JPH07290092A - Method for monitoring contamination of circulating water pipeline and device therefor - Google Patents

Method for monitoring contamination of circulating water pipeline and device therefor

Info

Publication number
JPH07290092A
JPH07290092A JP11033094A JP11033094A JPH07290092A JP H07290092 A JPH07290092 A JP H07290092A JP 11033094 A JP11033094 A JP 11033094A JP 11033094 A JP11033094 A JP 11033094A JP H07290092 A JPH07290092 A JP H07290092A
Authority
JP
Japan
Prior art keywords
pipe
circulating water
water system
contamination
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11033094A
Other languages
Japanese (ja)
Other versions
JP3848973B2 (en
Inventor
Tadahiko Asano
忠彦 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Katayama Chemical Inc
Original Assignee
Katayama Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katayama Chemical Inc filed Critical Katayama Chemical Inc
Priority to JP11033094A priority Critical patent/JP3848973B2/en
Publication of JPH07290092A publication Critical patent/JPH07290092A/en
Application granted granted Critical
Publication of JP3848973B2 publication Critical patent/JP3848973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To grasp the contamination of a circulating water pipeline more quickly and directly, grasp or predict the contamination by a simple structure and provide an index by which an accurate measure is taken. CONSTITUTION:A tube 1 for monitoring contamination consists of a PVC tube 2 having 16mm inner diameter and 200mm length and a net 3 contaminant depositing means fixed to the wall face of the tube 2 at its central part. The net 3 is made of stainless steel and has 16 mesh. The tube 1 is connected to a part of a circulating water pipeline, and the contaminant of the circulating water depositing on the net 3 is monitored from outside the tube 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は循環水系配管内の汚染
状況監視方法及び装置であり、より詳細には、開放循環
式あるいは閉鎖循環式冷却水系等の工業用水配管内の腐
食、スケール及びスライム等による汚染状況監視方法及
び装置に関する。この発明を適用し得る循環水系配管と
しては、製鉄、化学、石油化学その他各種のプロセス冷
却用配管、ビル空調用配管等種々のものが存在する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for monitoring the state of pollution in circulating water system pipes, and more particularly to corrosion, scale and slime in industrial water pipes such as open circulation type or closed circulation type cooling water systems. The present invention relates to a method and an apparatus for monitoring the status of contamination by the like There are various circulating water system pipes to which the present invention can be applied, such as pipes for steelmaking, chemical and petrochemical and other process cooling, and pipes for building air conditioning.

【0002】[0002]

【従来の技術】製鉄、化学その他各種のプロセス冷却用
に、あるいはビル空調用に大量の冷却水が使用されてい
る。冷却水の使用の増大に伴い、冷却水の節減のため、
一過式冷却水系から循環式冷却水系への変更あるいは高
濃縮運転化の実施等による冷却水の高度利用が行われて
いる。このような冷却用水の高度利用を実施した場合に
は、溶存塩類の濃縮等により循環冷却水の水質が悪化
や、滞留時間の増大により、腐食生成物、スケール折出
物、スライム等の『汚染物質』が増加し、これらによる
閉塞や流量低下等の障害が発生する。
2. Description of the Related Art A large amount of cooling water is used for cooling various processes such as steel making, chemicals, or for building air conditioning. With the increasing use of cooling water, to save cooling water,
Advanced cooling water is being used by changing from a single cooling water system to a circulating cooling water system or implementing highly concentrated operation. When such advanced use of cooling water is carried out, the water quality of the circulating cooling water deteriorates due to the concentration of dissolved salts, etc., and the retention time increases, causing "contamination of corrosion products, scale exudates, slime, etc." The amount of substances increases, which causes obstacles such as blockage and flow rate reduction.

【0003】さらに、熱交換器・配管などの金属表面に
『汚染物質』が付着し、その下部が嫌気性雰囲気になっ
た場合には、硫酸塩還元菌が増殖し硫化水素が生成して
腐食反応が加速されることがある。このような『汚染物
質』の付着下の腐食は、銅・銅合金やステンレス鋼など
の耐食材料でも起こる。このため、循環水系配管内の汚
染状況を常時監視することにより、汚染を早期に検出し
て適切な水処理薬剤投入等の措置ができるようさまざま
な提案がなされている。
Further, when "contaminants" adhere to the metal surface of heat exchangers and pipes and the lower part becomes an anaerobic atmosphere, sulfate reducing bacteria grow and hydrogen sulfide is produced to corrode. The reaction may be accelerated. Corrosion under the adhesion of such "pollutants" also occurs in corrosion resistant materials such as copper, copper alloys and stainless steel. For this reason, various proposals have been made to constantly detect the state of pollution in the circulating water system pipes so that the pollution can be detected early and appropriate measures such as adding water treatment chemicals can be taken.

