JPH02207882A - Device for treating sewage or the like - Google Patents
Device for treating sewage or the likeInfo
- Publication number
- JPH02207882A JPH02207882A JP1025756A JP2575689A JPH02207882A JP H02207882 A JPH02207882 A JP H02207882A JP 1025756 A JP1025756 A JP 1025756A JP 2575689 A JP2575689 A JP 2575689A JP H02207882 A JPH02207882 A JP H02207882A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- annular chamber
- cylindrical body
- raw water
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010865 sewage Substances 0.000 title claims abstract description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 81
- 230000007246 mechanism Effects 0.000 claims abstract description 33
- 238000002156 mixing Methods 0.000 claims abstract description 15
- 238000012545 processing Methods 0.000 claims description 21
- 238000000746 purification Methods 0.000 claims description 21
- 238000003809 water extraction Methods 0.000 claims description 13
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 8
- 238000007599 discharging Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 abstract description 13
- 239000007787 solid Substances 0.000 abstract description 13
- 239000010802 sludge Substances 0.000 abstract description 8
- 239000000203 mixture Substances 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 5
- 102000004169 proteins and genes Human genes 0.000 abstract description 4
- 108090000623 proteins and genes Proteins 0.000 abstract description 4
- 229920002472 Starch Polymers 0.000 abstract description 3
- 235000019698 starch Nutrition 0.000 abstract description 3
- 230000002209 hydrophobic effect Effects 0.000 abstract description 2
- 239000008107 starch Substances 0.000 abstract description 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 description 30
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 26
- 239000007789 gas Substances 0.000 description 22
- 239000002699 waste material Substances 0.000 description 17
- 229910021529 ammonia Inorganic materials 0.000 description 13
- 238000000034 method Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000013535 sea water Substances 0.000 description 10
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 9
- 239000002351 wastewater Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000006260 foam Substances 0.000 description 6
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 5
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 5
- 241000251468 Actinopterygii Species 0.000 description 4
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 4
- 238000009360 aquaculture Methods 0.000 description 4
- 244000144974 aquaculture Species 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- -1 chlorine ions Chemical class 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000004060 metabolic process Effects 0.000 description 3
- 239000008213 purified water Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 235000014653 Carica parviflora Nutrition 0.000 description 2
- 244000132059 Carica parviflora Species 0.000 description 2
- 239000005909 Kieselgur Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 235000002595 Solanum tuberosum Nutrition 0.000 description 2
- 244000061456 Solanum tuberosum Species 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004299 exfoliation Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 235000014102 seafood Nutrition 0.000 description 2
- 235000020083 shōchū Nutrition 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 241001474374 Blennius Species 0.000 description 1
- 102100040998 Conserved oligomeric Golgi complex subunit 6 Human genes 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 241000192700 Cyanobacteria Species 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 101000748957 Homo sapiens Conserved oligomeric Golgi complex subunit 6 Proteins 0.000 description 1
- 241001072332 Monia Species 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 201000000465 X-linked cone-rod dystrophy 2 Diseases 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 230000037358 bacterial metabolism Effects 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000035605 chemotaxis Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003895 organic fertilizer Substances 0.000 description 1
- 125000001477 organic nitrogen group Chemical group 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000009372 pisciculture Methods 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野〕 本発明は汚水類の処理装置に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a wastewater treatment device.
水は自然界の血液ともいわれるように、一般生活はもと
より5鉱工業などあらゆる産業活動を営む上で不可欠で
あるが、浮遊物質(懸濁物質)SS。Water is said to be the blood of nature and is indispensable not only for general life but also for all kinds of industrial activities such as the mining industry.
ヘドロ、スラッジ等の堆積性物質、塩素イオン。Sedimentary substances such as sludge and sludge, and chlorine ions.
硫酸イオン、アンモニア、硫化水素、硝酸イオン、リン
酸イオンなどで代表される無機溶存物質、繊維、糖類、
蛋白質、などの有機溶存物質、鉄、マンガン、シアン化
合物、フェノールなどの有毒物質など多種多様な物質に
より汚染・汚濁され、これが原因で、生活環境、自然環
境に大きな影響が及ぼされたり1円滑な産業活動が阻害
される。Inorganic dissolved substances such as sulfate ions, ammonia, hydrogen sulfide, nitrate ions, phosphate ions, fibers, sugars,
Contaminated by a wide variety of substances such as organic dissolved substances such as proteins, and toxic substances such as iron, manganese, cyanide, and phenol, this has a major impact on the living environment and the natural environment, and has the effect of Industrial activities are hindered.
たとえば9食品製造関係においては、排水の水質は通常
pH2〜〜9、BODが500〜5.OOOppm。For example, in 9 food manufacturing industries, the quality of wastewater is usually pH 2-9 and BOD 500-5. OOOppm.
5sso〜4GG〜4 、0OOppi+であるが、い
も焼酎の廃液のごときものにおいては、−目約3.6.
SS 26.000ppm、 COD 42,000
pp醜、 B OD 110,000pp−という超
高濃度難生物質である。したがって。5sso~4GG~4,0OOppi+, but for things like potato shochu waste liquid, it is about 3.6.
SS 26,000ppm, COD 42,000
It is an ultra-high concentration antibiotic with a BOD of 110,000 pp-. therefore.
万一このような廃液が下水道施設に放流された場合、廃
水水質基準(BOD : 20〜200pp■)を極端
に上回るため、活性スラッジが死滅し、下水処理の使用
が不可能になるという甚大な損害を与える。If such waste liquid were to be discharged into a sewage facility, the activated sludge would die as it would extremely exceed the wastewater quality standard (BOD: 20-200pp■), resulting in a serious problem that would make it impossible to use it for sewage treatment. cause damage.
かかる廃水の処理方法としては、散水ろ床と生物膜とを
組合せる手法が有効視されているが、上記のように極め
て劣悪な水質のため、ろ床がすぐに詰りを起こしたり、
過大な負荷により生物膜の原生物が安定せず1代謝、剥
離を起こし、実効が上がらない、従って、従来では生物
学的処理は不可能とされ、ドラム缶類に充填密閉して海
上投棄する方法が採られていた。しかし、この海上投棄
は公害問題を引き起こすため、早急に処理技術を確立す
ることが要望されている。その対策としては、前段処理
でSS、pH,COD等の調整を行うことが考えられる
が、pHは薬品である程−度は調整が可能であるものの
、SSはその粒子が水分子にかなり近ずくようなきわめ
て微細粒であるため。As a method for treating such wastewater, a method that combines a trickling filter and a biofilm is considered to be effective, but as mentioned above, due to the extremely poor water quality, the filter bed quickly becomes clogged.
Excessive loading causes the protozoa in the biofilm to become unstable, causing metabolism and peeling, making it less effective.Therefore, conventional biological treatment was considered impossible, and the method was to fill drums, seal them, and dump them at sea. was taken. However, this ocean dumping causes pollution problems, so there is an urgent need to establish treatment technology. As a countermeasure, it is possible to adjust SS, pH, COD, etc. in the pre-processing, but although pH can be adjusted to some extent with chemicals, SS particles are quite close to water molecules. This is because the particles are extremely fine.
沈殿法、ろ過等によっては到底除去し得す、対処に難渋
を来していたものである。This has been difficult to deal with since it cannot be removed by precipitation methods, filtration, etc.
また、天然1人工の河川、湖沼、運河、港湾等の水質も
下水などの流入により劣悪化の一途を辿っている。この
水中には、ヘドロと称する比較的比重の大きな細粒質の
有機物(懸濁物質)が多量に存在し、アオコの大量発生
の原因となるリン、窒素などが多量に含まれ、−が低く
、硫化水素の発生によりアンモニア、亜硝酸、COD、
BDO値が極めて高い、このようなヘドロ等についても
、これを簡単に効率良く除去することは極めて困難であ
った。Furthermore, the water quality of natural and man-made rivers, lakes, canals, ports, etc. is steadily deteriorating due to the inflow of sewage and other substances. This water contains a large amount of fine-grained organic matter (suspended matter) with a relatively large specific gravity called sludge, and contains large amounts of phosphorus, nitrogen, etc. that cause large amounts of blue-green algae, and has a low - , due to the generation of hydrogen sulfide, ammonia, nitrite, COD,
It has been extremely difficult to easily and efficiently remove such sludge, etc., which has an extremely high BDO value.
