JP2007198869A - Biofilm monitoring method of aqueous system - Google Patents

Biofilm monitoring method of aqueous system Download PDF

Info

Publication number
JP2007198869A
JP2007198869A JP2006017019A JP2006017019A JP2007198869A JP 2007198869 A JP2007198869 A JP 2007198869A JP 2006017019 A JP2006017019 A JP 2006017019A JP 2006017019 A JP2006017019 A JP 2006017019A JP 2007198869 A JP2007198869 A JP 2007198869A
Authority
JP
Japan
Prior art keywords
acid
biofilm
compound
monitoring
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006017019A
Other languages
Japanese (ja)
Inventor
Yasunori Tanji
保典 丹治
Kazuhiko Miyanaga
一彦 宮永
Toshiaki Yoshida
俊明 吉田
Toru Koyama
小山  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Sanyo Kako Co Ltd
Original Assignee
Tokyo Institute of Technology NUC
Sanyo Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, Sanyo Kako Co Ltd filed Critical Tokyo Institute of Technology NUC
Priority to JP2006017019A priority Critical patent/JP2007198869A/en
Publication of JP2007198869A publication Critical patent/JP2007198869A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biofilm monitoring method which enables grasping of the adhesion state of the biofilm of an aqueous system in an accurate, rapid and easy manner. <P>SOLUTION: In this method, a predetermined amount of a predetermined compound is added to the target aqueous system, and the water of the target aqueous system is sampled at each predetermined time by analyzing the concentration of the added compound; and from the extent of the reduced amount of the added compound, the biofilm formed in the aqueous system is monitored. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水系に発生したバイオフィルムのモニタリング方法に関する。   The present invention relates to a method for monitoring a biofilm generated in an aqueous system.

各種プロセス用、空調用における冷却水や製紙工業における製造工程循環水など各種の水系に微生物が存在した場合、それらによる障害が生じることが知られている。
その一つとして、微生物が生成するバイオフィルムによる配管の閉塞、熱交換器における伝熱効率の低下、配管金属部分の腐食、または、バイオフィルムによる製品の汚損等の障害が挙げられる。
It is known that when microorganisms are present in various water systems such as cooling water for various processes and air conditioning and circulating water in the manufacturing process in the paper industry, they cause problems.
As one of the problems, there are obstacles such as clogging of pipes due to biofilms produced by microorganisms, reduction of heat transfer efficiency in heat exchangers, corrosion of metal parts of pipes, or contamination of products due to biofilms.

このような障害を防止するために、水系に殺菌剤を添加する処理が行われたり、また、状況によっては、水系内に生成したバイオフィルムを除去するために、剥離剤等によるバイオフィルムの洗浄除去処理が行われたりする。   In order to prevent such obstacles, a treatment for adding a bactericidal agent to the aqueous system is performed, or depending on the situation, in order to remove the biofilm generated in the aqueous system, the biofilm is washed with a release agent or the like. A removal process is performed.

以上のような処理を適切かつ効率よく行うためには、水系内のバイオフィルムの生成状況を正確に把握する必要がある。   In order to appropriately and efficiently perform the above treatment, it is necessary to accurately grasp the state of biofilm formation in the aqueous system.

水系内のバイオフィルムをモニタリングする方法としては、水系へゴム板やガラス板等の付着板を浸漬して、そこに付着するバイオフィルムの量を定期的に測定する方法(非特許文献1)や、水系の水をチューブ内に導き、汚れ付着によるチューブ内の差圧変化から付着傾向を知る方法(非特許文献2)、微生物の付着によるステンレス鋼の自然電位の変化を測定して付着傾向を知る方法(特許文献1)、アクリル板、アクリルチューブなど透明素材への微生物付着による光の透過度の減少程度から、付着状況を知る方法(特許文献2)等が知られている。
エンジニアのための微生物腐食入門 腐食防食協会編 NACE Standard RP0189−2002 On−Line Monitoring of Cooling Waters (2002) 特開2001−4590号公報 特開平9−236546号公報
As a method for monitoring the biofilm in the aqueous system, a method of immersing an adhesive plate such as a rubber plate or a glass plate in the aqueous system and periodically measuring the amount of the biofilm adhering thereto (Non-patent Document 1) , A method of knowing the tendency of adhesion from the differential pressure change in the tube due to dirt adhesion (Non-patent Document 2), measuring the change in natural potential of stainless steel due to the adhesion of microorganisms A known method (Patent Document 1), a method for knowing the adhesion state (Patent Document 2), etc. are known from the degree of decrease in light transmittance due to the adhesion of microorganisms to transparent materials such as acrylic plates and acrylic tubes.
Introduction to microbial corrosion for engineers NACE Standard RP0189-2002 On-Line Monitoring of Cooling Waters (2002) Japanese Patent Laid-Open No. 2001-4590 JP-A-9-236546

