JPH07290095A - Advanced intensive waste water treatment - Google Patents
Advanced intensive waste water treatmentInfo
- Publication number
- JPH07290095A JPH07290095A JP6089459A JP8945994A JPH07290095A JP H07290095 A JPH07290095 A JP H07290095A JP 6089459 A JP6089459 A JP 6089459A JP 8945994 A JP8945994 A JP 8945994A JP H07290095 A JPH07290095 A JP H07290095A
- Authority
- JP
- Japan
- Prior art keywords
- stage
- tank
- water
- digestion
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Biological Treatment Of Waste Water (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、石油、石油化学、食品
業、大型クリーニング業等の工場廃水および汚濁した河
川、湖沼水、下水等の一般廃水中の有機汚濁物質等を、
微生物付着担体により主に微生物の作用により、吸着、
接触酸化分解するとともに、増殖または遊離微生物およ
びSS(Suspended Solid:懸濁粒子)分を濾過除去し
て、この濾過除去物を逆洗水中に回収し、効率的に分解
および消化減量することができる高度集約化廃水処理方
法に関する。FIELD OF THE INVENTION The present invention relates to industrial wastewater of petroleum, petrochemical, food industry, large-scale cleaning industry, etc. and organic pollutants in general wastewater such as polluted rivers, lake water, sewage, etc.
Adsorption, mainly by the action of microorganisms, due to the microorganism adhesion carrier
Along with catalytic oxidative decomposition, growth or free microorganisms and SS (Suspended Solid: Suspended particles) are removed by filtration, and the filtered-out product can be recovered in backwash water for efficient decomposition and digestion reduction. Highly integrated wastewater treatment method.
【0002】[0002]
【従来の技術】微生物の接触酸化作用を利用する廃水処
理の方法に関しては、汎用性はあるが負荷の変動に弱い
という欠点を有する活性汚泥法にとって代えるべく、従
来は生物膜担体を利用した種々のタイプの高性能プロセ
スが個別に研究開発されてきた(例えば、特開昭62−
144799号公報、特開昭63−77598号公報、
特開平2−122891号公報参照)。2. Description of the Related Art Regarding a method of treating wastewater utilizing the catalytic oxidation of microorganisms, various methods using a biofilm carrier have been used so far in order to replace the activated sludge method, which has the drawback of being versatile but vulnerable to load fluctuations. These types of high-performance processes have been individually researched and developed (for example, Japanese Patent Laid-Open No. 62-
No. 144799, Japanese Patent Laid-Open No. 63-77598,
See Japanese Patent Application Laid-Open No. 2-122891).
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記従
来の個別プロセスを最適フローに組み合わせることによ
り、廃水浄化からスラッジ減量化までを含めたトータル
浄化能力として、個別プロセスの単純加算で得られる以
上の高性能化を実現する組み合わせ廃水処理システムは
未だ開発されていない。However, by combining the above-mentioned conventional individual processes with an optimum flow, the total purification capacity from wastewater purification to sludge reduction is higher than that obtained by simple addition of individual processes. A combination wastewater treatment system that realizes performance improvement has not been developed yet.
【0004】本発明は上記従来の問題を解決するもので
あって、従来個別に開発されてきた微生物利用による種
々タイプの個別高性能プロセスを、最適に組み合わせる
ことにより、個々のプロセス能力の加算で得られる以上
の高性能を得ることができ、余剰スラッジの発生が最小
もしくはゼロの浄化処理を可能とする高度集約化廃水処
理方法を提供することを目的とする。The present invention solves the above-mentioned conventional problems. By optimally combining various types of individual high-performance processes utilizing microorganisms, which have been individually developed in the past, it is possible to add individual process capabilities. It is an object of the present invention to provide a highly-integrated wastewater treatment method that can obtain higher performance than that obtained and that enables purification treatment with minimal or no excess sludge generation.
【0005】[0005]
【課題を解決するための手段】そのために本発明の高度
集約化廃水処理方法は、微生物による接触酸化処理、濾
過分離および逆洗処理からなる第一工程と、第一工程で
生じる逆洗水を空気加圧溶解および常圧気泡接触による
微生物の酸化分解、自己消化および浮上濃縮からなる第
二工程と、第二工程で生じる残汚泥を原生動物ないし後
生動物の食物連鎖により消化減量する第三工程とを備
え、第三工程の残水を第一工程へもどし、第一工程にお
いて浄化された処理水を得ることを特徴とする。なお、
本発明の実施態様としては下記の構成が挙げられる。To this end, the highly integrated wastewater treatment method of the present invention comprises a first step consisting of a catalytic oxidation treatment by microorganisms, a filtration separation and a backwash treatment, and a backwash water generated in the first step. Second step consisting of oxidative decomposition of microorganisms by air pressure dissolution and contact with atmospheric bubbles, self-digestion and floating concentration, and third step of digesting and reducing the residual sludge generated in the second step by food chain of protozoa or metazoa And the residual water of the third step is returned to the first step to obtain the treated water purified in the first step. In addition,
Embodiments of the present invention include the following configurations.
【0006】(1)第一工程は、1槽の1段または多段の
生物濾過装置で間欠逆洗、若しくは2槽の生物濾過装置
を交互切換で運転および逆洗を行うこと、(2)第二工程
は、先ず加圧空気で効率的に酸素を溶解してSS分等を
接触酸化分解するとともに、常圧気泡を接触させること
により、汚泥を自己消化させてSS分、汚泥を浮上濃縮
させること、(3)第三工程は、残汚泥を含む廃水を汚泥
消化減量槽の下部に供給し、先ず、嫌気性濾過層で嫌気
消化させ、次いで、好気性濾過層において、原生動物な
いし後生動物による消化減量処理を行い、次いで、嫌気
性濾過層で嫌気消化すること、(4)第三工程において、
消化減量槽内部中央部に漏斗状の循環パイプを設けるこ
と、(5)第三工程において、循環パイプを複数配設し、
排水路を集水管に接続すること、(6)第三工程におい
て、消化減量槽を矩形槽とし、複数の循環用仕切部材で
区画し、循環用仕切部材の間に縦方向に整流板を配設
し、担体の自由流動を制限すること、(7)第三工程にお
いて、有底筒状の消化減量槽を筒状の複数の仕切部材で
仕切り、多段階処理すること、(8)第二工程と第三工程
を一つの多段処理槽とすること、(9)第三工程の前段に
負荷安定化プレリアクターによる廃水処理法を適用する
こと。(1) The first step is to perform intermittent backwash with a single-stage one-stage or multi-stage biological filtration device, or to alternately operate and backwash two-tank biological filtration devices, (2) In the two steps, first, oxygen is efficiently dissolved with pressurized air to catalytically oxidize and decompose SS and the like, and atmospheric pressure bubbles are brought into contact with each other to self-extinguish sludge and float and concentrate SS and sludge. That is, (3) the third step is to supply wastewater containing residual sludge to the lower part of the sludge digestion and reduction tank, first anaerobically digest it with an anaerobic filtration layer, and then, in the aerobic filtration layer, protozoa or metazoa. Digestion weight loss treatment with, then anaerobic digestion in the anaerobic filtration layer, (4) in the third step,
A funnel-shaped circulation pipe is provided in the center of the inside of the digestion reduction tank, and (5) a plurality of circulation pipes are arranged in the third step,
Connecting the drainage channel to the water collection pipe, (6) In the third step, the digestion and loss tank is a rectangular tank, divided by a plurality of circulation partition members, and a straightening vane is vertically arranged between the circulation partition members. To limit the free flow of the carrier, (7) in the third step, a bottomed tubular digestion and loss tank is partitioned by a plurality of tubular partition members, and multi-stage treatment is carried out, (8) second Use one multi-stage treatment tank for the process and the third process, and (9) apply the wastewater treatment method using a load-stabilizing pre-reactor before the third process.