また、近年、養殖漁業の発展と共に、魚介類を生きたま
ま船舶、車輌等で運搬し、消費地で活魚いけすで備蓄す
ることが盛んに行われている。この場合、備蓄水槽、出
荷調整用水槽、運搬手段搭載の水槽の海水を循環浄化す
ることが不可欠であるが、収容槽には往々にして適量以
上の魚介類を入れ、その自家汚染で急激に水質汚濁を引
き起こし、生存率を低下させるトラブルが付きまとう。Furthermore, in recent years, with the development of aquaculture and fishing, it has become common practice to transport live seafood by ships, vehicles, etc. and stockpile it in live fish cages at consumption areas. In this case, it is essential to circulate and purify the seawater in storage tanks, shipping adjustment tanks, and tanks equipped with transportation means. They are plagued with problems that cause water pollution and lower survival rates.
この原因は多量の魚介類の収容で浄化能力を超え。The cause of this is the storage of large amounts of seafood, which exceeds the purification capacity.
海水中に排せつ物、餌カスなどの分解による有機窒素酸
化物(アンモニア、炭酸ガス、亜゛硝酸、硫化水素等)
が蓄積し、その負荷により腐水性海水となり、機能計算
された生物学的浄化装置でも、生物膜の剥脱流出やバク
テリア代謝を招くからである。Organic nitrogen oxides (ammonia, carbon dioxide, nitrous acid, hydrogen sulfide, etc.) due to the decomposition of excrement, food particles, etc. in seawater
This is because seawater accumulates and the load causes it to become rotten seawater, leading to the exfoliation of biofilms and bacterial metabolism even in biological purification systems with calculated functionality.
この場合、特に問題なのは有害難生分解物質であり、魚
の雌の卵は簡単にフィルター類で除去し得るが、汚濁の
最大原因物質である雄の精子やイスのスミなどのタンパ
ク質は微細であってフィルターの目を通過するため、容
易に分離除去し得ないのが実情であった。In this case, the problem is particularly harmful and difficult-to-biodegrade substances, and while female fish eggs can be easily removed with filters, the substances that cause the most contamination, such as male sperm and chair smears, are minute proteins. The reality is that it cannot be easily separated and removed because it passes through the filter.
従来、産業排水(廃水)、生活排水、汚水の処理方法と
して、物理学的処理法、化学的処理法、生物学的処理法
などが水質や処理物質に応じて単独又は組合せ使用され
、懸濁物分離除去手段も多種開発されている。しかしな
がら従来の装置は一般に、大型でしたがって大きな床面
積をとり、また機構が複雑で可動部が多く、その割に処
理能力が低く、操作も複雑で逆洗などの煩雑なメンテナ
ンスを必要とするなどの不具合があり実用的でなかった
・
本発明は前記のような問題点を解消するために創案され
たもので、その目的とするところは、小型かつ簡単な構
造で、しかも簡易な操作で、汚水中の微細な懸濁物やヘ
ドロで代表される有害難生分解物質とこれに含まれる揮
発性溶存物を極めて効率良く連続的に分離除去できる高
性能な汚水類処理装置を提供することにある。Conventionally, physical treatment methods, chemical treatment methods, biological treatment methods, etc. have been used singly or in combination depending on the water quality and the substances to be treated as methods for treating industrial wastewater (wastewater), domestic wastewater, and sewage. Various methods for separating and removing substances have also been developed. However, conventional equipment is generally large and therefore takes up a large floor space, has a complex mechanism and many moving parts, has relatively low processing capacity, is complex to operate, and requires complicated maintenance such as backwashing. The present invention was devised to solve the above-mentioned problems, and its purpose is to have a compact and simple structure, and to be easy to operate. To provide a high-performance sewage treatment equipment that can continuously and efficiently separate and remove harmful, difficult-to-biodegrade substances such as fine suspended matter and sludge in sewage and volatile dissolved substances contained therein. be.
また本発明の他の目的は、微細な懸濁物やヘドロで代表
される有害難生分解物質とこれに含まれる揮発性溶存物
の分離除去と同時に、有機化合物の酸化分解、鉄、硫化
水素、亜硝酸イオン、シアン化合物などの無機物の分離
雑菌を行える装置を提供することにある。Another object of the present invention is to separate and remove harmful, difficult-to-biodegrade substances such as fine suspended solids and sludge, and volatile dissolved substances contained therein, as well as oxidative decomposition of organic compounds, iron, and hydrogen sulfide. An object of the present invention is to provide an apparatus capable of separating germs from inorganic substances such as nitrite ions and cyanide compounds.
さらに本発明は1次段の生物膜を利用した浄化装置と組
合せ、該浄化装置の前段処理手段として用いることで負
荷の低減、−走化を効果的に実現でき、浄化装置による
浄化能力を最高状態に発揮させることができる汚水類処
理・浄化装置を提供することにある。Furthermore, by combining the present invention with a purification device that utilizes a primary biofilm and using it as a pretreatment means of the purification device, it is possible to effectively reduce the load and achieve chemotaxis, thereby maximizing the purification ability of the purification device. The object of the present invention is to provide a sewage treatment/purification device that can be used in a variety of situations.
上記目的を達成するため本発明は、密閉状タンクと、該
タンク頂部からタンク底に至らぬ限度で下り、タンク内
面との間に環状室を形成する第1の筒体と、環状室に一
端が接続し、途中に気体混合機構を備えた原水導入系と
、第1の筒体の下端開口を介して環状室と通5しる環状
流路を第1の筒体との間に形成するように位置され、上
端がタンク内頂部に至らぬ限度の高さで開口する一方、
下端が処理水取出し系に通じる第2の筒体と、前記環状
室の頂部域の密閉空間と連通し、環状室に導入された気
体混合原水からの微細気泡により吸着捕集され密閉空間
にたまる泡状汚物を外部に排出する汚物取り出し機構
を備えたことを基本構成としている。In order to achieve the above object, the present invention provides a sealed tank, a first cylindrical body that descends from the top of the tank to the bottom of the tank and forms an annular chamber between it and the inner surface of the tank; is connected to the raw water introduction system having a gas mixing mechanism in the middle, and an annular flow path communicating with the annular chamber through the lower end opening of the first cylinder is formed between the first cylinder. The upper end opens at a height that does not reach the top of the tank, while
A second cylindrical body whose lower end communicates with the treated water extraction system and the closed space in the top area of the annular chamber are adsorbed and collected by fine bubbles from the gas-mixed raw water introduced into the annular chamber and accumulate in the closed space. The basic configuration includes a dirt removal mechanism that discharges foamy dirt to the outside.
前記気体混合機構は、好適には内部に絞りを設けた筒体
と、絞りの下流位置に接続された気体導管とを備えてお
り、このエゼクタ機構は、泡状汚物の分離効率を向上す
るため、好ましくは、環状室の上下部位間をつなぐ循環
系にも設けられる。The gas mixing mechanism preferably includes a cylindrical body provided with a restriction inside and a gas conduit connected to a position downstream of the restriction, and the ejector mechanism is configured to improve separation efficiency of foamy waste. , preferably also provided in the circulation system connecting the upper and lower parts of the annular chamber.
また、必要に応じ気体導管にはオゾン供給系が接続され
る。Further, an ozone supply system is connected to the gas conduit as necessary.
前記処理水取出し系は水質に応じて、そのまま放流して
もよいし、所要段数の生物学的浄化装置に接続されても
よく、生物学的浄化装置は好適には密閉タンクの近傍に
設けられる。Depending on the water quality, the treated water extraction system may be discharged as is or may be connected to a biological purification device of the required number of stages, and the biological purification device is preferably provided near the closed tank. .
原水水質が劣悪な場合には、処理水取出し系は前記基本
構成と同じか近似した構成の1段以上の副処理装置に直
列状に接続される。これにより、超難生分解物質とこれ
に含まれる揮発性溶存物をさらに確実に分離除去し得る
。When the raw water quality is poor, the treated water extraction system is connected in series to one or more stages of sub-processing equipment having the same or similar configuration to the basic configuration. Thereby, the ultra-hard biodegradable substance and the volatile dissolved substances contained therein can be separated and removed more reliably.
〔実 施 例)
第1図ないし第5図は本発明の基本的実施例を示してい
る。lはベース1aに立設された縦長のタンクであり、
亜鉛メツキ鋼板、ステンレス、耐食性、耐薬品性のすぐ
れた合成樹脂などからなり。[Embodiment] Figures 1 to 5 show a basic embodiment of the present invention. l is a vertically long tank installed on base 1a,
Made of galvanized steel, stainless steel, and synthetic resin with excellent corrosion and chemical resistance.
天板部1bと底板部ICにより上下端が密閉されている
。The upper and lower ends are sealed by the top plate part 1b and the bottom plate part IC.