【0004】[0004]

【発明が解決しようとする課題】冷却水系内の汚染を把
握する手段としてステンレス管を循環水配管に設けられ
たバイパス管又は分岐管に接続し、一定期間経過後、該
管内の汚染物質の付着状況を観察することが一般に行わ
れている。しかし、付着状況を正確に把握するために
は、1ヵ月以上の長期間の試験期間が必要となり、迅速
に系内の付着状況を知ることができなかった。そこで、
(1)冷却水の懸濁物質量と冷却水の濃縮倍数を測定す
る(特開平3−288586号)、(2)細菌数やスラ
イム量を測定する(内田老鶴圃新社「工業用水処理」昭
和43年7月5日発行、第182〜198頁参照)等が
提案されている。これらはいずれも間接的な把握手段と
なるため、配管内の汚染状況を忠実に反映しているとは
いえない。
As a means for grasping contamination in the cooling water system, a stainless pipe is connected to a bypass pipe or a branch pipe provided in the circulating water pipe, and after a certain period of time, contaminants adhere to the pipe. It is common practice to observe the situation. However, a long test period of one month or more was required to accurately grasp the adhesion status, and it was not possible to quickly know the adhesion status in the system. Therefore,
(1) The amount of suspended solids of cooling water and the concentration multiple of cooling water are measured (JP-A-3-288586), (2) The number of bacteria and the amount of slime are measured (Uchida Otsukaku Shinsha "Industrial water treatment""Published July 5, 1968, see pages 182-198) and the like have been proposed. Since all of these are indirect means of grasping, they cannot be said to faithfully reflect the pollution situation in the pipe.

【0005】また、(4)小型の熱交換器を設置して冷
却水の温度変化を測定する(特開昭61−246590
号公報)、(5)加熱された配管表面温度の変化を測定
する(特開平2−96644号公報)が提案されている
が、センサーを含む把握手段全体が複雑で、装置が大が
かりになるため、作業性、経済性の点で不利である。
(4) A small heat exchanger is installed to measure the temperature change of the cooling water (Japanese Patent Laid-Open No. 61-246590).
(5) Measuring the change in the heated pipe surface temperature (Japanese Patent Laid-Open No. 2-96644), but the whole grasping means including the sensor is complicated and the device becomes large-scale. It is disadvantageous in terms of workability and economy.

【0006】この発明の目的は、循環水系配管内の汚染
をより早く、より直接的に把握しかつ簡単な構成により
循環水系配管内の汚染を把握あるいは予知して的確な措
置が行える指標を与えうる循環水系配管内の汚染状況監
視方法及びその装置を提供することにある。
An object of the present invention is to provide an index which enables quicker and more direct grasp of pollution in circulating water system piping and grasping or predicting contamination in circulating water system piping with a simple structure to take appropriate measures. Another object of the present invention is to provide a method and apparatus for monitoring the state of pollution in circulating water system piping.

【0007】[0007]

【課題を解決するための手段】この発明の循環水系配管
内の汚染状況監視方法は、循環水系の配管の一部に、内
部に循環水の汚染物質を付着し得る接触部材を備えてな
る透明管を設置し、外部からのモニターにより配管内の
汚染状態を感知する方法である。
The method for monitoring the state of contamination in a circulating water system pipe according to the present invention is transparent, comprising a contact member capable of adhering pollutants in the circulating water inside a part of the circulating water system pipe. This is a method in which a pipe is installed and the state of contamination inside the pipe is detected by an external monitor.

【0008】この発明の循環水系配管内の汚染状況監視
装置は、循環水系の配管の一部に設置され外部より配管
内をモニター可能な透明管と、この透明管の内部に設置
され循環水の汚染物質を付着し得る網とを備えてなる配
管内の汚染状態を感知する装置である。この発明にかか
る循環水系配管とは、開放循環式あるいは閉鎖循環式冷
却水系等の工業用水の配管をいう。
The apparatus for monitoring the state of pollution in the circulating water system pipe of the present invention is a transparent pipe installed in a part of the circulating water system pipe and capable of monitoring the inside of the pipe from the outside, and circulating water installed in the transparent pipe. It is a device for detecting the state of contamination in a pipe provided with a net to which contaminants can adhere. The circulating water system piping according to the present invention refers to industrial water piping such as an open circulation type or closed circulation type cooling water system.

【0009】透明管は、循環水系配管に設けられたバイ
パス管もしくは分岐管に接続されているのが作業性の点
で望ましい。接触部材は、網目状の汚染物質付着手段で
あることが汚染物質の付着を迅速に確認できる点で望ま
しい。汚染物質付着手段は、金属製もしくは合成樹脂製
の網であるのが長寿命化を図れる点で望ましい。
From the viewpoint of workability, the transparent pipe is preferably connected to a bypass pipe or a branch pipe provided in the circulating water system pipe. It is desirable that the contact member is a mesh-like contaminant adhering means because the contaminant can be quickly confirmed. It is desirable that the contaminant adhering means is a net made of metal or synthetic resin in order to prolong the service life.

【0010】網の目開きは、5〜30メッシュであり、
好ましくは10〜20メッシュであるのが汚染物質の付
着を迅速に確認することができる点で望ましい。5メッ
シュ未満の場合あるいは30メッシュを越える場合は、
汚染物質の付着速度が小さくなり、汚染物質の発生予知
が遅れる。
The mesh opening is 5 to 30 mesh,
It is preferably 10 to 20 mesh because it is possible to quickly confirm the attachment of contaminants. If less than 5 mesh or more than 30 mesh,
The deposition rate of pollutants decreases, and the prediction of pollutant generation is delayed.

【0011】透明管を通過する循環水の流速は、0.1
〜1.0m/秒であり、好ましくは0.3〜1.0m/
秒であるのが汚染物質の付着を迅速に確認することがで
きる点で望ましい。流速が0.1m/秒未満あるいは
1.0m/秒を越える場合は、汚染物質の付着速度が小
さくなり、汚染物質の発生予知が遅れる。
The flow velocity of the circulating water passing through the transparent tube is 0.1.
To 1.0 m / sec, preferably 0.3 to 1.0 m / sec
Seconds is desirable in that the adherence of contaminants can be quickly confirmed. If the flow velocity is less than 0.1 m / sec or more than 1.0 m / sec, the adherence speed of the pollutant becomes low, and the prediction of the pollutant generation is delayed.