【0007】[0007]
【作用】本発明においては、第一工程の生物濾過処理に
おいて、微生物付着担体による汚濁物質の吸着除去と接
触酸化分解および増殖微生物等の濾過除去機能により短
時間かつ高効率で処理廃水中の汚濁成分を分離除去し、
浄化処理水は放流もしくは再利用する。第二工程におい
ては、第一工程で生じる逆洗水を加圧して酸素溶解効率
を高めることにより、汚濁成分を効率的に接触酸化分解
し、かつ微生物等を高効率で自己消化して汚濁成分や微
生物等を減量化する。第三工程においては、第二工程で
生じる残汚泥を含む処理水を原生動物ないし後生動物の
食物連鎖を利用して処理水中の余剰微生物をさらに最小
レベルにまで消化減量化する。In the present invention, in the first step of the biological filtration treatment, the contaminants adsorbed and removed by the microorganism-carrying carrier, the catalytic oxidative decomposition and the filtration and removal function of the proliferating microorganisms and the like can be used to quickly and efficiently pollute the treated wastewater. Remove the components
Purified water is discharged or reused. In the second step, the backwash water generated in the first step is pressurized to enhance the oxygen dissolution efficiency, thereby efficiently catalytically oxidizing and decomposing polluted components, and highly efficiently self-digesting microorganisms and other polluted components. And reduce the amount of microorganisms. In the third step, the treated water containing the residual sludge generated in the second step is digested and reduced to the minimum level of the excess microorganisms in the treated water by utilizing the food chain of protozoa or metazoan.
【0008】多量の原水は第一工程で生物濾過処理後排
出するため、第一〜第三全工程で通常の生物処理装置全
体の数十分の一に小型化できる。また、第一工程で濃縮
除去された汚濁成分のみを効率的に第二および第三工程
で分解できる。Since a large amount of raw water is discharged after the biological filtration treatment in the first step, it is possible to reduce the size of the ordinary biological treatment apparatus to several tenths in all the first to third steps. Further, only the pollutant component concentrated and removed in the first step can be efficiently decomposed in the second and third steps.
【0009】[0009]
【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。図1は、本発明の高度集約化廃水処理方法の1
実施例を示すフロー図である。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a highly integrated wastewater treatment method 1 according to the present invention.
It is a flowchart which shows an Example.
【0010】最初の処理として第一工程では、1槽で構
成した多段生物濾過装置により原水槽からの廃水を浄化
処理するか、もしくは、1槽の場合よりも相対的に小能
力で構成した2槽の生物濾過装置により交互切換で運転
および逆洗を行い、廃水中のSS分や汚濁物質を微生物
の作用により、吸着、接触酸化して濾材で濾過除去す
る。なお、この第一工程は三相流動処理槽と通常の濾過
装置による組み合わせ構成も可能である。汚濁成分を分
離除去して清澄化した処理水は放流処分もしくは再利用
される。第一工程で生物濾過槽の圧力損失増加時に逆洗
操作で発生するSS分や汚濁物質を高濃度に含む逆洗水
は、次の第2工程へ送られる。In the first step as the first treatment, the waste water from the raw water tank is purified by a multi-stage biological filtration device composed of one tank, or it is constructed with a relatively small capacity as compared with the case of one tank. The tank biological filter is alternately operated and backwashed, and SS components and pollutants in the wastewater are adsorbed and catalytically oxidized by the action of microorganisms, and are removed by filtration with a filter medium. The first step can be combined with a three-phase flow treatment tank and an ordinary filtering device. The treated water clarified by separating and removing the pollutant components is discharged or reused. Backwash water containing a high concentration of SS and pollutants generated in the backwash operation when the pressure loss of the biological filtration tank increases in the first step is sent to the next second step.
【0011】第二工程では、一段目に加圧空気で効率的
に酸素を溶解(溶解量はヘンリーの法則により増加す
る)して接触酸化分解した後、二段目に数百μm径の常
圧気泡(常圧レベルで発生させた気泡を定義する)を接
触させるとともに、SS分、汚泥を自己消化させてSS
分、汚泥を浮上濃縮させる。濃縮したSS分、汚泥は再
度循環させることにより上記二段階処理を続ける。な
お、第二工程では、一段目の加圧空気溶解から発生する
数十μm径の微細気泡は、酸化分解のみならずSS分、
汚泥の浮上濃縮操作にも役立つ。本工程では、加圧空気
により循環処理水中に効率的に酸素を溶け込ませること
が可能なため、分解消化槽本体は常圧運転でもよいが、
分解効率保持の観点からは加圧下での運転が望ましい。
第二工程で二段階処理した処理水中には、この工程では
減量しきれない余剰汚泥が含まれるため、次回の逆洗水
受け入れタイミングまでならして連続供給できる処理量
で、浮上分離後の水を原水にもどし、浮上濃縮した残汚
泥は次の第三工程へ送る。なお、第二工程では好気処理
の後に嫌気処理を加えてもよい。In the second step, oxygen is efficiently dissolved (the amount of dissolution increases according to Henry's law) with pressurized air in the first step to carry out catalytic oxidative decomposition, and then the second step is usually performed with a diameter of several hundred μm. A pressure bubble (defining a bubble generated at normal pressure level) is brought into contact with the SS, and the sludge is self-extinguished to SS.
The sludge is floated and concentrated. The concentrated SS and sludge are circulated again to continue the two-step treatment. In the second step, the fine air bubbles having a diameter of several tens of μm generated from the first-stage pressurized air dissolution are not only oxidatively decomposed but also SS components,
Also useful for flotation and concentration of sludge. In this step, it is possible to efficiently dissolve oxygen in the circulating treated water by the pressurized air, so the decomposition digestion tank main body may be operated at normal pressure,
From the viewpoint of maintaining decomposition efficiency, operation under pressure is desirable.