2は前記タンク1内に設けられた第1の筒体であり、基
端部が天板部lbに固着され、先端部が底板部1cにま
で到らぬレベルで止まるように垂下し、タンク内周面と
の間に比較的容積の大きい環状室3を形成している。こ
の環状室3には、底板部1cから所要の高さレベルの位
置に、環状室3内に吐出された原水と気体との混合流体
を旋回上昇させるための上り傾斜、好ましくはらせん板
状の流れガイド17が設けられている。前記流れガイド
17は環状室3の上下を完全に仕切るものではなく、内
径側又は外径側に通路隙間17aを有せしめることが必
要である。Reference numeral 2 designates a first cylindrical body provided in the tank 1, the base end of which is fixed to the top plate part 1b, the tip part of which hangs down so as to stop at a level that does not reach the bottom plate part 1c. An annular chamber 3 having a relatively large volume is formed between the inner peripheral surface and the inner peripheral surface. This annular chamber 3 has an upward slope, preferably a spiral plate, for swirling and raising the mixed fluid of raw water and gas discharged into the annular chamber 3 to a position at a required height level from the bottom plate part 1c. A flow guide 17 is provided. The flow guide 17 does not completely partition the upper and lower parts of the annular chamber 3, but needs to have a passage gap 17a on the inner diameter side or the outer diameter side.
そして、この流れガイド17より下方には、必要に応じ
、多孔質のハニカム型プラスチックなど組織の粗い充填
材31が装着される。この充填材31を用いた場合には
原水の通過に適度の抵抗を持たることができるとともに
ろ床として機能させることができる。A filler material 31 with a coarse structure, such as porous honeycomb plastic, is installed below the flow guide 17, if necessary. When this filler 31 is used, it can provide appropriate resistance to the passage of raw water and function as a filter bed.
4はタンク1内に前記第1の筒体2と同心状に配設され
た第2の筒体であり、第1の筒体2との間に比較的狭い
環状流路5を形成し得る外径を備え、底板部1cで水密
に支持され、上端4aが天板部1bと所要の距離をおい
て開口し、下端はタンク1から外部に延びる処理水取出
し系10が形成され、またはこれと接続されている。そ
して、上端4aの延長上の天板部1bにはエア抜き18
が設けられている。4 is a second cylindrical body arranged concentrically with the first cylindrical body 2 in the tank 1, and can form a relatively narrow annular flow path 5 between it and the first cylindrical body 2. A treated water take-out system 10 is formed at the lower end, is watertightly supported by the bottom plate part 1c, and has an upper end 4a opening at a required distance from the top plate part 1b, and a lower end extending from the tank 1 to the outside. is connected to. An air vent 18 is provided on the top plate portion 1b as an extension of the upper end 4a.
is provided.
6は原水導入系であり、剛性管路からなり、先端の導入
口60が前記流れガイド17の近傍位置、好ましくは環
状室3の略接線方向に開口し、導入口60よりも上流側
は立上り側に屈曲され、第2の筒体4の上端4aよりも
高位レベル部61が設けられている。そして、この汚水
導入系6には原水を揚水するポンプ7を備えた可撓性管
路6aが接続され、該可撓性管路6aの中間適所には固
形物質を捕集集積するためのカートリッジ式のフィルタ
8と、原水供給量を調整するバルブ9が設けられている
。ポンプ7は水中ポンプ、地上設置型の揚水ポンプなど
任意である。Reference numeral 6 denotes a raw water introduction system, which is composed of a rigid pipe line, with an introduction port 60 at the tip opening in the vicinity of the flow guide 17, preferably in a substantially tangential direction of the annular chamber 3, and an upstream side of the introduction port 60. A level portion 61 is provided which is bent toward the side and is higher than the upper end 4a of the second cylindrical body 4. A flexible pipe line 6a equipped with a pump 7 for pumping raw water is connected to this wastewater introduction system 6, and a cartridge for collecting and accumulating solid substances is installed at a suitable midpoint of the flexible pipe line 6a. A type filter 8 and a valve 9 for adjusting the amount of raw water supplied are provided. The pump 7 is optional, such as a submersible pump or a ground-mounted water pump.
11は前記原水導入系6の高位レベル部61に介在接続
した気体混合物機構である。この気体混合機構11は、
コンプレッサ等の加圧供給手段に接続されていてもよい
が、好ましくはエゼクタ−機能を有するもの、たとえば
第5図に示すように、筒体11aと、筒体11aの中間
部に設けられた絞りllbと、絞りllbの下流側近傍
位置に通じる気体導管11cとを備えているものが用い
られる。Reference numeral 11 denotes a gas mixture mechanism interposed and connected to the higher level portion 61 of the raw water introduction system 6. This gas mixing mechanism 11 is
It may be connected to a pressurized supply means such as a compressor, but preferably has an ejector function, for example, as shown in FIG. Ilb, and a gas conduit 11c communicating with a position near the downstream side of throttle Ilb is used.
絞りllbは固定絞りでも可変絞りでもよい。The aperture llb may be a fixed aperture or a variable aperture.
本実施例では中心に径小穴110を設けた円板状部材を
用い、オリフィス形の固定絞りとしている。In this embodiment, a disk-shaped member with a small diameter hole 110 provided in the center is used to form an orifice-shaped fixed diaphragm.
前記気体導管11cは複数本が間隔を置いて挿着されて
いてもよいし、リングノズル形式としてもよい、この気
体導管11cは流量調整バルブ11dを備え、これの上
流側もしくは下流側にはオゾン発生機12からのオゾン
供給系12aが着脱可能に接続されている。A plurality of gas conduits 11c may be inserted at intervals, or may be of a ring nozzle type. An ozone supply system 12a from the generator 12 is detachably connected.
13はタンク1の近傍とりわけ天板部1bと同等以上の
高さレベルに配された泡状汚物取出し機構である。該泡
状汚物取出し機構13は、密閉容器13aと、これの下
部と環状室頂部域(第2の筒体4の上端レベル以上)に
創成される密閉空間14とをつなぐ汚物導出管13bと
、密閉容器13aから泡状汚物を排出する汚物排出管1
3cとを備えている。Reference numeral 13 denotes a foam-like dirt removal mechanism disposed near the tank 1, particularly at a height level equal to or higher than the top plate portion 1b. The foam-like waste removal mechanism 13 includes a closed container 13a, and a waste discharge pipe 13b that connects the lower part of the closed container 13a to a closed space 14 created in the top region of the annular chamber (above the upper end level of the second cylindrical body 4); Waste discharge pipe 1 for discharging foamy waste from the closed container 13a
3c.
15は汚物除去効率をより高めるための循環系であり、
循環用配管15aと、管路中に介在された小型のポンプ
15bとを備え、循環用配管15aの取出し側端は環状
室3の下部域に接続され、吐出側端は前記原水導入系6
の導入口60と略同じ領域に導かれている。そして、循
環用配管15の中間部は第1図や第3図のように少なく
とも第2の筒体4の上端4aよりも高いレベルまで立上
るように屈曲され、その高位レベル部15cには気体混
合機構11′が介在接続されている。その気体混合機構
11′の構造はさきに述べた原水導入系6のそれと同様
なものである。15 is a circulation system to further improve waste removal efficiency,
It is equipped with a circulation pipe 15a and a small pump 15b interposed in the pipe, and the outlet side end of the circulation pipe 15a is connected to the lower area of the annular chamber 3, and the discharge side end is connected to the raw water introduction system 6.
It is guided to approximately the same area as the inlet 60 of. As shown in FIGS. 1 and 3, the middle part of the circulation pipe 15 is bent so as to rise to a level higher than at least the upper end 4a of the second cylinder 4, and the high level part 15c is filled with gas. A mixing mechanism 11' is connected therebetween. The structure of the gas mixing mechanism 11' is similar to that of the raw water introduction system 6 described above.
16は必要に応じ環状室3の適所に配される遠赤外線放
射機構であり、この実施例では天板部1bを貫いて環状
室3中に挿着された多孔性の筒状ケーシング16aと、
これに充填された遠赤外線放射性の焼成体たとえば混焼
セラミック16bを備えている。Reference numeral 16 denotes a far-infrared ray radiation mechanism disposed at a suitable position in the annular chamber 3 as required, and in this embodiment, a porous cylindrical casing 16a inserted into the annular chamber 3 through the top plate portion 1b;
This is filled with a far-infrared emitting fired body, such as a co-fired ceramic 16b.
第7図ないし第9図は本発明の別の実施例を示している
。この実施例は原水中の浮遊物質が粒子が細かくかつ多
量である場合に好適なもので、第1図ないし第6図に示
す構造の主処理装置Aと、これの処理水取出し系10に
直列状に接続された少なくとも1つの副処理装置iBと
を備えている。7-9 show another embodiment of the invention. This embodiment is suitable when the suspended solids in the raw water have fine particles and a large amount, and is connected in series to the main treatment device A having the structure shown in FIGS. 1 to 6 and its treated water extraction system 10. and at least one sub-processing device iB connected in the same manner.