【0012】[0012]

【作用】この発明の循環水系配管内の汚染状況監視方法
及びその装置では、循環水系の配管の一部に配置された
透明管内部の接触部材に循環水の汚染物質が付着する。
これを外部からモニターしておれば配管内の汚染状態を
直接的に把握できる。このモニターは、適切な薬剤投入
あるいは他の汚染防止措置を的確におこなうための指標
としても機能する。
In the method and apparatus for monitoring the state of contamination in the circulating water system according to the present invention, contaminants in the circulating water adhere to the contact members inside the transparent pipe arranged in a part of the circulating water system pipe.
If this is monitored from the outside, the state of contamination inside the pipe can be directly understood. This monitor also serves as an indicator for appropriate drug injection or other pollution prevention measures.

【0013】また、透明管を循環水系配管に設けられた
バイパス管もしくは分岐管に接続することにより、配管
内の汚染状態を容易に把握でき、透明管内の接触部材を
容易に取り出し分析に供することができる。また、接触
部材を網目状の汚染物質付着手段で構成すると、循環水
の汚染物質をより大きい付着速度でその表面に付着させ
ることができるので循環水系配管内の汚染を迅速に予知
することができる。網の材質は金属、および、合成樹脂
製のものが好ましく、金属網は耐食性のあるステンレス
等の材質が好ましい。
Further, by connecting the transparent pipe to a bypass pipe or a branch pipe provided in the circulating water system pipe, the contamination state in the pipe can be easily grasped, and the contact member in the transparent pipe can be easily taken out and used for analysis. You can Further, when the contact member is composed of the mesh-like contaminant adhering means, the contaminants in the circulating water can be adhered to the surface at a higher adhering rate, so that the contamination in the circulating water system pipe can be predicted quickly. . The material of the net is preferably made of metal or synthetic resin, and the metal net is preferably made of stainless steel having corrosion resistance.

【0014】また、網の目開きを10〜20メッシュと
すると、大きい付着速度で循環水の汚染物質をその表面
に付着させることができ循環水系配管に発生する汚染物
質の早期予知が可能になる。また、透明管を通過する循
環水の流速を0.3〜1.0m/秒となるよう循環水系
配管あるいは透明管を設定すれば、大きい付着速度で循
環水の汚染物質をその表面に付着させることができ汚染
物質の早期予知が可能となる。
Further, when the mesh size of the mesh is 10 to 20 mesh, the pollutants of the circulating water can be adhered to the surface at a high adhering speed, and the pollutants generated in the circulating water system pipe can be predicted early. . Further, if the circulating water system pipe or the transparent pipe is set so that the flow velocity of the circulating water passing through the transparent pipe is 0.3 to 1.0 m / sec, the pollutant of the circulating water is attached to the surface at a high attachment rate. This enables early prediction of pollutants.

【0015】[0015]

【実施例】以下、図面に示す一実施例に基づいてこの発
明を詳述する。なお、これによって、この発明が限定さ
れるものではない。図1及び図2は、この発明の汚染状
況監視方法及びその装置において使用する内部に循環水
の汚染物質を付着し得る接触部材を備えてなる透明管
(以下、モニター管という。)を示す。モニター管1は
透明管2と、接触部材であって汚染物質付着手段として
の網3とから構成されている。透明管2は、内径16m
m、外径22mm、長さ200mmの塩化ビニル樹脂製
である。透明管2の内径は設備施工および取扱の点から
10〜25mmが望ましく、長さも同様の理由から20
0〜300mmが望ましい。また、透明管2の材質は塩
化ビニル樹脂のみならず、ガラスあるいはアクリル樹脂
であってもよい
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to an embodiment shown in the drawings. The present invention is not limited to this. 1 and 2 show a transparent tube (hereinafter referred to as a monitor tube) provided with a contact member capable of adhering pollutants of circulating water to the inside thereof used in the method and apparatus for monitoring the pollution situation of the present invention. The monitor tube 1 is composed of a transparent tube 2 and a mesh 3 which is a contact member and serves as a contaminant attachment means. Transparent tube 2 has an inner diameter of 16 m
m, outer diameter 22 mm, length 200 mm made of vinyl chloride resin. The inner diameter of the transparent tube 2 is preferably 10 to 25 mm from the viewpoint of equipment construction and handling, and the length is 20 for the same reason.
0 to 300 mm is desirable. The material of the transparent tube 2 may be glass or acrylic resin as well as vinyl chloride resin.

【0016】網3は、透明管2の内壁を覆うよう捲回さ
れた状態で透明管2内に挿入されその弾性力で透明管2
の中央部の壁面に固定されている。網3はステンレス
(SUS−304)製でありその目開きは16メッシュ
である。なお、モニター管1は図示しないソケットで配
管と接続可能である。
The mesh 3 is inserted into the transparent tube 2 in a state of being wound so as to cover the inner wall of the transparent tube 2, and the elastic force thereof causes the transparent tube 2 to be inserted.
It is fixed to the wall in the center of the. The mesh 3 is made of stainless steel (SUS-304) and has an opening of 16 mesh. The monitor pipe 1 can be connected to the pipe by a socket (not shown).

