファナック株式会社 Control device and program for injection molding machine

Also Published As

Publication number Publication date
JPWO2023223563A1 (en) 2023-11-23
JP7189395B1 (en) 2022-12-13

Similar Documents

Publication Publication Date Title
JP2559651B2 (en) Injection molding control method and apparatus
JPH05147090A (en) Method and device for controlling fluctuation of rheological properties of resin in injection molding machine
JP5888817B2 (en) Plasticization simulation apparatus, plasticization simulation method thereof, and plasticization simulation program
CN100503207C (en) Monitoring device for an injection molding machine
JP2020001183A (en) Molding support apparatus for injection molding machine
CN106182653B (en) Injection (mo(u)lding) machine
EP3100840A1 (en) Injection molding machine
JP2013224017A (en) Injection molding machine
WO2023223563A1 (en) Calculation device and program
JP5917340B2 (en) Injection molding machine
CN113733505A (en) Injection molding system, molding condition correction system, and injection molding method
JP6868652B2 (en) Molding support device for injection molding machines
WO2021246524A1 (en) Control device and program for injection molding machine
JPS63150632A (en) Method for measuring consumed resin weight for injection molding machine
WO2021157737A1 (en) Injection molding assistance device and injection molding machine comprising same
JP2622925B2 (en) Injection molding method
WO2023058213A1 (en) Control device and program for injection molding machine
JP3310772B2 (en) Control method of injection molding machine
JP5847670B2 (en) Injection molding machine
JP2021070210A (en) Control device, injection molding machine, and control method
CN118043189A (en) Control device and program for injection molding machine
JP2006305932A (en) Control device of injection molding machine
JP7397185B2 (en) Injection molding machine control device and program
WO2024100765A1 (en) Device for controlling injection-molding machine
JP5917336B2 (en) Injection molding machine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022547312

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942767

Country of ref document: EP

Kind code of ref document: A1