Since the treated water treated in the second step in two stages contains excess sludge that cannot be reduced in this step, the treated water that can be continuously supplied until the next backwash water reception timing is used. Is returned to raw water and the residual sludge that has been floated and concentrated is sent to the next third step. In the second step, anaerobic treatment may be added after aerobic treatment.
【0012】第三工程では、前工程からの処理水中の余
剰汚泥類を、原生動物または後生動物の食料とする食物
連鎖により消化減量する。この消化減量槽を最適能力に
設計配置し、本工程での処理水を原水槽にもどして第一
工程で再処理すれば、スラッジレスの廃水浄化運転が可
能となる。なお、余剰汚泥の焼却設備を有する場合では
最後の消化減量槽を小さめとして焼却処分してもよい。In the third step, excess sludge in the treated water from the previous step is digested and reduced by a food chain used as food for protozoa or metazoa. Sludgeless wastewater purification operation becomes possible by designing and arranging this digestion reduction tank to the optimum capacity, returning the treated water in this step to the raw water tank and reprocessing it in the first step. In addition, when having an incinerator for surplus sludge, the final digestion and reduction tank may be made smaller and incinerated.
【0013】図2は前記第一工程の処理を実施するため
の装置の一例を示す図である。本例においては2つの生
物濾過による廃水処理槽1が並列に接続されている。各
廃水処理槽1の上部には、金属または樹脂製のネット部
材2が固定され、ネット部材2の下部に濾過床3が構成
されている。濾過床3には、多数の粒状体からなる浮上
性担体4が充填されており、ネット部材2により上部に
流出しないようにされている。FIG. 2 is a view showing an example of an apparatus for carrying out the processing of the first step. In this example, two biological filtration wastewater treatment tanks 1 are connected in parallel. A metal or resin net member 2 is fixed to the upper portion of each wastewater treatment tank 1, and a filtration bed 3 is formed below the net member 2. The filter bed 3 is filled with a floating carrier 4 composed of a large number of particles, and the net member 2 prevents the floatable carrier 4 from flowing upward.
【0014】前記浮上性担体4は、表面が多孔性の発泡
性高分子、繊維状高分子、発泡スチロールを球形、ペレ
ット型、星型等の形状に成形し、表面に微生物を増殖可
能にさせるもので、担体径(0.5〜20mm程度)、
細孔含有率、比重を変えることにより、濾過床3の濾過
性能および微生物付着性能を調整し、また、濾過床3の
閉塞状況を制御可能にしている。小径担体で構成する濾
過床は、微生物保持量が多くなり、接触酸化能力が高い
が圧力損失の増加が大きく、閉塞しやすい。このため特
に多段槽では、担体径の大小を組み合わせることで分解
能力、圧力損失を調整する。また、脱燐効率改善のため
に、濾過床3に炭酸カルシウム粉末もしくは炭酸カルシ
ウムを含むサンゴ砂、貝殻等を混入してもよいし、担体
4中に炭酸カルシウム成分を混入して成形してもよい。
これらの炭酸カルシウム類は、化学反応で脱燐するため
槽内に存在させるだけでよい。The floating carrier 4 is formed by molding a foamable polymer having a porous surface, a fibrous polymer, or styrofoam into a spherical shape, a pellet shape, a star shape, or the like to allow microorganisms to grow on the surface. And the carrier diameter (about 0.5 to 20 mm),
By changing the pore content and the specific gravity, the filtration performance and the microorganism adhesion performance of the filtration bed 3 are adjusted, and the clogging condition of the filtration bed 3 can be controlled. A filtration bed composed of a small-diameter carrier has a large amount of retained microorganisms and a high catalytic oxidation capacity, but a large increase in pressure loss, and is easily clogged. Therefore, especially in a multi-stage tank, the decomposition capacity and pressure loss are adjusted by combining the sizes of the carrier diameters. Further, in order to improve the dephosphorization efficiency, calcium carbonate powder or coral sand containing calcium carbonate, shells, etc. may be mixed in the filter bed 3, or a calcium carbonate component may be mixed in the carrier 4 for molding. Good.
These calcium carbonates need only be present in the tank to dephosphorize by a chemical reaction.
【0015】各廃水処理槽1の下部には、原水供給管5
が開閉弁5a、5bを介して接続され、逆洗水排水管6
が開閉弁6a、6bを介して接続されている。また、濾
過床3の中間部には、空気供給管7が開閉弁7a、7b
を介して接続されている。各廃水処理槽1の上部には、
処理水排水管8が開閉弁8a、8bを介して接続され、
また、逆洗水供給管9が開閉弁9a、9bを介して接続
されている。さらに、廃水処理槽1の下部から上部に逆
洗水を循環させるための逆洗ポンプ10および開閉弁1
1が配設されている。At the bottom of each wastewater treatment tank 1, a raw water supply pipe 5 is provided.
Are connected via on-off valves 5a, 5b, and backwash water drain pipe 6
Are connected via open / close valves 6a and 6b. Further, an air supply pipe 7 is provided in the middle portion of the filtration bed 3 with open / close valves 7a and 7b.
Connected through. At the top of each wastewater treatment tank 1,
The treated water drainage pipe 8 is connected via open / close valves 8a and 8b,
Further, the backwash water supply pipe 9 is connected via the on-off valves 9a and 9b. Further, a backwash pump 10 and an opening / closing valve 1 for circulating backwash water from the lower part to the upper part of the wastewater treatment tank 1.
1 is provided.
【0016】上記構成からなる生物濾過装置の処理方法
について説明する。先ず、開閉弁5a、5b、7a、7
b、8a、8bを開いて、各廃水処理槽1に原水および
空気を供給する。原水は、濾過床3の下層において空気
が供給されない嫌気性処理が行われた後、濾過床3の中
層部以上において、浮上性担体4表面での微生物の増殖
が活発になり、廃水中の汚濁物質は微生物による好気性
処理により分解除去され、処理水は濾過床3を経て処理
水排水管8から排水され放流または再利用される。A method of treating the biological filtration device having the above structure will be described. First, the on-off valves 5a, 5b, 7a, 7
Open b, 8a and 8b to supply raw water and air to each wastewater treatment tank 1. After the raw water is subjected to an anaerobic treatment in the lower layer of the filter bed 3 where air is not supplied, the growth of microorganisms on the surface of the buoyant carrier 4 becomes active in the middle layer and above of the filter bed 3 to contaminate the wastewater. The substance is decomposed and removed by aerobic treatment by microorganisms, and the treated water is discharged from the treated water drain pipe 8 through the filter bed 3 and discharged or reused.