【0017】図3は、上記モニター管1を配置した開放
循環式冷却水系を示す。この開放循環式冷却水系4で
は、ポンプ5により冷水を多管式熱交換器6に送り還流
する温水を冷却塔7に導く。ポンプ5下流側の配管には
バイパス管8が接続され、バイパス管8には着脱可能な
複数のモニター管1が並列に接続されている。モニター
管1の前後にはモニター管1内の流速を任意に設定する
ためのバルブ9が設置されている。冷却塔7には、冷却
水系4に薬剤を投入するためのタンク10及びポンプ1
1が接続されている。
FIG. 3 shows an open circulation type cooling water system in which the monitor pipe 1 is arranged. In the open-circulation cooling water system 4, the pump 5 sends the cold water to the multi-tube heat exchanger 6 to guide the hot water to the cooling tower 7. A bypass pipe 8 is connected to a pipe on the downstream side of the pump 5, and a plurality of detachable monitor pipes 1 are connected to the bypass pipe 8 in parallel. Before and after the monitor tube 1, valves 9 for arbitrarily setting the flow velocity in the monitor tube 1 are installed. The cooling tower 7 has a tank 10 and a pump 1 for introducing a chemical into the cooling water system 4.
1 is connected.

【0018】このような構成では、モニター管1内の網
3の汚染状況を外部から目視あるいはテレビカメラでモ
ニターすることにより、薬剤の投入あるいは他の付着防
止対策をおこなう時期を正確に把握することができる。
投入される薬剤は、防食剤(りん酸塩、ホスホン酸塩、
二価金属塩、カルボン酸系低分子量ポリマー、亜硝酸
塩、クロム酸塩、アミン,アゾール類等)、スケール防
止剤(カルボン酸系低分子量ポリマー、ホスホン酸
塩)、スライム防止剤(塩素剤、第四級アンモニウム塩
系薬剤、臭素系薬剤、有機窒素硫黄系薬剤等)、スライ
ム剥離剤、スラッジ堆積防止剤等がある。他の付着防止
対策としては、pH調整、熱交換器の運転条件の変更、
補給水の軟化・脱塩等がある。
In such a structure, the contamination state of the net 3 in the monitor tube 1 can be visually checked from the outside or by a television camera to accurately grasp the time when the medicine is introduced or other anti-adhesion measures are taken. You can
The chemicals introduced are anticorrosive agents (phosphate, phosphonate,
Divalent metal salts, carboxylic acid low molecular weight polymers, nitrites, chromates, amines, azoles, etc., scale inhibitors (carboxylic acid low molecular weight polymers, phosphonates), slime inhibitors (chlorine agents, no. Quaternary ammonium salt-based chemicals, bromine-based chemicals, organic nitrogen-sulfur-based chemicals, etc.), slime removers, sludge accumulation inhibitors, etc. Other measures to prevent adhesion include pH adjustment, changes in the operating conditions of the heat exchanger,
There is softening and desalination of makeup water.

【0019】〔実験例1〕前記実施例におけるモニター
管1を工業用冷却水系に試料として接続し、モニター管
1に付着した汚染物質の観察及び測定を行った。 (試験方法)図4に示すように、製鉄所熱間圧延工場冷
却水系の冷却塔出口配管から枝管を導き、この枝管にモ
ニター管1及びステンレス管12からなる付着試験ユニ
ット14を接続した。ステンレス管12はモニター管1
と同じ内径(16mm)、長さ(200mm)を有して
いる。枝管にはバルブ13、薬剤を投入するためのタン
ク10及びポンプ11を接続した。
[Experimental Example 1] The monitor tube 1 in the above example was connected to an industrial cooling water system as a sample, and the contaminants adhering to the monitor tube 1 were observed and measured. (Test method) As shown in FIG. 4, a branch pipe was introduced from the cooling tower outlet pipe of the cooling water system of the steel mill hot rolling mill, and the adhesion test unit 14 consisting of the monitor pipe 1 and the stainless pipe 12 was connected to this branch pipe. . Stainless tube 12 is monitor tube 1
It has the same inner diameter (16 mm) and length (200 mm). A valve 13, a tank 10 for introducing a drug, and a pump 11 were connected to the branch pipe.

【0020】薬剤無添加の場合と次亜塩素酸ソーダ(有
効塩素12%)を添加した場合とについて4種類の試験
を設定し、各試験に付いて30日間にわたる付着量の経
日的な測定及び観察を行った。モニター管1及びステン
レス管12を流れる冷却水の流速は0.6m/秒に設定
した。結果を表1、図5および図6に示す。図5に示し
た写真(コピー)はモニター管1から取り出され展開さ
れた網3をそれぞれ撮影したものである。図6は、付着
量の経時(日)変化を示している。また、表2は付着物
の組成の分析結果を示す。
Four types of tests were set for the case where no chemical was added and the case where sodium hypochlorite (effective chlorine 12%) was added, and each test was followed to measure the adhered amount over 30 days. And observations were made. The flow rate of the cooling water flowing through the monitor tube 1 and the stainless tube 12 was set to 0.6 m / sec. The results are shown in Table 1, FIG. 5 and FIG. The photographs (copies) shown in FIG. 5 are photographs of the nets 3 taken out from the monitor tube 1 and expanded. FIG. 6 shows changes in the adhered amount over time (day). Table 2 shows the analysis results of the composition of the deposit.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】試験結果より明らかなように、この発明の
実施例であるモニター管1内の網3の汚染状況は、ステ
ンレス管の付着量と相関関係があり、かつ汚れの付着を
迅速に確認できることがわかる。モニター管1で汚れを
確認した後、水処理薬剤(次亜塩素酸ソーダ)を添加す
ることにより、ステンレス管の付着量を低減できること
がわかる(試験No.参照)
As is clear from the test results, the state of contamination of the net 3 in the monitor tube 1 according to the embodiment of the present invention has a correlation with the amount of the stainless tube adhered, and the adherence of dirt can be confirmed quickly. I understand. It can be seen that the amount of adhesion of the stainless steel pipe can be reduced by adding a water treatment chemical (sodium hypochlorite) after confirming the stain on the monitor pipe 1 (see Test No.).