副処理装置Bは主処理装置Aと独立別置されてもよいが
、好ましくはタンク1の回りにブラケット等の支持部材
70により支持されている。この実施例では副処理装置
Bは3基用いられ、下流側のものBx=Bzはど順次高
さレベルが落されている。Although the sub-processing device B may be placed independently from the main processing device A, it is preferably supported around the tank 1 by a support member 70 such as a bracket. In this embodiment, three sub-processing apparatuses B are used, and the downstream ones Bx=Bz are successively lowered in height.
それら副処理装置1Bの構造は、主処理装置Aをスケー
ルダウンしたものでもよいが、好ましくは第9図に概略
的に示すような構造のものを使用する。すなわち、密閉
状のタンク100と、これの天板部100bから垂下す
る第1の筒体200と、これと同心状の第2の筒体40
0とを有し、第1の筒体200とタンク内面との間には
環状室3゜Oが、第1の筒体200と第2の筒体400
との間には環状流路500が形成され、そして好ましく
は環状室500の中間部位には流れガイド170が張設
される。Although the structure of the sub-processing device 1B may be a scaled-down version of the main processing device A, it is preferable to use a structure as schematically shown in FIG. 9. That is, a sealed tank 100, a first cylindrical body 200 hanging from the top plate 100b, and a second cylindrical body 40 concentric therewith.
0, an annular chamber 3°O exists between the first cylindrical body 200 and the inner surface of the tank, and an annular chamber 3°O exists between the first cylindrical body 200 and the second cylindrical body 400.
An annular flow path 500 is formed between the annular chamber 500 and preferably a flow guide 170 is provided in an intermediate portion of the annular chamber 500.
また、タンク100の天板部100bにはエア抜き18
0が設けられ、環状室300の上部の密閉空間140に
対するタンク部位には汚物取出し機構130が設けられ
ている。この場合の汚物取出し機構130は単なる導管
でもよい。In addition, an air vent 18 is provided on the top plate portion 100b of the tank 100.
0 is provided, and a dirt removal mechanism 130 is provided at a tank portion relative to the closed space 140 in the upper part of the annular chamber 300. The waste removal mechanism 130 in this case may be a simple conduit.
第1の副処理装置! B lの環状室300の中間部位
には処理水取出し系10が導かれ、第2の筒体400の
末端と第2の副処理袋WB2の環状室中間部位は連絡系
10.で接続され、第2の副処理装置! Bsの第2の
筒体下端と第3の副処理袋WB1の環状室中間部位が連
絡系10.で接続され、第3の副処理装置B3の第2の
筒体末端に処理水取出し系10mが接続され、放流系や
次段の浄化装置等に導かれるようになっている。The first sub-processing device! A treated water extraction system 10 is led to the middle part of the annular chamber 300 of B1, and a communication system 10. Connected to the second sub-processing unit! The lower end of the second cylindrical body of Bs and the intermediate portion of the annular chamber of the third sub-processing bag WB1 are connected to the communication system 10. A treated water take-out system 10m is connected to the end of the second cylindrical body of the third sub-processing device B3, and is led to a discharge system, a next-stage purification device, etc.
第10図は本発明の別の実施例を示している。FIG. 10 shows another embodiment of the invention.
この実施例では前記2つの実施例のいずれかを前段処理
装置とし、これの下流側に少なくとも1基の生物学的浄
化袋WICを組合せたものである。In this embodiment, one of the above two embodiments is used as a pre-processing device, and at least one biological purification bag WIC is combined on the downstream side thereof.
生物学的浄化装置Cは、任意の生物膜法たとえば散水ろ
床方式のものでもよいが、設置面積を大きく取り1機構
も複雑な点から実施例のような構造のものが好適である
。The biological purification device C may be of any biofilm method, such as a trickling filter method, but it is preferable to have a structure like that of the embodiment because it requires a large installation area and its mechanism is complicated.
この生物学的浄化装置Cは、上下が天板部19bと底板
部19aで閉じられた筒状の密閉タンク19aと、該密
閉タンク19a内にこれと略同心状に配された通水性筒
体19dと1通水性筒体19dと密閉タンク19a間に
充填されたろ材(たとえば麦飯石、さんご、けいそう土
、黒土など)19eと、ろ材19eの上層に装着された
多孔板19fとを備えており、多孔性筒体19dは主処
理装置Aまたは副処理装置Bの処理水取出し系10.1
0□の端末が接続されている。そして前記多孔板19f
よりも高位レベルのタンク19a側部には次段の生物学
的処理装置C1または放流系。This biological purification device C includes a cylindrical sealed tank 19a whose top and bottom are closed by a top plate part 19b and a bottom plate part 19a, and a water-permeable cylindrical body arranged approximately concentrically within the sealed tank 19a. A filter medium 19e (for example, maifan stone, coral, diatomaceous earth, black soil, etc.) filled between the water-permeable cylindrical body 19d and the closed tank 19a, and a perforated plate 19f attached to the upper layer of the filter medium 19e. The porous cylinder 19d is connected to the treated water extraction system 10.1 of the main treatment device A or the sub-treatment device B.
0□ terminals are connected. and the perforated plate 19f
On the side of the tank 19a at a higher level is the next biological treatment device C1 or a discharge system.
循環系などに浄水を導く浄水取出し系20が接続されて
いる。A purified water extraction system 20 is connected to introduce purified water to a circulation system or the like.
前記生物学的浄化装置cは主処理装置Aと別置されても
よいし、これの回りに支持手段で支持されていてもよい
。The biological purification device c may be placed separately from the main treatment device A, or may be supported around it by support means.
なお1図示するものは本発明の数例であり、これに限定
されるものではない、たとえば、次のような態様も本発
明に含まれる。Note that what is shown in the figure is just a few examples of the present invention, and the present invention is not limited thereto.For example, the following embodiments are also included in the present invention.
a、原水導入系を複数本とし、処理水取出し系を複数に
分岐してタンクから導出し、放水系、副処理装置、ある
いは生物学的処理装置に導く。a. Multiple raw water introduction systems are used, and the treated water extraction system is branched into multiple parts to be led out from the tank and led to the water discharge system, sub-treatment equipment, or biological treatment equipment.
この場合、メイン原水導入系以外は必ずしも気体混合機
構を設けなくてもよい。In this case, it is not necessarily necessary to provide a gas mixing mechanism except for the main raw water introduction system.
b、第1の筒体2と第2の筒体4をタンク1内に所要の
間隔をおいて複数組設け、第2の筒体4の末端から夫々
独立したあるいは集合した処理水取出し系として取出す
。b. A plurality of sets of the first cylindrical body 2 and the second cylindrical body 4 are provided in the tank 1 at a required interval, and each independent or collective treated water extraction system is used from the end of the second cylindrical body 4. Take it out.
C1第1図の処理水取出し系10を複数系に分岐し、副
処理袋Bや生物学的処理装置Cに導く。C1 The treated water take-out system 10 shown in FIG.
次に本発明の実施例の作用を説明する。 Next, the operation of the embodiment of the present invention will be explained.
第1図ないし第5図の実施例においては、ポンプ7を任
意のものたとえば貯水槽、用水路、河川、湖沼、港湾等
に投入し、その後適宜ポンプ15bを作動させる。これ
により原水は汲み上げられ、フィルター8により固形物
が除去され、原水導入系6を通って第6図のように導入
口6oからタンク1内の環状室3に吐出されるが、原水
導入系6には絞りllbを有する気体混合機構11が設
けられており、原水は通過面積の減少した絞り11bを
通過することで絞りllbの前後に圧力差が生ずるため
、低圧側に開口している気体導入管11cから筒体11
a中に大気中のエアが吸込まれ、原水に混合分散される
。In the embodiments shown in FIGS. 1 to 5, the pump 7 is put into any water tank, irrigation canal, river, lake, harbor, etc., and then the pump 15b is operated as appropriate. As a result, the raw water is pumped up, solid matter is removed by the filter 8, and the raw water is discharged through the raw water introduction system 6 from the inlet 6o to the annular chamber 3 in the tank 1 as shown in FIG. is provided with a gas mixing mechanism 11 having a throttle Ilb, and as the raw water passes through the throttle 11b with a reduced passage area, a pressure difference is created before and after the throttle Ilb. From the pipe 11c to the cylinder 11
Air from the atmosphere is sucked into the tank a and mixed and dispersed in the raw water.