しかしながら、水系に付着板を浸漬する方法は、水系のどこに付着板を設置するかで付着量が変わってしまい、水系全体のバイオフィルム付着量を把握することが困難であることや、付着板を水系から引き上げる際に、バイオフィルムを脱落させてしまう可能性があり、得られた結果の正確性に欠ける恐れがあること、また、付着板を設置してからバイオフィルムが形成されるまでに時間を要し、即座に結果を知ることが出来ない等の問題点がある。   However, the method of immersing the adherent plate in the aqueous system changes the amount of attachment depending on where the adherent plate is installed in the aqueous system, and it is difficult to grasp the biofilm adhesion amount of the entire aqueous system. When pulling up from the water system, there is a possibility that the biofilm may fall off, and there is a risk that the obtained result may be inaccurate. Also, it takes time from the installation of the adhesive plate to the formation of the biofilm. And there is a problem that the result cannot be immediately known.

また、差圧の変化を測定する方法、ステンレス鋼の自然電位の変化を測定する方法、光の透過度の減少を測定する方法については、やはり、設置してから装置の測定部にバイオフィルムを形成させ、状況を把握できるようになるまでに時間を要すること、多くの装置が、水系からバイパスをとって装置に該水を導いてその装置内で測定するものであり、水系のバイオフィルムの付着状況を間接的に測定しているに過ぎず、水系全体の状況を正確に把握しているとは言い難い面があること、また、装置を設置するスペースの問題、設置後の装置のメンテナンスの必要性など維持管理に手間がかかること、装置自体のコストがかかることなどの問題点がある。   Also, regarding the method for measuring the change in differential pressure, the method for measuring the change in the natural potential of stainless steel, and the method for measuring the decrease in light transmittance, the biofilm should be placed on the measurement part of the device after installation. It takes time to form and understand the situation, and many devices take a bypass from the water system and guide the water to the device and measure in the device. It is merely an indirect measurement of the adhesion status, and it is difficult to say that the situation of the entire water system is accurately grasped. Also, there is a problem with the space where the device is installed, and maintenance of the device after installation. There are problems such as the need for maintenance and the time-consuming maintenance and the cost of the device itself.

そこで、本発明では、水系のバイオフィルムの付着状況を正確に、迅速に、しかも手軽に把握することのできるバイオフィルムモニタリング方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a biofilm monitoring method capable of accurately, quickly and easily grasping the state of attachment of an aqueous biofilm.

本発明は、対象の該水系に所定の化合物を所定量添加し、該水を所定時間ごとに採取して、添加した化合物の濃度を分析することにより、その減少量の程度から、該水系内に生成したバイオフィルムのモニタリングを行う方法を提供するものである。   The present invention adds a predetermined amount of a predetermined compound to the target aqueous system, collects the water every predetermined time, and analyzes the concentration of the added compound. The present invention provides a method for monitoring the biofilm produced in the next step.

本発明に関して、水系に添加する化合物は、微生物に利用され得る水に可溶性の低分子化合物であり、それらの化合物は有機酸、アミノ化合物、アンモニウム塩、糖類であることが好ましい。具体的には、有機酸が、ギ酸、酢酸、プロピオン酸、酪酸、乳酸、マロン酸、リンゴ酸、クエン酸、コハク酸、シュウ酸、ピルビン酸であり、アミノ化合物が、アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン酸、グルタミン、グリシン、ヒスチジン、イソロイシン、ロイシン、リジン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、バリン、尿素であり、アンモニウム塩が塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、酢酸アンモニウムであり、糖類が、グルコース、フラクトース、ガラクトース、マンノース、マルトース、スクロース、ラクトースである。   In the present invention, the compound added to the aqueous system is a low-molecular compound soluble in water that can be used by microorganisms, and these compounds are preferably organic acids, amino compounds, ammonium salts, and saccharides. Specifically, the organic acid is formic acid, acetic acid, propionic acid, butyric acid, lactic acid, malonic acid, malic acid, citric acid, succinic acid, oxalic acid, pyruvic acid, and the amino compound is alanine, arginine, asparagine, Aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, urea, ammonium salts are ammonium chloride, ammonium sulfate, ammonium nitrate, acetic acid It is ammonium, and saccharides are glucose, fructose, galactose, mannose, maltose, sucrose, and lactose.