【0024】〔実験例2〕実験例1と同様に、モニター
管1を工業用冷却水系に試料として取り付け、配管に付
着した汚染物質の観察及び測定を行った。 (試験方法)図7に示すように、製鉄所連続鋳造工場冷
却水系の冷却塔出口配管に実験例1と同様の付着試験ユ
ニット14を設置した。
[Experimental Example 2] As in Experimental Example 1, the monitor tube 1 was attached to an industrial cooling water system as a sample, and the contaminants adhering to the piping were observed and measured. (Test Method) As shown in FIG. 7, the adhesion test unit 14 similar to that of Experimental Example 1 was installed in the cooling tower outlet pipe of the cooling water system of the steel plant continuous casting factory.

【0025】薬剤無添加および次亜塩素酸ソーダ(有効
塩素12%)の添加の2種類の試験を設定し、各試験に
おいて30日間にわたる付着量の経日的変化の観察及び
測定を行った。付着試験ユニット14を流れる冷却水の
流速は0.6m/秒に設定した。結果を表3および表4
に示す。
Two types of tests were set, that is, no drug was added and sodium hypochlorite (effective chlorine 12%) was added, and in each test, the daily change in the adhered amount over 30 days was observed and measured. The flow rate of the cooling water flowing through the adhesion test unit 14 was set to 0.6 m / sec. The results are shown in Table 3 and Table 4.
Shown in.

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】試験結果から明らかなように、この発明の
実施例であるモニター管1内の網3の汚染状況は、ステ
ンレス管の付着量と相関関係があり、かつ汚れの付着を
迅速に確認できることがわかる。
As is apparent from the test results, the state of contamination of the net 3 in the monitor tube 1 according to the embodiment of the present invention has a correlation with the amount of the stainless tube attached, and the attachment of dirt can be confirmed quickly. I understand.

【0029】〔実験例3〕実験例1と同様に、モニター
管1を工業用冷却水系に試料として取り付け、配管に付
着した汚染物質の観察及び測定を行った。 (試験方法)図8に示すように、製鉄所製銑工場羽口間
接冷却水系の羽口出口配管に実験例1と同様の付着試験
ユニットを設置した。
[Experimental Example 3] As in Experimental Example 1, the monitor tube 1 was attached to an industrial cooling water system as a sample, and the contaminants adhering to the piping were observed and measured. (Test Method) As shown in FIG. 8, an adhesion test unit similar to that of Experimental Example 1 was installed in a tuyere outlet pipe of a tuyere indirect cooling water system at a steel mill.

【0030】薬品無添加および次亜塩素酸ソーダ(有効
塩素12%)+スケール防止剤の添加の2種類の試験を
設定し、各試験において30日間にわたる付着量の経日
的変化の観察及び測定を行った。付着試験ユニット10
を流れる冷却水の流速は0.6m/秒に設定した。結果
を表5及び表6に示す。
Two types of tests were set up: no chemicals added and sodium hypochlorite (effective chlorine 12%) + scale inhibitor added, and in each test, observation and measurement of the daily change in the adhered amount over 30 days. I went. Adhesion test unit 10
The flow velocity of the cooling water flowing through was set to 0.6 m / sec. The results are shown in Tables 5 and 6.

【0031】[0031]

【表5】 [Table 5]

【0032】[0032]

【表6】 [Table 6]

【0033】〔実験例4〕透明管2に目の荒さ(目開
き)の異なる網を固定したモニター管1を準備し、この
モニター管1を冷却水系に試料として取り付け、網の目
の荒さ(目開き)と付着量の関係を測定した。 (試験方法)実験例1と同様の製鉄所冷間圧延工場冷却
水系の冷却塔出口配管から枝管を導き、この枝管に6本
のモニター管1を並列に接続した。モニター管1の中央
部には、目開きが5メッシュ、10メッシュ、12メッ
シュ、16メッシュ、20メッシュ及び28メッシュの
ステンレス製の網を取り付けた。各モニター管1を通過
する冷却水の流速は0.5m/秒に設定した。10日間
通水後の上記各網への付着量を、金網の目開きとの関係
において図9に示す。
[Experimental Example 4] A monitor tube 1 in which a mesh having different mesh roughness (opening) is fixed to a transparent tube 2 is prepared, and this monitor tube 1 is attached to a cooling water system as a sample to measure mesh roughness ( The relationship between (opening) and the amount of adhesion was measured. (Test method) A branch pipe was introduced from a cooling tower outlet pipe of a cooling water system of a steel mill cold rolling mill similar to that of Experimental Example 1, and six monitor pipes 1 were connected in parallel to the branch pipe. At the center of the monitor tube 1, a stainless mesh having openings of 5 mesh, 10 mesh, 12 mesh, 16 mesh, 20 mesh and 28 mesh was attached. The flow rate of the cooling water passing through each monitor tube 1 was set to 0.5 m / sec. The amount of adhesion to each of the above nets after passing water for 10 days is shown in FIG. 9 in relation to the opening of the wire net.