この気液混合物が原水導入系6を下り導入口60から環
状室3から導入されると、この領域には流れガイド17
が設けられているため、これによるガイド作用で気液混
合物は環状室$をらせん状に廻りながら上昇し1次いで
上昇力を失って降下し、後続する上昇旋回流と自流する
ため、エアは原水と激しくミキシングされ微細な気泡と
なる。When this gas-liquid mixture descends the raw water introduction system 6 and is introduced from the annular chamber 3 through the inlet 60, a flow guide 17 is provided in this area.
, the gas-liquid mixture rises while going around the annular chamber in a spiral shape due to the guiding effect, and then loses its upward force and descends, and flows by itself with the subsequent upward swirling flow, so that the air flows into the raw water. The mixture is vigorously mixed to form fine air bubbles.
これにより原水に含まれる懸濁物質は気泡の持つ吸着作
用とぬれ作用によりからみあい、見かけ比重が小さくさ
れ、気泡に付、着された状態で気泡の浮力により環状室
中を上昇する。従って、たん白質、澱粉など沈降しにく
いコロイド状物質も疎水性、親水性のいかんを問わず気
泡に補集される。As a result, suspended substances contained in the raw water become entangled due to the adsorption and wetting effects of the air bubbles, their apparent specific gravity is reduced, and they adhere to the air bubbles and rise in the annular chamber due to the buoyancy of the air bubbles. Therefore, colloidal substances that are difficult to settle, such as proteins and starches, are also collected in air bubbles, regardless of whether they are hydrophobic or hydrophilic.
またアンモニア、亜硝酸、硫化゛水素等の揮発性溶存物
も吸着、酸化されて上昇する。単にエアを槽体の底から
導入したのでは、原水と効果的にミキシングできず、し
かも気泡が上昇する過程で粗大となるため、細かい懸濁
物質をうまく捕集することができない。In addition, volatile dissolved substances such as ammonia, nitrous acid, and hydrogen sulfide are also adsorbed and oxidized to rise. If air is simply introduced from the bottom of the tank, it cannot be mixed effectively with the raw water, and the air bubbles become coarse as they rise, making it impossible to effectively collect fine suspended solids.
原水は環状室3を旋回上昇後、流れガイド17と第1の
筒体4との間隙17aを通って降下し、充填材31によ
る抵抗作用で適度に流速を弱められた後、第1の筒体2
の下端を潜り、内側の第2の筒体4間の環状流路5に流
入し上昇流となる。After swirling up the annular chamber 3, the raw water descends through the gap 17a between the flow guide 17 and the first cylinder 4, and after the flow velocity is moderately weakened by the resistance action of the filler 31, it flows into the first cylinder. body 2
The flow passes through the lower end of the flow path, flows into the annular flow path 5 between the inner second cylindrical bodies 4, and becomes an upward flow.
その上昇流は第2の筒体4の上端4aから流入し。The upward flow enters from the upper end 4a of the second cylindrical body 4.
今度は下降流となって第2の筒体4内を流下し。This time, it becomes a downward flow and flows down inside the second cylindrical body 4.
処理水取出し系10から外部へと取出される。The treated water is taken out from the treated water take-out system 10 to the outside.
前記第2の筒体4の上端4aすなわち開口はタンク1の
天板部1bと所定の距離をおいて対峙しており、従って
、その天端4aのレベルが自動的に常時水位WLとなり
、この水位WLと天板部1bとの間の環状室頂部にリン
グ状の密閉空間14が創成されることになる。The upper end 4a of the second cylindrical body 4, that is, the opening, faces the top plate portion 1b of the tank 1 at a predetermined distance. Therefore, the level of the top end 4a automatically becomes the water level WL at all times. A ring-shaped sealed space 14 is created at the top of the annular chamber between the water level WL and the top plate portion 1b.
前記のように懸濁物質や揮発性溶存物(汚物)を吸着し
た微細気泡は上記密閉空間14の水面に浮かぶことによ
り微細な泡沫となってたまり、この泡沫と水面との界面
現象により汚物は濃縮され、密閉空間14のボリューム
を越えたあわ状汚物は、汚物導出管13bから密閉容器
13aに流入し、ここで適度に消はうされ、汚物排出管
13cから水分の少ないドロ状の形態で排出される。As mentioned above, the fine bubbles that have adsorbed suspended solids and volatile dissolved matters (filth) float on the water surface of the closed space 14 and accumulate as fine foam, and due to the interface phenomenon between the foam and the water surface, the dirt is removed. The foamy waste that is concentrated and exceeds the volume of the closed space 14 flows into the closed container 13a from the waste outlet pipe 13b, where it is properly dissipated, and is discharged from the waste discharge pipe 13c in the form of mud with less moisture. be discharged.
さらに、運転中にポンプ15bを作動すれば、環状室3
の下部から原水が取出され、これが上部に導入される間
に、循環用配管15aの途中に設けられている今1つの
気体混合機構11′からエアが添加され、気液混合物と
なってらせん状に旋回上昇し、導入口60からの気液混
合物と撹拌される。これによる相乗効果で汚物分離効率
はきわめて高くなり、原水中のSS、BOD、COD及
び有害溶存物は大幅に数値が低減し、陣も調整される。Furthermore, if the pump 15b is operated during operation, the annular chamber 3
While the raw water is taken out from the lower part of the tank and introduced into the upper part, air is added from another gas mixing mechanism 11' provided in the middle of the circulation pipe 15a, and the gas-liquid mixture is formed into a spiral shape. The gas is swirled upward and stirred with the gas-liquid mixture from the inlet 60. Due to the synergistic effect of this, the waste separation efficiency becomes extremely high, and the values of SS, BOD, COD and harmful dissolved substances in raw water are significantly reduced and the levels are also adjusted.
なお、上記運転時にオゾン発生機12からオゾンを供給
するときには、これが気体導管11cから原水中に添加
混合されるため、鉄、マンガン、シアン化合物などの無
機物質やトリクロエチレン等の他の有機化合物が酸化分
解され、環状室3で微細な気泡を絡みあって浮上分離さ
れ、同時に脱臭される。また、遠赤外線放射機構16を
設けたときには、遠赤外線の作用により水の分子運動が
旺盛となるため、原水中への酸素溶存塵が増すと共に気
泡がより微細化され、汚物分離効率がさらに向上する。Note that when ozone is supplied from the ozone generator 12 during the above operation, it is added and mixed into the raw water from the gas conduit 11c, so that inorganic substances such as iron, manganese, and cyanide compounds and other organic compounds such as trichlorethylene are It is oxidized and decomposed, entangled with fine bubbles in the annular chamber 3, floated and separated, and deodorized at the same time. Furthermore, when the far-infrared radiation mechanism 16 is installed, the action of far-infrared rays increases the molecular movement of water, which increases the amount of oxygen dissolved dust in the raw water and makes the bubbles more fine, further improving waste separation efficiency. do.
次に、第7図ないし第9図の実施例においては、主処理
装置Aから取出された処理水が副処理装置Bに送り込ま
れ、環状室300をらせん状に上昇し1次いで降下して
第1の筒体200の下端から環状流路500を上昇し、
第2の筒体400の上端から内部に入り下降する。これ
により主処理装置Aで除去し得なかった汚物は残存する
気泡に吸着されて密閉空間140に浮上し、泡沫となっ
て汚物取出し機構130から抜き出される。副処理装置
Bが複数基のときにはこの操作が繰返し行われるため、
超粒子までもが確実に分離除去される。Next, in the embodiments shown in FIGS. 7 to 9, the treated water taken out from the main treatment device A is sent to the sub-treatment device B, ascends spirally through the annular chamber 300, and then descends. ascending the annular flow path 500 from the lower end of the cylinder 200 of No. 1,
It enters the inside of the second cylindrical body 400 from the upper end and descends. As a result, the filth that could not be removed by the main processing device A is adsorbed by the remaining air bubbles, floats to the closed space 140, becomes foam, and is extracted from the filth removal mechanism 130. When there are multiple sub-processing devices B, this operation is repeated, so
Even super particles are reliably separated and removed.
第10図の実施例においては1M水は主処理装置Aある
いはこれの副処理装置Bによりまず前段処理されること
でCOD、SS、pH等が調整され、BOD濃度も低減
される。このように低濃度成分となった処理水が取出し
系10から生物学的浄化装置Cに送り込まれるため、炉
床の浄化能力を左右する負荷を低レベルで一定かつ安定
化することができる。In the embodiment shown in FIG. 10, 1M water is first subjected to preliminary treatment by the main treatment device A or its sub-treatment device B, so that COD, SS, pH, etc. are adjusted, and the BOD concentration is also reduced. Since the treated water containing low-concentration components is sent from the extraction system 10 to the biological purification device C, the load that affects the purification ability of the hearth can be kept constant and stable at a low level.