本発明によれば、対象の該水系に所定の化合物を添加し、該水を所定時間毎に採取して、添加した化合物濃度を分析することにより、その減少量の程度から、該水系内に生成したバイオフィルムのモニタリングの方法が提供される。   According to the present invention, a predetermined compound is added to the target aqueous system, the water is collected at predetermined time intervals, and the concentration of the added compound is analyzed. A method of monitoring the produced biofilm is provided.

本発明により、対象の該水系に新たに付着板や測定装置を設置することなく、該水を採取して分析するという簡単な方法で、該水系のバイオフィルム生成状況をモニタリングすることが出来る。特に装置のように設置場所の確保の問題や、設置後のメンテナンスの問題を生じることがない。   According to the present invention, the state of biofilm production in the water system can be monitored by a simple method of collecting and analyzing the water without installing a new adhesion plate or measuring device in the water system of interest. In particular, the problem of securing the installation location and the maintenance problem after installation are not caused unlike the apparatus.

また、付着板や測定装置を該水系に設置するような方法では、設置した付着板や装置の測定部に新たにバイオフィルムが付着し、それを測定するような方法であるので、バイオフィルムが新たに生成するまでの時間を要し、判定までに時間がかかるという欠点があったが、本発明ではすでに該水系内に生成しているバイオフィルムを直接測定する方法であるので、短時間で結果を知ることができる。   In addition, in the method in which the attachment plate and the measurement device are installed in the water system, the biofilm is newly attached to the measurement unit of the attachment plate and the device, and the measurement is performed. Although it took time until it was newly generated and it took time to make a determination, in the present invention, since it is a method of directly measuring a biofilm already generated in the aqueous system, it takes a short time. You can know the result.

さらには、付着板や装置を該水系に設置する方法では、設置した付着板や装置の測定部に新たに生成したバイオフィルムのみを測定する方法であり、該水系内全体のバイオフィルムを測定することは出来ない。本発明では、該水系に所定の化合物を添加して、その減少の程度を測定する方法であるので、該水系全体のバイオフィルム生成状況を正確にモニタリングすることが出来る。   Furthermore, in the method of installing the adherence plate or device in the water system, it is a method of measuring only the newly produced biofilm on the measurement unit of the attached adherence plate or device, and measuring the entire biofilm in the water system. I can't do that. In the present invention, since a predetermined compound is added to the aqueous system and the degree of decrease is measured, the biofilm production status of the entire aqueous system can be accurately monitored.

本発明の実施については、測定したい対象の該水系に所定の化合物を所定量添加することを行う。添加する化合物の形態は、どのような形態で用いても特に問題ないが、望ましくは水溶液製剤の形態で用いられたほうが、取り扱いが容易であることに加え、対象の該水系に添加した際に、速やかに溶解、均一化させるためにも好ましい。そして、化合物の添加後、所定の時間毎に該水の採取を行う。該水の採取を経時的に繰り返し、それらを添加した化合物に適した方法で分析を行い、化合物の濃度を求める。このようにして、対象の該水系における添加した化合物の経時的な濃度変化を求める。   In carrying out the present invention, a predetermined amount of a predetermined compound is added to the aqueous system to be measured. The form of the compound to be added is not particularly problematic if used in any form, but it is desirable to use it in the form of an aqueous solution preparation. It is also preferable for rapid dissolution and homogenization. Then, after the addition of the compound, the water is collected every predetermined time. The collection of the water is repeated over time, and analysis is performed by a method suitable for the compound to which they are added to determine the concentration of the compound. In this way, the concentration change with time of the added compound in the target aqueous system is determined.

化合物の経時的な減少がほとんどない、または、経時的な減少の程度が非常に少ない場合は、該水系内のバイオフィルム量が少ないと判断でき、減少の傾きが大きいほど、バイオフィルム量が多いと判定する。   When there is almost no decrease over time in the compound or the degree of decrease over time is very small, it can be determined that the amount of biofilm in the aqueous system is small, and the larger the slope of decrease, the larger the amount of biofilm. Is determined.

本発明を以下の試験例により具体的に説明するが、本発明はこれらの試験例により限定されるものではない。   The present invention will be specifically described by the following test examples, but the present invention is not limited to these test examples.