【0017】運転経過に伴い濾過床3の空気供給位置周
辺に増殖微生物や微生物の死骸等のSSが付着閉塞する
ため圧力損失が増加するが、この圧力損失を図示しない
センサにより検知して、各廃水処理槽1を交互に逆洗す
る。例えば、図で左側の廃水処理槽を逆洗する場合に
は、開閉弁5a、7a、8aを閉じて原水および空気の
供給を停止し、開閉弁11を開くとともに逆洗ポンプ1
0を駆動させ、逆洗ポンプ10により濾過床3内を循環
し、濾過床3に付着した増殖微生物の一部や微生物の死
骸等を分散する。その後、開閉弁9a、6aを開き、逆
洗水供給管9から供給された逆洗水により、内部の汚濁
した逆洗水を逆洗水排水管6を経て排出して第二工程へ
送る。As the operation progresses, SS such as growing microorganisms and dead bodies of microorganisms adheres and blocks around the air supply position of the filter bed 3, so that the pressure loss increases. However, this pressure loss is detected by a sensor (not shown) and The wastewater treatment tank 1 is backwashed alternately. For example, when backwashing the wastewater treatment tank on the left side in the figure, the on-off valves 5a, 7a, 8a are closed to stop the supply of raw water and air, the on-off valve 11 is opened, and the backwash pump 1 is opened.
0 is driven, and the backwash pump 10 circulates in the filter bed 3 to disperse a part of the proliferating microorganisms attached to the filter bed 3 and the dead bodies of the microorganisms. Then, the on-off valves 9a and 6a are opened, and the backwash water supplied from the backwash water supply pipe 9 discharges the contaminated backwash water through the backwash water drain pipe 6 and sends it to the second step.
【0018】図で左側の廃水処理槽1の逆洗が終了する
と、廃水処理が再び再開され、次に同様にして他方の廃
水処理槽1の逆洗が行われる。このように、一方の廃水
処理槽で圧力損失が増加すれば、他方の廃水処理槽で処
理を行いつつ、当該廃水処理槽の逆洗により圧力損失を
回復させて、廃水処理と逆洗を交互に繰り返すことによ
り、運転を休むことなく継続的に廃水処理が可能とな
る。なお、廃水処理槽1を3基以上にすることも可能で
ある。また、空気注入部の下側に金網を設けて全体を2
段処理槽として嫌気処理部と好気処理部の菌相を別々に
管理してもよい。When the backwash of the wastewater treatment tank 1 on the left side in the figure is completed, the wastewater treatment is restarted again, and then the backwashing of the other wastewater treatment tank 1 is performed in the same manner. Thus, if the pressure loss increases in one wastewater treatment tank, the pressure loss is restored by backwashing the wastewater treatment tank while performing the treatment in the other wastewater treatment tank, and the wastewater treatment and the backwashing alternate. By repeating the above, the wastewater treatment can be continuously performed without stopping the operation. In addition, it is also possible to use three or more waste water treatment tanks 1. In addition, by installing a wire mesh under the air injection part,
The microflora of the anaerobic treatment section and the aerobic treatment section may be separately managed as a stage treatment tank.
【0019】図3は前記第二工程の処理を実施するため
の装置の一例を示す図である。図中、21は逆洗水処理
槽、22は筒状の仕切部材、23は整流板、24は圧力
調整弁、25は浮上分離部、26は濃縮汚泥部、27、
28はポンプ、29はスタティックミキサー、30は加
圧ポンプ、31は気液接触混合器、32は減圧弁、33
は気泡分散注入装置である。FIG. 3 is a diagram showing an example of an apparatus for carrying out the processing of the second step. In the figure, 21 is a backwash water treatment tank, 22 is a cylindrical partition member, 23 is a straightening plate, 24 is a pressure regulating valve, 25 is a floating separation section, 26 is a concentrated sludge section, 27,
28 is a pump, 29 is a static mixer, 30 is a pressure pump, 31 is a gas-liquid contact mixer, 32 is a pressure reducing valve, 33
Is a bubble dispersion injection device.
【0020】図2の生物処理装置から送られてくる汚泥
含有逆洗水は、逆洗水処理槽21で浮上分離した汚泥を
含む濃縮水とともに、スタティックミキサー29に送ら
れ、ここで消化ガス供給管35から送られてくる加圧空
気と混合された後、加圧ポンプ30に送られて昇圧(例
えば3〜5kg/cm2 G程度)され、さらに気液接触
混合器31に送られ空気を細かく分散して加圧状態で空
気(酸素)を溶解させる。この工程は、気液の加圧処理
により、廃水中に空気を効率的に溶解し、消化反応を促
進させる工程である。すなわち、好気性の消化では、酸
素を原料にして汚泥を二酸化炭素等に分解するが、液体
に空気を溶解させる場合には、酸素の溶解度が窒素等よ
りも大きく、また、気体の溶解度は分圧に比例する(ヘ
ンリーの法則)ため酸素の溶解効率が増大し、好気性消
化の分解効率を改善できる。The sludge-containing backwash water sent from the biological treatment apparatus of FIG. 2 is sent to the static mixer 29 together with the concentrated water containing the sludge floated and separated in the backwash water treatment tank 21, where the digestion gas is supplied. After being mixed with the pressurized air sent from the pipe 35, it is sent to the pressurizing pump 30 to be pressurized (for example, about 3 to 5 kg / cm 2 G), and further sent to the gas-liquid contact mixer 31 to remove the air. Disperse finely and dissolve air (oxygen) under pressure. This step is a step of efficiently dissolving air in wastewater by a gas-liquid pressure treatment to promote a digestion reaction. That is, in aerobic digestion, oxygen is used as a raw material to decompose sludge into carbon dioxide, etc., but when dissolving air in a liquid, the solubility of oxygen is greater than that of nitrogen, etc. Since it is proportional to the pressure (Henry's law), the dissolution efficiency of oxygen is increased, and the decomposition efficiency of aerobic digestion can be improved.
【0021】気液接触混合器31を出た廃水は、減圧弁
32により常圧レベルまで減圧された後、気泡分散注入
装置33において、廃水中に気泡が分散注入され、気液
注入管34を経て逆洗水処理槽21内の浮上分離部25
の下部に供給され、汚泥は加圧気泡と常圧気泡に付着し
て高速度で浮上分離される。前記気泡分散注入装置33
は、モータ33aにより回転される円筒33bを有し、
消化ガス供給管35から送られてくる空気を微細な気泡
に分散して廃水中に注入する装置である。この常圧気泡
の生成は散気管等の他の手段でも可能である。The waste water discharged from the gas-liquid contact mixer 31 is decompressed to a normal pressure level by the pressure reducing valve 32, and then the bubbles are dispersed and injected into the waste water in the bubble dispersion injection device 33, and the gas-liquid injection pipe 34 is injected. After that, the floating separation unit 25 in the backwash water treatment tank 21
Is supplied to the lower part of the sludge, and the sludge adheres to the pressurized bubbles and the atmospheric bubbles and is floated and separated at high speed. Bubble dispersion and injection device 33
Has a cylinder 33b rotated by a motor 33a,
This is a device for dispersing the air sent from the digestion gas supply pipe 35 into fine bubbles and injecting it into waste water. The normal pressure bubbles can be generated by other means such as an air diffuser.