図示するものにおいては、処理水(有機性)は縦形の通
水性筒体19dを上昇する間に半径方向に流出してろ材
19eに接触し、処理水中の酸素によりろ材表面に生物
膜が形成され、これに処理水が接触することにより有機
物は吸着され、膜中に拡散し、膜中では酸素量の濃度差
による好気性。In the illustrated example, the treated water (organic) flows out in the radial direction while rising through the vertical water permeable cylinder 19d and comes into contact with the filter medium 19e, and a biological film is formed on the surface of the filter medium due to the oxygen in the treated water. When treated water comes into contact with this, organic matter is adsorbed and diffused into the membrane, which becomes aerobic due to the difference in oxygen concentration.
嫌気性微生物及び食物連鎖の生態系が出現する。An ecosystem of anaerobic microorganisms and food chains emerges.
ろ材を急速に流下する部分では主として浮遊性の有機物
が除去され、ゆるやかに流下する部分からは溶解性有機
物が除去され、きれいな水は多孔板19fを抜け、浄水
取出し系20から放流系、循環系などに送られる。Floating organic matter is mainly removed in the part where the filter medium flows down rapidly, and soluble organic matter is removed in the part where it flows down slowly.The clean water passes through the perforated plate 19f and is sent from the purified water take-out system 20 to the discharge system and the circulation system. etc. will be sent to.
本発明は、上記説明した構成・を有している限り、飲料
水を含む生活用上水、下水の処理、各種鉱工業の工業用
水、廃水の処理、養魚施設の処理、河川、湖沼1港湾の
水の処理などあらゆる汚れた水の処理に適用し得るもの
であり、実施例に限定されるものでないことは勿論であ
る。As long as the present invention has the above-described configuration, the present invention can be applied to treatment of domestic water including drinking water, sewage, industrial water of various mining and manufacturing industries, treatment of wastewater, treatment of fish farming facilities, rivers, lakes, marshes, ports, etc. It goes without saying that the invention is applicable to all types of dirty water treatment, such as water treatment, and is not limited to the examples.
次に本発明の実験結果を具体例として示す。Next, experimental results of the present invention will be shown as specific examples.
〔具体例17 ■0本発明により住宅街用水路の汚土汚水を処理した。[Specific example 17 ■0 According to the present invention, sewage from a residential area waterway was treated.
装置は第1図ないし第5図に示すもの(但し遠赤外線放
射機構、オゾン発生機は稼働せず)を用いた。仕様はタ
ンク内径350■φ、高さ(底板〜天板) 1200+
*m、第1の筒体内径10G−φ、長さ800s+m、
第2の筒体内径65膳φ、密閉空間高さ寸法100■、
汚水導入系40鳳履φ、処理水取出し系65m5+φと
し、ポンプは水中ポンプ100V、300rpm、循環
ポンプはマグネットポンプ50V、PMD1511Bを
用い、送水量をそれぞれ1トン/ 18ain、 10
0 Q / gIinとした。The equipment shown in Figures 1 to 5 was used (however, the far-infrared radiation mechanism and ozone generator were not operated). Specifications are tank inner diameter 350■φ, height (bottom plate to top plate) 1200+
*m, first cylinder inner diameter 10G-φ, length 800s+m,
The second cylindrical inner diameter is 65 mm, the height of the closed space is 100 mm,
The sewage inlet system has a diameter of 40 mm, and the treated water extraction system has a diameter of 65 m5 + diameter.The pump is a submersible pump of 100 V, 300 rpm, and the circulation pump is a magnet pump of 50 V, PMD1511B.The water flow rate is 1 ton/18 ain, 10, respectively.
0 Q/gIin.
■、汚水原液は1トン、液温14℃、pl(7,35、
アンモニア19ppm、亜硝酸5.7ppm、C0D2
7pp■、懸濁物質23,0OOpp鳳であった。■, sewage stock solution is 1 ton, liquid temperature 14℃, pl (7,35,
Ammonia 19ppm, nitrite 5.7ppm, C0D2
7pp■, suspended solids 23.0OOpp.
これらを上記本発明装置で処理した結果、液温18℃、
−8,2、アンモニア10.8PP膳。As a result of treating these with the apparatus of the present invention, the liquid temperature was 18°C,
-8.2, ammonia 10.8PP meal.
亜硝酸1.5pp鳳、C0D27pp■、l!1濁物質
540となり、著しく水質が改善された。Nitrite 1.5pp Otori, C0D 27pp ■, l! The amount of turbidity was 540, and the water quality was significantly improved.
汚物取出し機構から排出された排液は泡状で色は黒色、
トロリと粘りがあり、30c■φX 30cmのバケツ
に一杯除去された。その成分はアンモニア64pp園、
亜硝酸48pρ鵬、C0D754ρp腫であった。The liquid discharged from the waste removal mechanism is foamy and black in color.
It was thick and sticky, and a full bucket of 30cm x 30cm was removed. Its ingredients are ammonia 64pp garden,
Nitrite was 48 pp, and C0D was 754 pp.
〔具体例2〕 1、本発明によりいも焼酎廃液を前段処理した。[Specific example 2] 1. According to the present invention, potato shochu waste liquid was pre-treated.
装置は第7図ないし第9図の多段式を用いた。The multi-stage apparatus shown in FIGS. 7 to 9 was used.
副処理装置は3基であり、タンクは内径250mmφ、
高さ500mm、第1の筒体内径、第2の筒体内径、密
閉空間高さ寸法は前記具体例1と同じとした。また、オ
ゾン発生機によりオゾンを150mg/h供給した。原
液は炭酸ナトリウムを予め添加した。There are three sub-processing devices, and the tank has an inner diameter of 250 mmφ.
The height of 500 mm, the first cylindrical inner diameter, the second cylindrical inner diameter, and the height of the closed space were the same as those of the first specific example. Further, 150 mg/h of ozone was supplied by an ozone generator. Sodium carbonate was added to the stock solution in advance.
■、この結果を100メツシユの振動スクリーンを持つ
固液分離機による場合(比較例)と比較して示すと下記
第1表のとおりである。(2) The results are shown in Table 1 below in comparison with the case using a solid-liquid separator with a 100-mesh vibrating screen (comparative example).
第1表
この結果から、本発明は劣悪な廃液をきわめて効率よく
高性能処理できることがわかる。Table 1 From the results, it is clear that the present invention can treat inferior waste liquids extremely efficiently and with high performance.
懸濁物質とCODの数値がきわめて低下し、BOD濃度
も低くできるため、生物膜処理の負荷を小さくでき、代
謝や剥離を起させずに滞溜時間以内にBOD除去率を約
90%ないしそれ以上にすることができる。The suspended solids and COD values are extremely low, and the BOD concentration can be lowered, making it possible to reduce the burden of biofilm treatment and achieve a BOD removal rate of approximately 90% or less within the retention time without causing metabolism or peeling. You can do more than that.
■、なお、泡状で排出されたSS澱粉質は焼却あるいは
メタンガス発酵機などにより燃料として再利用でき、ま
た急速冷凍により乾燥することで−センサー、有機肥料
として再生することができる。(2) The SS starch discharged in the form of foam can be reused as fuel by incineration or in a methane gas fermenter, and can be recycled as a sensor or organic fertilizer by drying it by rapid freezing.
【具体例3〕
夏0本発明を循環式活魚イケス(総水量700Q)の海
水循環処理に適用した。装置は第10図のもの(生物学
的浄化機は1基)を使用した。生物学的浄化機の仕様は
、タンク内径150mmφ、高さ1000膳1通水性筒
体はメツシュ状プラスチック製50m■φろ材は砂、さ
んご、黒土、けいそう土とした。[Specific Example 3] Summer 0 The present invention was applied to seawater circulation treatment for live fish Ikesu (total water volume 700Q). The apparatus shown in Figure 10 (one biological purifier) was used. The specifications of the biological purifier were as follows: Tank inner diameter: 150 mmφ, height: 1000 tubes, water-permeable cylindrical body: mesh-like plastic, 50 mmφ Filter media: sand, coral, black soil, diatomaceous earth.