試験例1Test example 1

水槽内に試験片として炭素鋼(大きさ30mm×75mm、厚さ0.35mm)を設置して、下水処理場より採取した活性汚泥を微生物源として、それを
Glucose200mg/l、 Polypepton320mg/l、
NaHCO15mg/l、 KHPO15mg/lという組成の溶液で100倍に希釈した混合液を、前出の水槽に1リットル入れて循環流量800ml/分で7日間循環させた。このようにして、試験片表面にバイオフィルムを形成させた。
Carbon steel (size 30 mm x 75 mm, thickness 0.35 mm) is installed as a test piece in the water tank, and activated sludge collected from the sewage treatment plant is used as a microbial source.
A mixed solution diluted 100 times with a solution having a composition of NaHCO 3 15 mg / l and KH 2 PO 4 15 mg / l was placed in the above water tank and circulated at a circulation flow rate of 800 ml / min for 7 days. In this way, a biofilm was formed on the surface of the test piece.

このようにして得られたバイオフィルムの付着した試験片を別の水槽に移し、表1に示した化合物を20mg/lとなるように溶解させた水溶液をそれぞれ水槽に入れた。その水溶液を水槽に入れた時点を0時間として、以後3時間おきに水溶液の採取を行い、それぞれの化合物濃度を測定した。それぞれの化合物は表1に併せて示した手法により行った。以上の試験結果を表2に示した。表1に示した(1)ら(6)以外の化合物、すなわちフラクトース、ガラクトース、マンノース、マルトース、スクロースは(1)グルコース、(2)ラクトースと同じ糖類であり、微生物に容易に利用され得る水に可溶性の低分子化合物であるため、試験例への掲載を省いた。同じ理由により、アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン酸、グルタミン、ヒスチジン、イソロイシン、ロイシン、リジン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、チロシン、バリン、尿素、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、酢酸アンモニウムは(3)グリシン、(4)トリプトファンと同じアミノ基をもった化合物であり、ギ酸、プロピオン酸、酪酸、マロン酸、リンゴ酸、クエン酸、コハク酸、シュウ酸、ピルビン酸は(5)酢酸、(6)乳酸と同じ有機酸であり、それぞれ試験例への掲載を省いた。   The test piece to which the biofilm thus obtained was attached was transferred to another water tank, and an aqueous solution in which the compound shown in Table 1 was dissolved to 20 mg / l was put in each water tank. The time when the aqueous solution was put in the water tank was set to 0 hour, and thereafter the aqueous solution was collected every 3 hours, and the concentration of each compound was measured. Each compound was performed by the method shown in Table 1. The test results are shown in Table 2. Compounds other than (1) to (6) shown in Table 1, namely fructose, galactose, mannose, maltose, and sucrose are (1) glucose and (2) saccharides that are the same sugars as lactose and can be easily utilized by microorganisms. Since it is a low-molecular compound that is soluble in water, it was omitted from the test examples. For the same reason, alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tyrosine, valine, urea, ammonium chloride, ammonium sulfate, ammonium nitrate, Ammonium acetate is a compound having the same amino group as (3) glycine and (4) tryptophan, and formic acid, propionic acid, butyric acid, malonic acid, malic acid, citric acid, succinic acid, oxalic acid, and pyruvic acid are (5 ) Acetic acid and (6) Lactic acid, which are the same organic acids, and omitted from the test examples.

Figure 2007198869
Figure 2007198869

Figure 2007198869
Figure 2007198869

試験例から明らかなように、試験片に付着したバイオフィルムにより、添加したそれぞれの化合物が消費されていることが確認された。   As is clear from the test examples, it was confirmed that each added compound was consumed by the biofilm attached to the test piece.

試験例2Test example 2

モデル冷却塔装置を用いて、バイオフィルムによる化合物の消費を行った。
装置の概略を表3に示した。
The model cooling tower apparatus was used to consume the compound by biofilm.
The outline of the apparatus is shown in Table 3.

Figure 2007198869
Figure 2007198869

約1年間未洗浄となっていた前出のモデル冷却水系に、乳酸ナトリウムを乳酸イオンとして10mg/lとなるように添加し、添加した時点を0時間として、以下経時的に8時間まで循環冷却水の採取を行った。この操作により得られるのは、バイオフィルムとして付着状態の菌による乳酸の消費量+冷却水中に分散している菌による乳酸の消費量+冷却水のブローや蒸発による物理的な乳酸の損失量である。(=冷却水系全体の乳酸消費速度測定)   Sodium lactate was added to the above model cooling water system that had not been washed for about one year as 10 mg / l as lactic acid ions, and the time of addition was set to 0 hour, and the cooling was circulated to 8 hours over time. Water was collected. This operation results in the consumption of lactic acid by bacteria attached as biofilm + the consumption of lactic acid by bacteria dispersed in cooling water + the amount of physical lactic acid loss due to cooling water blowing or evaporation. is there. (= Measurement of lactic acid consumption rate of the whole cooling water system)