【0034】図9から、目開きが10〜20メッシュで
は、大きな付着量が得られる。5メッシュ未満では付着
量が激減し、30メッシュを越えるとやはり付着量が減
少することがわかる。網への付着機構は、まず、網線表
面へ微生物が付着し、そこから周囲に粘着性物質を生成
する。この粘着性物質がバインダーとして作用し、無機
懸濁物質が付着する。これにより、さらに付着が進行す
るものと考えられる。
From FIG. 9, a large adhesion amount can be obtained when the mesh size is 10 to 20 mesh. It can be seen that when the amount is less than 5 mesh, the adhesion amount is drastically reduced, and when the amount is more than 30 mesh, the adhesion amount is also reduced. The mechanism of attachment to the net is that microorganisms first attach to the surface of the wire, and then an adhesive substance is generated in the surroundings. This sticky substance acts as a binder to attach the inorganic suspended substance. It is considered that this further promotes the adhesion.

【0035】〔実験例5〕配管内の流速と付着速度の関
係を測定した。 (試験方法)図4に示した製鉄所熱間圧延工場冷却塔出
口配管から枝管を導き、この枝管に図10に示すよう
に、実験例1で使用したモニター管1を6本並列に接続
した。モニター管1の前には、モニター管1内の冷却水
流速を任意に設定するためのバルブ13をそれぞれ接続
した。付着速度はモニター管1の金網に対する通水前後
の重量差を求め、mg/cm2 /月に換算して示した。
結果を図11に示す。
[Experimental Example 5] The relationship between the flow velocity in the pipe and the deposition rate was measured. (Test method) A branch pipe was introduced from the cooling tower outlet pipe of the steel mill hot rolling mill shown in FIG. 4, and six monitor pipes 1 used in Experimental Example 1 were arranged in parallel in this branch pipe as shown in FIG. Connected In front of the monitor pipe 1, a valve 13 for arbitrarily setting the cooling water flow velocity in the monitor pipe 1 was connected. The adhesion rate was shown by calculating the weight difference between before and after passing water through the wire net of the monitor tube 1 and converting it into mg / cm 2 / month.
The results are shown in Fig. 11.

【0036】図11から付着速度は管内流速が0.6m
/秒前後でピークを示し、0.1m/秒未満あるいは
1.0m/秒を越えた領域では付着が進行しにくいこと
がわかる。これは、管内流速が低い領域では付着する異
物の供給が少なくなり、管内流速が高い領域では、流れ
の剪断力により付着しにくくなるものと考えられる。
From FIG. 11, the deposition rate is 0.6 m in the pipe.
It can be seen that a peak is exhibited around / sec, and that the adhesion does not easily proceed in a region of less than 0.1 m / sec or over 1.0 m / sec. It is considered that this is because the amount of foreign matter that adheres is reduced in the region where the flow velocity in the pipe is low, and it becomes difficult to adhere due to the shearing force of the flow in the region where the flow velocity in the pipe is high.

【0037】〔他の実施例〕前記実施例ではモニター管
1内壁面に網3を固定したが、図12に示すように、透
明管2内に小径の網15を固定部材16で固定し、網1
5の外周面に付着する付着物を外部からモニターできる
構成のモニター管17としてもよい。
[Other Embodiments] In the above-mentioned embodiment, the net 3 is fixed to the inner wall surface of the monitor tube 1, but as shown in FIG. 12, the small diameter net 15 is fixed in the transparent tube 2 by the fixing member 16. Net 1
The monitor tube 17 may be configured to be capable of externally monitoring the adhered matter adhered to the outer peripheral surface of 5.

【0038】[0038]

【発明の効果】この発明の循環水系配管内の汚染状況監
視方法及びその装置では、透明管の外部から接触部材に
付着した循環水の汚染物質のモニターすれば、配管内の
汚染状態を直接把握することができる。このため、簡単
な構成により汚染状態の把握が可能となる。また、汚染
物質の分析、あるいは適切な薬剤投入等の付着防止対策
を行う時期を正確に把握するための指標として用いるこ
とができる。また、透明管を循環水系配管に設けられた
バイパス管もしくは分岐管に接続することにより、より
簡易的に配管内の汚染状態を把握でき接触部材を容易に
透明管から取り出し付着した汚染物質を分析しあるいは
接触部材を交換することができる。
According to the method and apparatus for monitoring the pollution condition in the circulating water system pipe of the present invention, the pollution condition in the pipe can be directly grasped by monitoring the contaminants in the circulating water adhering to the contact member from the outside of the transparent pipe. can do. Therefore, the contamination state can be grasped with a simple configuration. In addition, it can be used as an index for accurately ascertaining the timing of analysis of pollutants or appropriate measures to prevent adhesion such as chemical injection. Also, by connecting the transparent pipe to the bypass pipe or branch pipe provided in the circulating water system pipe, the contamination state inside the pipe can be more easily grasped and the contact member can be easily taken out from the transparent pipe to analyze the attached pollutants. Or the contact member can be replaced.