■、水温18.3℃の活魚イケスは、溶存酸素量(CO
D)9.0ppm、pH8,3,アンモニア0.33p
pm、亜硝酸0.85ppm、C0D2゜61pp−で
あった、これに養殖制約5kgを収容した状態で上記装
置で連続処理したところ、主処理装置から泡状排液のか
たちでアンモニア3゜9PP鴎、亜硝酸60Pp鳳、C
0D180pp鋤が除去され、海水環境はDO6,7p
p■、p)17.46、アンモニア2.0pp膳、亜硝
酸0.54ppmとなった。■The live fish Ikesu, whose water temperature is 18.3℃, has a dissolved oxygen content (CO
D) 9.0ppm, pH 8.3, ammonia 0.33p
pm, nitrite 0.85 ppm, and COD2゜61 pp-.When this was continuously treated with the above equipment with 5 kg of aquaculture limit stored in it, ammonia 3゜9PP seaweed was produced in the form of foamy drainage from the main treatment equipment. , Nitrite 60Pp Otori, C
0D180pp plow removed, seawater environment DO6,7p
p■, p) 17.46, ammonia 2.0ppm, and nitrite 0.54ppm.
■、その後、水温17.9℃において養殖網をさらに約
25kg収容し、上記装置で処理ルたところ、アンモニ
ア53ppm、亜硝酸11pp−1C0D165pp−
を排液として除去でき、海水環境はDO7,3pp膳、
pH7,93、アンモニア7゜4 ppm+、亜硝酸1
.4ppmに保たれた。(2) After that, approximately 25 kg of aquaculture net was further stored at a water temperature of 17.9°C and treated with the above equipment, resulting in 53 ppm of ammonia, 11 ppm of nitrite, and 165 ppm of C0D.
can be removed as wastewater, and the seawater environment has a DO of 7.3pp.
pH 7.93, ammonia 7°4 ppm+, nitrous acid 1
.. It was kept at 4 ppm.
■、養殖鋼総量30kg収容のままさらに運転を持続し
た結果5排液としてアンモニア50ppm、亜硝酸70
P、園、C0D98pp−が除去され、海水環境はDO
8,3ppm、p17,9.7’/モニア0.5pp醜
、亜硝酸0.9ppm、COD Oの良好な清海水条
件に保たれ、多量の養殖網は疲労、疾病、死亡が皆無で
あった。■As a result of continuing operation with a total of 30 kg of cultured steel stored, the effluent contained 50 ppm of ammonia and 70% of nitrous acid.
P, Sono, C0D98pp- has been removed, and the seawater environment is DO
8.3 ppm, p17,9.7'/monia 0.5 ppm ugliness, nitrite 0.9 ppm, COD O maintained in good clear seawater conditions, and a large number of aquaculture nets were free of fatigue, disease, and death. .
以上説明した本発明請求の範囲第1項記載の発明によれ
ば、底面積の小さい小型かつ簡単な構造により、高効率
で微細な懸濁物質や有害溶存物質を分離、除去処理する
ことができ、しかも可動部がないため操作も簡単で、故
障も少なく、メンテナンスもきわめて容易であるなどの
すぐれた効果が得られる。According to the invention described in claim 1 of the present invention described above, it is possible to separate and remove fine suspended solids and harmful dissolved substances with high efficiency using a small and simple structure with a small bottom area. Moreover, since there are no moving parts, it is easy to operate, has few breakdowns, and is extremely easy to maintain.
第2請求項によれば、原水に気体を混合して泡末処理し
、さらにその処理水を循環して繰返し泡末処理を行うた
め、微細な懸濁物質や有害溶存物質をより確実に分離、
除去することができるという効果が得られる。According to the second claim, fine suspended solids and harmful dissolved substances are separated more reliably by mixing gas with raw water and performing foam treatment, and then circulating the treated water and repeatedly performing foam treatment. ,
The effect is that it can be removed.
第3請求項によれば、コンプレッサなと混合する気体の
加圧機構、を何ら必要としないため、より装置を簡易化
することができるという効果が得られる。According to the third aspect, since there is no need for a compressor or any other mechanism for pressurizing the gas to be mixed, it is possible to obtain the effect that the apparatus can be further simplified.
第5請求項によれば、懸濁物質が超微細でかつ多量に含
まれている場合にも確実に分離除去を行えるという効果
が得られる。According to the fifth aspect, it is possible to reliably separate and remove suspended substances even when the suspended substances are extremely fine and are contained in large quantities.
第6請求項によれば、微細な懸濁物質や有害溶存物質を
高効率で分jl除去し、この前段処理により濃度調整及
び負荷−走化を図って生物学的処理を行うため、目詰り
、生物膜の剥脱流出や代謝等を招くことなく、水質劣悪
な海水類を安定して清澄水化できるというすぐれた効果
が得られる。According to the sixth claim, fine suspended solids and harmful dissolved substances are removed with high efficiency, and biological treatment is performed by adjusting the concentration and load-chemotaxis through this pre-treatment, thereby preventing clogging. , an excellent effect can be obtained in that seawater of poor water quality can be stably made clear without causing exfoliation of biofilms, outflow, metabolism, etc.
第1図は本発明による汚水類処理装置の基本的実施例を
示す部分切欠斜視図、第2図は同じくその部分切欠平面
図、第3図は同じくその斜視図、第4図は装置本体の縦
断正面図、第5図は気体混合機構の一例を示す断面図、
第6図は第1図の装置による処理を説明する系統図、第
7図は本発明の別の実施例を示す斜視図、第8図は同じ
くその平面図、第9図は第7図の装置による処理系統図
、第10図は本発明の他の実施例を示す縦断正面図であ
る。
1・・・タンク、1b・・・天板、1c・・・底板部、
2・・・第1の筒体、3・・・環状室、4・・・第2の
筒体、5・・・環状流路、6・・・原水導入系、7・・
・ポンプ、10・・・処理水導出系、11.11’・・
・気体混合機構、11a・・・筒体、11b・・・絞り
、11c・・・気体導管、13・・・汚物取出し機構、
14・・・密閉空間、15・・・循環系、15b・・・
ポンプ、17・・・ガイド、A・・・主処理装置、B・
・・副処理装置、C・・・生物学的浄化装置。Fig. 1 is a partially cutaway perspective view showing a basic embodiment of the sewage treatment equipment according to the present invention, Fig. 2 is a partially cutaway plan view thereof, Fig. 3 is a perspective view thereof, and Fig. 4 is a main body of the equipment. A vertical front view, FIG. 5 is a sectional view showing an example of a gas mixing mechanism,
FIG. 6 is a system diagram explaining the processing by the apparatus shown in FIG. 1, FIG. 7 is a perspective view showing another embodiment of the present invention, FIG. 8 is a plan view thereof, and FIG. FIG. 10, which is a processing system diagram of the apparatus, is a longitudinal sectional front view showing another embodiment of the present invention. 1...Tank, 1b...Top plate, 1c...Bottom plate part,
2... First cylindrical body, 3... Annular chamber, 4... Second cylindrical body, 5... Annular channel, 6... Raw water introduction system, 7...
・Pump, 10... Treated water outlet system, 11.11'...
- Gas mixing mechanism, 11a... cylinder, 11b... aperture, 11c... gas conduit, 13... filth removal mechanism,
14... Closed space, 15... Circulatory system, 15b...
Pump, 17... Guide, A... Main processing device, B.
... Sub-processing device, C... Biological purification device.
Claims (6)
内面との間に環状室を形成する第1の筒体と、 環状室に一端が接続し、途中に気体混合機構を備えた原
水導入系と、 第1の筒体の下端開口を介して環状室と通じる環状流路
を第1の筒体との間に形成するように位置され、上端が
タンク内頂部に至らぬ限度の高さで開口する一方、下端
が処理水取出し系に到る第2の筒体と、 前記環状室の頂部域の密閉空間と連通し、環状室に導入
された気体混合原水からの微細気泡により吸着捕集され
密閉空間にたまる泡状汚物を外部に排出する汚物取り出
し機構 とを備えていることを特徴とする汚水類処理装置。(1) A sealed tank, a first cylindrical body that descends from the top of the tank to a limit that does not reach the bottom of the tank and forms an annular chamber between it and the inner surface of the tank, one end of which is connected to the annular chamber, and a gas A raw water introduction system equipped with a mixing mechanism is positioned so as to form an annular flow path communicating with the annular chamber through the lower end opening of the first cylinder, and the upper end is located at the top of the tank. A second cylindrical body that opens at a height that does not reach the maximum height, while the lower end reaches the treated water extraction system, communicates with the sealed space in the top area of the annular chamber, and the gas-mixed raw water introduced into the annular chamber. What is claimed is: 1. A sewage treatment device comprising: a filth removal mechanism for discharging to the outside foam-like filth that is adsorbed and collected by fine air bubbles and accumulated in a closed space.
され、該循環系に気体混合機構が設けられているものを
含む特許請求の範囲第1項記載の汚水類処理装置。(2) The sewage treatment apparatus according to claim 1, wherein a circulation system connecting the upper and lower parts of the annular chamber is connected, and the circulation system is provided with a gas mixing mechanism.