【0022】減圧弁32を出た廃水中の加圧気泡は、数
10〜100μm径の微細な気泡であり、気泡径が小さ
いため浮上に多大な時間を要し、消化槽21を大型にし
ないと浮上分離が不可能であるが、本実施例において
は、気泡分散注入装置33において、常圧レベルの廃水
中に気泡を分散注入し、気泡径を約100〜数1000
μmと相対的に大きい常圧気泡を再付着させることによ
り、浮上分離部25における浮上速度を大きくできるた
め、小型の消化槽で浮上分離が可能となる。Pressurized air bubbles in the waste water that have flowed out of the pressure reducing valve 32 are fine air bubbles having a diameter of several tens to 100 μm. Since the air bubble diameter is small, it takes a long time to float and the digestion tank 21 is not enlarged. However, in the present embodiment, the bubbles are dispersed and injected into the wastewater at a normal pressure level in the bubble dispersion and injection device 33, and the bubble diameter is about 100 to several thousand.
By reattaching the atmospheric pressure bubbles having a relatively large value of μm, the floating speed in the floating separation unit 25 can be increased, so that the floating separation can be performed in a small digestion tank.
【0023】浮上分離部25において消化されると同時
に浮上分離された汚泥は、濃縮液となって濃縮汚泥部2
6を下降し、この汚泥を含む濃縮液はポンプ28により
第三工程へ送られる。また、浮上分離部25内低所の廃
水の一部は原水槽を経て図2の生物濾過装置の廃水処理
に戻される。なお、逆洗水処理槽21上部の空間は、逆
洗水受け入れによる水位変動を充分に吸収できる容量を
もたせている。次の逆洗水受け入れまでの時間で、バッ
チ受け入れ当たりの逆洗水量をならして連続的に分離水
は原水槽へもどし、濃縮汚泥は次の第三工程へ送る。The sludge that is digested in the flotation / separation unit 25 and floated and separated at the same time becomes a concentrated liquid, and the concentrated sludge unit 2
6, the concentrated liquid containing this sludge is sent to the third step by the pump 28. Further, a part of the wastewater at a low place in the flotation / separation unit 25 is returned to the wastewater treatment of the biological filtration device of FIG. 2 through the raw water tank. The space above the backwash water treatment tank 21 has a capacity capable of sufficiently absorbing fluctuations in water level due to reception of backwash water. By the time until receiving the next backwash water, the amount of backwash water per batch reception is leveled, the separated water is continuously returned to the raw water tank, and the concentrated sludge is sent to the next third step.
【0024】図4は前記第三工程の処理を実施するため
の装置の一例を示す図である。図中、51は汚泥消化減
量槽、52は原水供給管、53は空気供給管、54は浮
上性担体、55は沈降性担体、56は空気捕捉格子、5
7は嫌気性三相流動層、58は好気性三相流動層、59
は嫌気性濾過層、60は気泡、61は金網若しくはスリ
ット、62は排水路である。FIG. 4 is a diagram showing an example of an apparatus for carrying out the treatment of the third step. In the figure, 51 is a sludge digestion and reduction tank, 52 is a raw water supply pipe, 53 is an air supply pipe, 54 is a floating carrier, 55 is a sedimentable carrier, 56 is an air trapping grid, 5
7 is an anaerobic three-phase fluidized bed, 58 is an aerobic three-phase fluidized bed, 59
Is an anaerobic filter layer, 60 is air bubbles, 61 is a wire mesh or slit, and 62 is a drainage channel.
【0025】浮上性担体54については前記と同様と
し、前記沈降性担体55としては、粒状活性炭、多孔性
高分子濾材、砂、アンスラサイト、セラミックボール等
を球形、ペレット型、星型等の形状に成形(0.1mm
〜20mm程度の径)したもので、担体表面に原生動物
ないし後生動物を付着させている。なお、ゲル状物質を
用いて担体表面または細孔中に原生動物または後生動物
を付着させる方法や、ゲル状物質中に微生物や原生動物
ないし後生動物を練り混んで粒状に成形する方法を採用
してもよい。The floating carrier 54 is the same as described above, and as the sedimentable carrier 55, granular activated carbon, porous polymer filter media, sand, anthracite, ceramic balls, etc. are spherical, pellet-shaped, star-shaped, etc. Molded (0.1mm
The diameter is about 20 mm) and the protozoa or metazoans are attached to the surface of the carrier. In addition, a method of adhering a protozoan or metazoan to the surface or pores of the carrier using a gel-like substance, or a method of kneading a microorganism or a protozoan or metazoan into the gel-like substance and molding into a granule is adopted. May be.
【0026】図3の工程で発生した残汚泥を含む廃水
は、汚泥消化減量槽51内の下部に供給され、先ず、嫌
気性三相流動層57で流入SS量を均すとともに一部嫌
気消化させ、次いで、好気性三相流動層58において、
原生動物ないし後生動物による消化減量機能を持たせ、
最上部の嫌気性濾過層59で一部嫌気消化することによ
り処理水性状を改善する。空気捕捉格子56は下部から
上昇してくる空気を捕捉して外部に放出するものであ
る。好気性三相流動層58においては、空気供給管53
からの空気の供給を受けて、処理廃水中の汚濁物質の分
解処理とともに、微生物や原生動物ないし後生動物が増
殖して担体55の直径が大きくなったものは、空気、処
理水の上昇に伴い上方へ押しやられる。上方へ押しやら
れる途中で、処理水、気泡60および担体55の三相が
混合され、かつ空気捕捉格子56に衝突するため、処理
水中の酸素溶解効率が高まるとともに、担体55の表面
に付着増殖した原生動物ないし後生動物の一部が剥離さ
れ、担体55は下降し、再度、接触酸化に供される。直
径の増大した担体表面を削るため三相流動層58上部に
衝突部材を設けてもよい。微生物や原生動物ないし後生
動物の一部を含む残水は、図2の生物濾過装置の廃水処
理に戻される。The wastewater containing the residual sludge generated in the step of FIG. 3 is supplied to the lower part of the sludge digestion reduction tank 51, and first, the inflow SS amount is leveled in the anaerobic three-phase fluidized bed 57 and the partial anaerobic digestion is performed. Then, in the aerobic three-phase fluidized bed 58,
Having a digestive loss function by protozoa or metazoa,
A part of the anaerobic filtration layer 59 at the uppermost part is anaerobically digested to improve the treated aqueous state. The air trapping grid 56 traps air rising from the lower part and discharges it to the outside. In the aerobic three-phase fluidized bed 58, the air supply pipe 53
In response to the supply of air from the plant, the pollutants in the treated wastewater are decomposed and the diameter of the carrier 55 increases due to the growth of microorganisms and protozoa or metazoans. Pushed upwards. While being pushed upward, the three phases of the treated water, the air bubbles 60 and the carrier 55 are mixed and collide with the air trapping lattice 56, so that the oxygen dissolution efficiency in the treated water is increased and the adhered and grown on the surface of the carrier 55. A part of the protozoa or metazoan is peeled off, the carrier 55 descends, and is again subjected to catalytic oxidation. A collision member may be provided above the three-phase fluidized bed 58 to scrape the surface of the carrier having an increased diameter. Residual water containing microorganisms and part of protozoa or metazoans is returned to the wastewater treatment of the biological filtration device of FIG.