【0039】また、接触部材を網目状の汚染物質付着手
段で構成すると、循環水の汚染物質をより大きい付着速
度でその表面に付着させることができる。このため、汚
染物質が循環水系配管に付着する前にこの発明のモニタ
ー管に汚染物質が付着することになり、配管内の汚染を
予知することが可能となる。この汚染物質付着手段を金
網で構成すると、損耗を防止し寿命を高めることができ
る。また、汚染物質付着手段を合成樹脂製の網で構成す
ると、金属では腐食が激しい循環水系配管において寿命
を高めることができる。
Further, when the contact member is composed of a mesh-like contaminant adhering means, the contaminants in the circulating water can be adhered to the surface at a higher adhering speed. For this reason, the contaminants will adhere to the monitor pipe of the present invention before the contaminants adhere to the circulating water system pipe, and it becomes possible to predict the contamination in the pipe. If this contaminant adhering means is composed of a wire net, it is possible to prevent wear and extend the life. Further, if the contaminant adhering means is composed of a net made of synthetic resin, it is possible to extend the service life of the circulating water system piping, which is highly corroded by metal.

【0040】また、網の目開きを10〜20メッシュと
すると、汚染物質の付着速度を高めることができ、汚染
物質の早期予知が可能となる。また、透明管を通過する
循環水の流速を0.1〜1.0m/秒となるよう循環水
系配管および透明管を構成すれば、汚染物質の付着速度
を高めることができ、汚染物質の早期予知が可能とな
る。この予知に基づいて適切な水処理薬剤の添加等の付
着防止対策を行うことにより循環水納の汚染を防止する
ことができる。
If the mesh size of the mesh is 10 to 20 meshes, the adherence rate of contaminants can be increased and the contaminants can be predicted early. Further, if the circulating water system pipe and the transparent pipe are configured so that the flow velocity of the circulating water passing through the transparent pipe is 0.1 to 1.0 m / sec, the adherence speed of the pollutant can be increased, and the pollutant can be quickly removed. Prediction is possible. Based on this prediction, it is possible to prevent contamination of the circulating water storage by taking measures to prevent adhesion such as addition of an appropriate water treatment chemical.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に係るモニター管1の斜視図
である。
FIG. 1 is a perspective view of a monitor tube 1 according to an embodiment of the present invention.

【図2】図1を側面からみた図である。FIG. 2 is a side view of FIG.

【図3】モニター管1を配置した開放循環式冷却水系の
構成をしめす図である。
FIG. 3 is a diagram showing a configuration of an open-circulation type cooling water system in which a monitor pipe 1 is arranged.

【図4】実験例1の製鉄所熱間圧延工場冷却水系の説明
図である。
FIG. 4 is an explanatory diagram of a cooling water system of a hot rolling mill of a steel mill of Experimental Example 1.

【図5】実験例1の結果としての付着状態を示す写真の
コピーである。
5 is a copy of a photograph showing the adhesion state as a result of Experimental Example 1. FIG.

【図6】実験例1の結果としての付着量の経時変化を示
す図である。
FIG. 6 is a diagram showing a change with time in an adhesion amount as a result of Experimental Example 1.

【図7】実験例2の製鉄所連続鋳造工場冷却水系の説明
図である。
FIG. 7 is an explanatory diagram of a cooling water system of a steel plant continuous casting factory of Experimental Example 2.

【図8】実験例3の製鉄製銑工場羽口間接冷却水系の説
明図である。
FIG. 8 is an explanatory view of an indirect cooling water system of a steel pig iron factory tuyere of Experimental Example 3.

【図9】実験例5の結果としての網の目の荒さと付着量
の関係を示す図である。
FIG. 9 is a diagram showing the relationship between the roughness of the mesh and the adhesion amount as a result of Experimental Example 5.

【図10】実験例5の付着試験用配管をしめす図であ
る。
FIG. 10 is a diagram showing an adhesion test pipe of Experimental Example 5.

【図11】実験例5の付着試験結果としての管内流速と
付着速度の関係をしめす図である。
FIG. 11 is a diagram showing the relationship between the in-pipe flow velocity and the deposition rate as a result of the deposition test of Experimental Example 5.

【図12】この発明の他の実施例としてのモニター管1
の図2に相当する図である。
FIG. 12 is a monitor tube 1 as another embodiment of the present invention.
3 is a diagram corresponding to FIG.

【符号の説明】[Explanation of symbols]