りの下流位置に接続された気体導管とを備えている特許
請求の範囲第1項または第2項記載の汚水処理浄化装置
。(3) The sewage treatment and purification device according to claim 1 or 2, wherein the gas mixing mechanism includes a cylindrical body provided with a throttle inside and a gas conduit connected to a downstream position of the throttle. .
含む特許請求の範囲第3項記載の汚水処理浄化装置。(4) The sewage treatment and purification device according to claim 3, including one in which an ozone generator is connected to the gas conduit.
、その副処理装置が、少なくとも密閉状タンクと、該タ
ンク頂部からタンク底に至らぬ限度で垂下する第1の筒
体と、この第1の筒体との間に環状流路を形成するよう
に内挿され、かつ上端がタンク内頂部に至らぬ第2の筒
体と、該第1の筒体とタンク内周との間に形成された環
状室に一端が接続する導入系と、第2の筒体の下部に通
じる処理水取出し系と、前記環状室の密閉空間と連通し
、微細気泡により吸着捕集された泡状汚物を排出する汚
物取り出し機構とを備えているものを含む特許請求の範
囲第1項ないし第4項いずれかに記載の汚水類処理装置
。(5) The treated water extraction system is connected to several stages of sub-processing equipment, and the sub-processing equipment includes at least a closed tank and a first cylindrical body that hangs down from the top of the tank to the bottom of the tank. , a second cylinder which is inserted so as to form an annular flow path between it and the first cylinder, and whose upper end does not reach the top of the tank, and the first cylinder and the inner periphery of the tank. An introduction system, one end of which is connected to the annular chamber formed between them, and a treated water extraction system, which leads to the lower part of the second cylindrical body, communicate with the sealed space of the annular chamber, and the treated water is adsorbed and collected by microbubbles. 5. A sewage treatment device according to any one of claims 1 to 4, comprising a filth removal mechanism for discharging foamy filth.
段の浄化装置に接続されているものを含む特許請求の範
囲第1ないし第5項いずれかに項記載の汚水処理浄化装
置。(6) The sewage treatment and purification device according to any one of claims 1 to 5, wherein the treated water take-out system is connected to at least one stage of purification device using a biofilm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2575689A JPH0710384B2 (en) | 1989-02-06 | 1989-02-06 | Sewage treatment equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2575689A JPH0710384B2 (en) | 1989-02-06 | 1989-02-06 | Sewage treatment equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02207882A true JPH02207882A (en) | 1990-08-17 |
JPH0710384B2 JPH0710384B2 (en) | 1995-02-08 |
Family
ID=12174680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2575689A Expired - Lifetime JPH0710384B2 (en) | 1989-02-06 | 1989-02-06 | Sewage treatment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0710384B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08108173A (en) * | 1994-10-13 | 1996-04-30 | Risui Plant Service Kk | Spiral flow type flotation separation apparatus |
US7144503B2 (en) * | 2000-11-21 | 2006-12-05 | M-I Epcon As | Combined degassing and flotation tank |
KR101674511B1 (en) * | 2016-05-17 | 2016-11-09 | 선보공업주식회사 | Water treatment filter system for exhaust gas recirculation sytem |
CN108069552A (en) * | 2017-12-13 | 2018-05-25 | 广州畅驰机电设备有限公司 | A kind of seawater treatment system |
EP3947296A4 (en) * | 2019-03-26 | 2022-12-28 | Evocra Pty Limited | Sewage treatment method |
CN117023770A (en) * | 2023-10-08 | 2023-11-10 | 烟台市弗兰德电子科技有限公司 | Magnetized sewage treatment device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51116055A (en) * | 1975-04-04 | 1976-10-13 | Masayuki Otsuki | Pressure floating type foul water treating system using ozone |
JPS5239864A (en) * | 1975-09-25 | 1977-03-28 | Nippon Paint Co Ltd | Pressurized flotation tating apparatus |
JPS5597284A (en) * | 1979-01-18 | 1980-07-24 | Shin Meiwa Ind Co Ltd | Aerator for polluted water |
JPS61175291U (en) * | 1985-04-19 | 1986-10-31 | ||
JPS631697U (en) * | 1986-06-19 | 1988-01-07 |
-
1989
- 1989-02-06 JP JP2575689A patent/JPH0710384B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51116055A (en) * | 1975-04-04 | 1976-10-13 | Masayuki Otsuki | Pressure floating type foul water treating system using ozone |
JPS5239864A (en) * | 1975-09-25 | 1977-03-28 | Nippon Paint Co Ltd | Pressurized flotation tating apparatus |
JPS5597284A (en) * | 1979-01-18 | 1980-07-24 | Shin Meiwa Ind Co Ltd | Aerator for polluted water |
JPS61175291U (en) * | 1985-04-19 | 1986-10-31 | ||
JPS631697U (en) * | 1986-06-19 | 1988-01-07 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08108173A (en) * | 1994-10-13 | 1996-04-30 | Risui Plant Service Kk | Spiral flow type flotation separation apparatus |
US7144503B2 (en) * | 2000-11-21 | 2006-12-05 | M-I Epcon As | Combined degassing and flotation tank |
US7534354B2 (en) | 2000-11-21 | 2009-05-19 | M-I Epcon As | Combined degassing and flotation tank |
US8119000B2 (en) | 2000-11-21 | 2012-02-21 | Schlumberger Norge As | Combined degassing and floatation tank |
US8440077B2 (en) | 2000-11-21 | 2013-05-14 | Schlumberger Norge As | Combined degassing and flotation tank |
KR101674511B1 (en) * | 2016-05-17 | 2016-11-09 | 선보공업주식회사 | Water treatment filter system for exhaust gas recirculation sytem |
WO2017200185A1 (en) * | 2016-05-17 | 2017-11-23 | 선보공업주식회사 | Water treatment filter system for exhaust gas recirculation system |
CN109154221A (en) * | 2016-05-17 | 2019-01-04 | 船宝工业株式会社 | Gas recirculation system water processing filtering system |
CN109154221B (en) * | 2016-05-17 | 2021-04-30 | 船宝工业株式会社 | Water treatment filtering system for exhaust gas recirculation system |
CN108069552A (en) * | 2017-12-13 | 2018-05-25 | 广州畅驰机电设备有限公司 | A kind of seawater treatment system |
EP3947296A4 (en) * | 2019-03-26 | 2022-12-28 | Evocra Pty Limited | Sewage treatment method |
CN117023770A (en) * | 2023-10-08 | 2023-11-10 | 烟台市弗兰德电子科技有限公司 | Magnetized sewage treatment device |
Also Published As
Publication number | Publication date |
---|---|
JPH0710384B2 (en) | 1995-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3956128A (en) | Apparatus for treating industrial and domestic waste waters | |
US7553418B2 (en) | Method for water filtration | |
CN104926034B (en) | Catalytic ozonation combines biofilter Treatment of Wastewater in Coking technique and device | |
CN101205109B (en) | Apparatus for treating chemical fiber waste water by anaerobic method | |
KR20110002832A (en) | Method and device for the treatment of waste water | |
CN107055954B (en) | Biochar circulation type copolymerization air flotation tank water purification system and method | |
AU634509B2 (en) | Method and apparatus for treating water | |
KR101638970B1 (en) | Apparatus for sewage treatment of ship using moving bed bio reactor | |
CN205635294U (en) | A processing system for handling high concentration polyurethane synthetic leather waste water | |
US3774768A (en) | Apparatus for treating industrial and domestic waste waters | |
JPH02207882A (en) | Device for treating sewage or the like | |
CN111056716A (en) | Buried biochemical sewage treatment method | |
JP2003290784A (en) | Iron and manganese remover and method for the same | |
CN104045206A (en) | UV (ultraviolet)/O3+BAF (biological aerated filter) advanced oxidation sewage treatment facility | |
CN206616115U (en) | A kind of two-stage A BAF textile waste processing units | |
CA2565052A1 (en) | System for improved dissolved air floatation with a biofilter | |
CN214654276U (en) | Filler-reinforced domestic sewage treatment system | |
JP2544712B2 (en) | Wastewater treatment facility | |
JP4586147B2 (en) | Water purification equipment | |
CN210915745U (en) | Biological oxidation reactor | |
KR100430034B1 (en) | Waste water treatment system | |
CN217921789U (en) | Deep treatment device for petroleum-containing wastewater | |
JPH11347313A (en) | Water treatment utilizing capillarity and apparatus therefor | |
JP2005058957A (en) | Floating type water area cleaning apparatus | |
CN203960010U (en) | The organic brine waste treatment system of a kind of high density |