【0027】上記消化減量工程では、単なる活性汚泥の
多段処理とは異なり、浮上性もしくは沈降性担体による
生物膜付着担体、もしくは特殊性能の菌体を混入したゲ
ルによる包括固定化ゲル等各種担体を利用して菌体を管
理することにより消化効率の改善を図ることができる。
これまでの研究では、菌体負荷として1g/l・day
レベルまで充分に食物連鎖消化できることが判明してい
る。また、消化減量槽本体は多段構成とし、かつ浮上性
もしくは沈降性担体により好気もしくは嫌気処理を組み
合わせることにより、各段での菌相、原生動物相ないし
後生動物相を管理することもできる。In the above-mentioned digestion and reduction step, unlike a simple multi-step treatment of activated sludge, various carriers such as a biofilm-adhering carrier by a floatable or sedimentable carrier, or an entrapping immobilization gel by a gel mixed with cells having special performance are used. By managing the cells by utilizing them, the digestion efficiency can be improved.
In the previous studies, the cell load was 1 g / l · day.
It has been found that it can fully digest the food chain to the level. In addition, the main body of the digestion reduction tank can be constructed in multiple stages, and by combining aerobic or anaerobic treatment with a floatable or sedimentable carrier, it is possible to manage the bacterial flora, protozoa or metazoa in each stage.
【0028】図5から図9は、前記第三工程の処理を実
施するための装置の他例を示す図である。なお、図4の
実施例と同一の構成については、同一番号を付けて説明
を省略する。5 to 9 are views showing another example of the apparatus for carrying out the processing of the third step. The same components as those in the embodiment of FIG. 4 are designated by the same reference numerals and the description thereof will be omitted.
【0029】図5の実施例は、消化減量槽1を縦型の円
筒形とし、内部中央部に漏斗状の循環パイプ63と、循
環パイプ63の漏斗部63aに対向して偏流板64を配
設した例を示している。空気供給管53からの空気の供
給を受けて、処理廃水中の汚濁物質の分解処理ととも
に、微生物や原生動物ないし後生動物が増殖して担体5
5の直径が大きくなり、空気、処理水の上昇に伴い上方
へ押しやられる。上方へ押しやられる途中で、処理水、
気泡60および担体55の三相が漏斗部63aに衝突す
るため、処理水中の酸素溶解効率が高まるとともに、担
体55の表面に付着増殖した原生動物ないし後生動物の
一部が剥離され、担体55は循環パイプ63内を下降
し、再度、接触酸化に供される。原生動物ないし後生動
物の一部を含む残水は、排水路62を経て排出される。
なお、剥離効果を改善するため漏斗面下側に凹凸を設け
てもよい。In the embodiment shown in FIG. 5, the digestion and reduction tank 1 has a vertical cylindrical shape, and a funnel-shaped circulation pipe 63 is provided at the center of the inside, and a flow diverter plate 64 is arranged so as to face the funnel portion 63a of the circulation pipe 63. An example is shown. Upon receiving the supply of air from the air supply pipe 53, the microorganisms and protozoa or metazoan proliferate along with the decomposition treatment of pollutants in the treated wastewater, and the carrier 5
The diameter of 5 increases and is pushed upward as the air and treated water rise. In the middle of being pushed upward, treated water,
Since the three phases of the air bubble 60 and the carrier 55 collide with the funnel portion 63a, the efficiency of oxygen dissolution in the treated water is increased, and a part of the protozoa or metazoan attached and propagated on the surface of the carrier 55 is peeled off, so that the carrier 55 It descends in the circulation pipe 63 and is again subjected to catalytic oxidation. The residual water containing a part of the protozoa or metazoan is discharged through the drainage channel 62.
In order to improve the peeling effect, unevenness may be provided on the lower side of the funnel surface.
【0030】図6(A)は模式的平面図、図6(B)は
要部を示す模式的断面図である。本実施例は、図5の消
化減量槽1の循環パイプ63を複数配設し、排水路62
を集水管65に接続した例を示している。FIG. 6 (A) is a schematic plan view, and FIG. 6 (B) is a schematic sectional view showing a main part. In this embodiment, a plurality of circulation pipes 63 of the digestion and reduction tank 1 shown in FIG.
It shows an example in which is connected to the water collecting pipe 65.
【0031】図7(A)は模式的平面図、図7(B)は
要部を示す模式的断面図、図7(C)および図7(D)
は整流板の例を示す模式的平面図である。本実施例にお
いては、消化減量槽1を矩形槽とし、複数の循環用仕切
部材66で区画し、循環用仕切部材66の間に縦方向に
整流板67を配設し、担体の自由流動を制限することに
より、押し出し流れ型三相流動方式として処理効率の改
善を図っている。整流板67の断面形状としては、図7
(C)に示す格子形状、図7(D)に示すハニカム形状
の他、円形、三角形状を採用する。FIG. 7 (A) is a schematic plan view, FIG. 7 (B) is a schematic cross-sectional view showing an essential part, FIG. 7 (C) and FIG. 7 (D).
[Fig. 3] is a schematic plan view showing an example of a current plate. In the present embodiment, the digestion weight loss tank 1 is a rectangular tank, is partitioned by a plurality of circulation partition members 66, and a rectifying plate 67 is arranged in the vertical direction between the circulation partition members 66 to allow free flow of the carrier. By limiting it, we are trying to improve the processing efficiency as a three-phase flow system with extrusion flow. The cross-sectional shape of the current plate 67 is shown in FIG.
Besides the lattice shape shown in FIG. 7C and the honeycomb shape shown in FIG. 7D, a circular shape or a triangular shape is adopted.