1,17 モニター管(汚染状況監視装置) 2 透明管 3,15 網(接触部材) 1,17 Monitor tube (pollution status monitoring device) 2 Transparent tube 3,15 Net (contact member)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 循環水系の配管の一部に、内部に循環水
の汚染物質を付着し得る接触部材を備えてなる透明管を
設置し、外部からのモニターにより配管内の汚染状態を
感知する循環水系配管内の汚染状況監視方法。
1. A transparent pipe provided with a contact member capable of adhering pollutants of circulating water inside a part of the pipe of the circulating water system, and the contamination state in the pipe is detected by an external monitor. Method of monitoring the status of pollution in circulating water piping.
【請求項2】 透明管が、循環水系配管に設けられたバ
イパス管もしくは分岐管に接続されてなる請求項1記載
の循環水系配管内の汚染状況監視方法。
2. The method for monitoring the pollution status in the circulating water system pipe according to claim 1, wherein the transparent pipe is connected to a bypass pipe or a branch pipe provided in the circulating water system pipe.
【請求項3】 接触部材が、網目状の汚染物質付着手段
である請求項1記載の循環水系配管内の汚染状況監視方
法。
3. The method for monitoring the pollution condition in the circulating water system pipe according to claim 1, wherein the contact member is a mesh-like contaminant adhering means.
【請求項4】 汚染物質付着手段が、金属製もしくは合
成樹脂製の網である請求項3記載の循環水系配管内の汚
染状況監視方法。
4. The method for monitoring the state of contamination in a circulating water system pipe according to claim 3, wherein the contaminant adhering means is a net made of metal or synthetic resin.
【請求項5】 網の目開きが、10〜20メッシュであ
る請求項4記載の循環水系配管内の汚染状況監視方法。
5. The method for monitoring the state of contamination in the circulating water system piping according to claim 4, wherein the mesh size of the mesh is 10 to 20 mesh.
【請求項6】 透明管を通過する循環水の流速が、0.
3〜1.0m/秒である請求項1記載の循環水系配管内
の汚染状況監視方法。
6. The flow rate of the circulating water passing through the transparent tube is 0.
The method for monitoring the pollution status in the circulating water system pipe according to claim 1, wherein the method is 3 to 1.0 m / sec.
【請求項7】 循環水系の配管の一部に設置され外部よ
り配管内をモニター可能な透明管と、この透明管の内部
に設置され循環水の汚染物質を付着し得る網とを備えて
なる配管内の汚染状態を感知する循環水系配管内汚染状
況監視装置。
7. A transparent pipe, which is installed in a part of the circulating water system pipe and can monitor the inside of the pipe from the outside, and a net which is installed inside the transparent pipe and to which pollutants of the circulating water can adhere. A circulating water system piping contamination status monitoring device that detects the status of contamination in the piping.
JP11033094A 1994-04-25 1994-04-25 Method and apparatus for monitoring pollution status in circulating water system piping Expired - Fee Related JP3848973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11033094A JP3848973B2 (en) 1994-04-25 1994-04-25 Method and apparatus for monitoring pollution status in circulating water system piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11033094A JP3848973B2 (en) 1994-04-25 1994-04-25 Method and apparatus for monitoring pollution status in circulating water system piping

Publications (2)

Publication Number Publication Date
JPH07290092A true JPH07290092A (en) 1995-11-07
JP3848973B2 JP3848973B2 (en) 2006-11-22

Family

ID=14533011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11033094A Expired - Fee Related JP3848973B2 (en) 1994-04-25 1994-04-25 Method and apparatus for monitoring pollution status in circulating water system piping

Country Status (1)

Country Link
JP (1) JP3848973B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181805A (en) * 2000-12-14 2002-06-26 Katayama Chem Works Co Ltd Pollutant measurement device, pollutant measurement method using it, industrial water treating method
CN113252500A (en) * 2021-05-20 2021-08-13 华北电力科学研究院有限责任公司西安分公司 Online intelligent monitoring system and method for corrosion of indirect air-cooling circulating water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181805A (en) * 2000-12-14 2002-06-26 Katayama Chem Works Co Ltd Pollutant measurement device, pollutant measurement method using it, industrial water treating method
CN113252500A (en) * 2021-05-20 2021-08-13 华北电力科学研究院有限责任公司西安分公司 Online intelligent monitoring system and method for corrosion of indirect air-cooling circulating water

Also Published As

Publication number Publication date
JP3848973B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
US7594430B2 (en) Methods for monitoring fouling of aqueous systems including enhanced heat exchanger tubes
JPH0519104B2 (en)
CN104502556A (en) Performance evaluation device and method for seawater circulating cooling water treating agent for electric power system
Eisnor et al. A framework for the implementation and design of pilot-scale distribution systems
Li et al. Modeling of residual chlorine in water distribution system
JP3848973B2 (en) Method and apparatus for monitoring pollution status in circulating water system piping
Turakhia et al. Fouling of heat exchanger surface: measurement and diagnosis
Reuter et al. Experimental evaluation of the temporal effects of paint-based protective films on composite fouling inside admiralty brass and titanium steam surface condenser tubes
JP3314645B2 (en) How to monitor pitting
JP3867357B2 (en) Metal corrosion monitoring method
Jsseling et al. Influence of Temperature on Corrosion Product Film Formation on CuNi10Fe in the Low Temperature Range: I. Corrosion rate as a function of temperature in well aerated sea water
JPH0561558B2 (en)
JP2794772B2 (en) Prediction method of corrosion of water-based metal
Licina Monitoring biofilms on metallic surfaces in real time
JP2007198869A (en) Biofilm monitoring method of aqueous system
JP3314644B2 (en) Pitting depth calculation method
US5285162A (en) Galvanic current measuring method and apparatus for monitoring build-up of biological deposits on surfaces of dissimilar metal electrodes immersed in water
Cantor Diagnosing corrosion problems through differentiation of metal fractions
Darmiatun Microbiology and Chemical Quality of Drinking Water From Household-Level Distribution Network
Káposztásová et al. Water Distribution System in Building and Its Microbiological Contamination Minimization
Singley et al. Pipe loop system augments corrosion studies
CN114397419A (en) Monitor for monitoring biological adhesion
Su et al. Corrosion of Fire Sprinkler Piping in Untreated Pond Water Under Nitrogen Purging
Harmon et al. Failure Analysis of Pipe in a Fire Suppression System
Somerscales et al. Hydrodynamic removal of corrosion products from a surface

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041006

A131 Notification of reasons for refusal

Effective date: 20050222

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050317

A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060418

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060509

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110908

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120908

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130908

LAPS Cancellation because of no payment of annual fees