【0032】図8の実施例は、三段式の消化減量槽の例
を示している。有底筒状の消化減量槽51の内部は、筒
状の仕切部材68、69、70で仕切られ、第1の消化
槽71、第2の消化槽72および第3の消化槽73が形
成されている。第1の消化槽71および第3の消化槽7
3内には浮上性担体54が充填され、第2の消化槽72
内には沈降性担体55が充填されている。残汚泥を含む
原水は、第1および第2の消化槽で加圧空気により好気
性処理された後、第3の消化槽73で嫌気性処理され
る。The embodiment of FIG. 8 shows an example of a three-stage type digestion and reduction tank. The inside of the bottomed tubular digestion and reduction tank 51 is partitioned by the tubular partition members 68, 69, 70 to form a first digestion tank 71, a second digestion tank 72 and a third digestion tank 73. ing. First digestion tank 71 and third digestion tank 7
3 is filled with a floating carrier 54, and the second digestion tank 72
A sedimentary carrier 55 is filled inside. Raw water containing residual sludge is subjected to aerobic treatment with pressurized air in the first and second digestion tanks and then to anaerobic treatment in the third digestion tank 73.
【0033】図9の実施例は、有底筒状の消化減量槽5
1を筒状の仕切部材68と、径方向の仕切部材69によ
って、第1〜第5の消化槽71〜75を形成し、原水を
第1〜第5の消化槽71〜75に順に多段処理する例を
示している。本多段処理においては、多段の途中に安定
負荷リアクターを設けることにより菌相安定化のメリッ
トを得る。The embodiment shown in FIG. 9 has a bottomed cylindrical digestion and reduction tank 5
The first to fifth digestive tanks 71 to 75 are formed by the cylindrical partition member 68 and the radial partition member 69, and the raw water is subjected to the multistage treatment in order of the first to fifth digestive tanks 71 to 75. An example is shown. In the present multi-stage treatment, by providing a stable load reactor in the middle of the multi-stage, the advantage of stabilizing the microflora is obtained.
【0034】図8や図9の実施例においては、第二工程
と第三工程を一つの多段処理槽とし、システム全体を第
一工程との二段で実現することも可能である。例えば図
9の一段目の消化槽71の容量を大きくして、第二工程
の分解、自己消化減量機能をもたせ、2段目以降を食物
連鎖の消化工程で構成すればさらにコンパクト化が可能
となる。In the embodiments of FIGS. 8 and 9, it is possible to realize the entire system in two stages, the first process and the second process and the third process as one multi-stage processing tank. For example, by further increasing the capacity of the digestion tank 71 in the first stage of FIG. 9 to provide the decomposition and self-digestion weight loss functions in the second step, and configuring the second and subsequent steps by the digestion step of the food chain, further downsizing is possible. Become.
【0035】なお、図4〜図9の実施例では、前段にプ
レリアクターによる廃水処理法を適用し、水質をモニタ
リングすることによりプレリアクターへの負荷を安定化
し、結果的にプレリアクター以降の処理系の菌相を安定
化して運転管理すれば、食物連鎖の利用による余剰汚泥
の消化減量効率を安定化して改善することが可能であ
る。また、図4〜図9の実施例は、微生物を利用する一
般の接触酸化あるいは嫌気処理の組み合わせにも適用可
能である。In the examples of FIGS. 4 to 9, the wastewater treatment method by the prereactor is applied to the preceding stage, the load on the prereactor is stabilized by monitoring the water quality, and as a result, the treatment after the prereactor is performed. By stabilizing and controlling the operation of the microflora of the system, it is possible to stabilize and improve the efficiency of digesting and reducing excess sludge by utilizing the food chain. Further, the embodiments of FIGS. 4 to 9 can be applied to a combination of general catalytic oxidation or anaerobic treatment using microorganisms.
【0036】[0036]
【発明の効果】以上の説明から明らかなように本発明に
よれば、個別高性能プロセスを、最適に組み合わせるこ
とにより、個々のプロセス能力の加算で得られる以上の
高性能を得ることができ、スラッジが最小もしくはゼロ
の浄化処理を高度に集約化された小型設備で可能とす
る。また、第一工程で生物濾過により浄化された廃水
は、SS分が濾過除去されているため、中水道等への再
利用が可能となる。また、本発明では、設備が小型化で
きるため、油分等の分解に長時間を要する成分も設備容
量の最適設計で処理が容易となる。As is apparent from the above description, according to the present invention, by combining the individual high performance processes optimally, it is possible to obtain a higher performance than that obtained by adding the individual process capacities, Enables purification treatment with minimal or no sludge in highly integrated small equipment. Further, since the waste water purified by biological filtration in the first step has the SS content removed by filtration, it can be reused for tap water or the like. Further, in the present invention, since the equipment can be downsized, it becomes easy to treat even components that require a long time to decompose oil and the like by optimally designing the equipment capacity.
【図1】本発明の高度集約化廃水処理方法の1実施例を
示すフロー図である。FIG. 1 is a flow chart showing an embodiment of a highly integrated wastewater treatment method of the present invention.
【図2】図1の第一工程の処理を実施するための装置の
一例を示す図である。FIG. 2 is a diagram showing an example of an apparatus for performing the process of the first step of FIG.
【図3】図1の第二工程の処理を実施するための装置の
一例を示す図である。FIG. 3 is a diagram showing an example of an apparatus for performing the process of the second step of FIG.
【図4】図1の第三工程の処理を実施するための装置の
一例を示す図である。FIG. 4 is a diagram showing an example of an apparatus for performing the process of the third step of FIG.
【図5】図1の第三工程の処理を実施するための装置の
他例を示す図である。FIG. 5 is a diagram showing another example of an apparatus for carrying out the process of the third step of FIG.
【図6】図1の第三工程の処理を実施するための装置の
他例を示し、図6(A)は模式的平面図、図6(B)は
要部を示す模式的断面図である。6 shows another example of the apparatus for carrying out the treatment of the third step of FIG. 1, FIG. 6 (A) is a schematic plan view, and FIG. 6 (B) is a schematic cross-sectional view showing a main part. is there.
【図7】図1の第三工程の処理を実施するための装置の
他例を示し、図7(A)は模式的平面図、図7(B)は
要部を示す模式的断面図、図7(C)および図7(D)
は流路仕切板の例を示す模式的平面図である。7 shows another example of the apparatus for carrying out the treatment of the third step of FIG. 1, FIG. 7 (A) is a schematic plan view, and FIG. 7 (B) is a schematic cross-sectional view showing the main part. 7C and 7D
FIG. 3 is a schematic plan view showing an example of a flow path partition plate.
【図8】図1の第三工程の処理を実施するための装置の
他例を示す図である。8 is a diagram showing another example of an apparatus for carrying out the process of the third step of FIG.
【図9】図1の第三工程の処理を実施するための装置の
他例を示す図である。FIG. 9 is a diagram showing another example of an apparatus for performing the process of the third step of FIG.
1…廃水処理槽、3…濾過床、4…浮上性担体、5…原
水供給管 6…逆洗水排水管、7…空気供給管、8…処理水排水
管、9…逆洗水供給管 21…逆洗水処理槽、25…浮上分離部、26…濃縮汚
泥部 30…加圧ポンプ、31…気液接触混合器、32…減圧
弁 33…気泡分散注入装置、51…汚泥消化減量槽、52
…原水供給管 53…空気供給管、54…浮上性担体、55…沈降性担
体 56…空気捕捉格子、57…嫌気性三相流動層、58…
好気性三相流動層 59…嫌気性濾過層、60…気泡、62…排水路、63
…循環パイプ 66…仕切部材、67…整流板、68、69、70…仕
切部材 71〜75…消化槽1 ... Wastewater treatment tank, 3 ... Filtration bed, 4 ... Floating carrier, 5 ... Raw water supply pipe, 6 ... Backwash water drain pipe, 7 ... Air supply pipe, 8 ... Treated water drain pipe, 9 ... Backwash water supply pipe 21 ... Backwash water treatment tank, 25 ... Flotation separation part, 26 ... Concentrated sludge part 30 ... Pressurizing pump, 31 ... Gas-liquid contact mixer, 32 ... Pressure reducing valve 33 ... Bubble dispersion injection device, 51 ... Sludge digestion reduction tank , 52
... Raw water supply pipe 53 ... Air supply pipe, 54 ... Floating carrier, 55 ... Sedimentable carrier 56 ... Air trapping grid, 57 ... Anaerobic three-phase fluidized bed, 58 ...
Aerobic three-phase fluidized bed 59 ... Anaerobic filtration bed, 60 ... Air bubbles, 62 ... Drainage channel, 63
... circulation pipe 66 ... partitioning member, 67 ... rectifying plate, 68,69,70 ... partitioning member 71-75 ... digestion tank
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 3/08 ZAB B 3/32 ZAB (72)発明者 森 省一 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location C02F 3/08 ZAB B 3/32 ZAB (72) Inventor Shoichi Mori Nishi Oimachi, Iruma-gun Saitama Prefecture Tsurugaoka 1-3-1 Tonen Co., Ltd. Research Institute
Claims (1)
び逆洗処理からなる第一工程と、第一工程で生じる逆洗
水を空気加圧溶解および常圧気泡接触による微生物の酸
化分解、自己消化および浮上濃縮からなる第二工程と、
第二工程で生じる残汚泥を原生動物ないし後生動物の食
物連鎖により消化減量する第三工程とを備え、第三工程
の残水を第一工程へもどし、第一工程において浄化され
た処理水を得ることを特徴とする高度集約化廃水処理方
法。1. A first step consisting of a catalytic oxidation treatment by a microorganism, a filtration separation and a backwash treatment, and the backwash water generated in the first step is dissolved by air under pressure and the oxidative decomposition of the microorganism by an atmospheric pressure bubble contact, and a self-digestion. And a second step consisting of flotation concentration,
It comprises a third step of digesting and reducing the residual sludge generated in the second step by the food chain of protozoa or metazoa, returning the residual water of the third step to the first step, and treating the treated water purified in the first step. A highly-integrated wastewater treatment method characterized by obtaining.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6089459A JPH07290095A (en) | 1994-04-27 | 1994-04-27 | Advanced intensive waste water treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6089459A JPH07290095A (en) | 1994-04-27 | 1994-04-27 | Advanced intensive waste water treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07290095A true JPH07290095A (en) | 1995-11-07 |
Family
ID=13971294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6089459A Pending JPH07290095A (en) | 1994-04-27 | 1994-04-27 | Advanced intensive waste water treatment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07290095A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008246420A (en) * | 2007-03-30 | 2008-10-16 | Kurita Water Ind Ltd | Multistage biological treatment apparatus and method |
CN100460340C (en) * | 2006-07-07 | 2009-02-11 | 汪群慧 | Process for high performance treatment of organic sewage and reduction of excess sludge output |
JP2012506713A (en) * | 2008-10-27 | 2012-03-22 | デゥドロプス | Method and apparatus for biological treatment of contaminated liquid ingredients containing dispersible and digestible organic liquid phases such as toxic oils or solvents |
-
1994
- 1994-04-27 JP JP6089459A patent/JPH07290095A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100460340C (en) * | 2006-07-07 | 2009-02-11 | 汪群慧 | Process for high performance treatment of organic sewage and reduction of excess sludge output |
JP2008246420A (en) * | 2007-03-30 | 2008-10-16 | Kurita Water Ind Ltd | Multistage biological treatment apparatus and method |
JP2012506713A (en) * | 2008-10-27 | 2012-03-22 | デゥドロプス | Method and apparatus for biological treatment of contaminated liquid ingredients containing dispersible and digestible organic liquid phases such as toxic oils or solvents |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100712643B1 (en) | Apparatus for treating organic material and nitrogen of wastewater by using air floatation type biofilter, and treatment method using the same | |
EA022513B1 (en) | Method and reactor for biological purification of waste water | |
US20130001161A1 (en) | Biological Treatment and Compressed Media Filter Apparatus and Method | |
US3774768A (en) | Apparatus for treating industrial and domestic waste waters | |
JP4492268B2 (en) | Biological treatment equipment | |
KR100313315B1 (en) | Method and apparatus for treating sewage and organic waste-water by circulation and filter of 3 divided biofilm | |
KR100937482B1 (en) | Method and device for sewage disposal using the submersible hollow media | |
MX2008004820A (en) | Saf system and method involving specific treatments at respective stages. | |
JP3391057B2 (en) | Biological nitrogen removal equipment | |
CN117285119A (en) | Integrated backwash water recycling device and treatment method | |
KR100873052B1 (en) | Wast water and sewage treatment apparatus in open type | |
JP2684495B2 (en) | Advanced purification equipment for organic wastewater | |
JPH0957289A (en) | Biological treating device of fluidized bed type | |
JPH07290095A (en) | Advanced intensive waste water treatment | |
JPH07112189A (en) | Biological filter incorporating special microorganisms | |
JPH10323682A (en) | Biological filtering method | |
JPH0119959B2 (en) | ||
KR100438022B1 (en) | Method for waste water treatment using float media | |
JPH02207882A (en) | Device for treating sewage or the like | |
JPH02184398A (en) | Moving bed-type denitrification device | |
KR100304404B1 (en) | Dense wastewater treatment method by fixed biofilm and continuous backwash filtration | |
JP2520798B2 (en) | Method and apparatus for biological dephosphorization of organic wastewater | |
JPH07112191A (en) | Biological filter | |
JP2805418B2 (en) | Organic wastewater purification treatment method | |
JPH07171587A (en) | Method and apparatus for treating organic sewage |