また、循環している冷却水中に分散している微生物による乳酸の消費速度のみを調査するために、冷却水を別の容器に1L採取して、そこに同様に乳酸ナトリウムを乳酸イオンとして10mg/lとなるように添加し、添加した時点を0時間として、以下経時的に8時間まで循環冷却水の採取を行った。採取したいずれの冷却水とも、乳酸の濃度を高速液体クロマトグラフィーで測定し、その消費速度を求めた。(冷却水に分散状態の菌による乳酸の消費速度測定)   In addition, in order to investigate only the consumption rate of lactic acid by microorganisms dispersed in the circulating cooling water, 1 L of cooling water was sampled in another container, and similarly, 10 mg / 1 was added, and the time of addition was set to 0 hour, and the circulating cooling water was collected over time until 8 hours thereafter. For each of the collected cooling waters, the concentration of lactic acid was measured by high performance liquid chromatography, and the consumption rate was determined. (Measurement of lactic acid consumption rate by bacteria dispersed in cooling water)

(冷却水系全体の乳酸消費速度)から(冷却水に分散状態の菌による乳酸の消費速度)及び(冷却水の蒸発損失、ブローに伴う物理的な乳酸の損失量)を差し引くことにより、該冷却水系内に付着しているバイオフィルムによる乳酸の付着速度を求めた。試験結果は表4に示した。   By subtracting (lactic acid consumption rate of bacteria dispersed in cooling water) and (evaporation loss of cooling water, physical lactic acid loss due to blow) from (cooling water system overall lactate consumption rate) The deposition rate of lactic acid by the biofilm adhered in the aqueous system was determined. The test results are shown in Table 4.

以上の操作を、(1)冷却水系洗浄前(2)冷却水系洗浄後の2回実施して、試験結果の比較を行った。冷却水系の洗浄は過酸化水素により行ない、バイオフィルムの完全な除去を確認した。洗浄後は装置内をよく水洗してから(2)試験を行った。また、洗浄時に該装置の配管の一部を開放して、バイオフィルムがどの程度付着していたかを確認した。直径20mm長さ1200mmの配管内に湿体積で200ccほどのバイオフィルムが採取できた。該装置のその他の箇所は構造上開放して確認できなかったが、前出の箇所の付着状況から推察して、該装置の洗浄前には相当量のバイオフィルムが付着していると考えられた。   The above operation was performed twice (1) before cooling water system cleaning and (2) after cooling water system cleaning, and the test results were compared. The cooling water system was washed with hydrogen peroxide to confirm complete removal of the biofilm. After washing, the inside of the apparatus was thoroughly washed with water, and then (2) the test was performed. Moreover, a part of piping of this apparatus was opened at the time of washing | cleaning, and it was confirmed how much biofilm had adhered. A biofilm of about 200 cc in wet volume could be collected in a pipe having a diameter of 20 mm and a length of 1200 mm. The other parts of the device were open due to the structure and could not be confirmed. However, it was assumed that a considerable amount of biofilm had adhered before the cleaning of the device inferred from the state of attachment of the previous part. It was.

Figure 2007198869
Figure 2007198869

該冷却水系の洗浄前、つまり冷却水系にバイオフィルムが存在する状態と、洗浄後、つまりバイオフィルムが存在しない状態では、乳酸の消費速度に明らかな差が認められた。   A clear difference was observed in the lactic acid consumption rate before washing of the cooling water system, that is, in the state where the biofilm was present in the cooling water system, and after washing, that is, in the state where there was no biofilm.

Claims (7)

対象の水系に所定の化合物を所定量添加し、該水を所定時間ごとに採取して、添加した化合物の濃度を分析することにより、その減少量の程度から、該水系内に発生したバイオフィルムのモニタリングを行う方法。   By adding a predetermined amount of a predetermined compound to the target water system, collecting the water every predetermined time, and analyzing the concentration of the added compound, the biofilm generated in the water system from the degree of the decrease How to monitor. 対象の水系に添加する化合物が、微生物に利用され得る水に可溶性の低分子化合物である請求項1に記載のバイオフィルムのモニタリング方法。   The method for monitoring a biofilm according to claim 1, wherein the compound added to the target aqueous system is a low-molecular compound soluble in water that can be used by microorganisms. 微生物に利用され得る水に可溶性の低分子化合物が有機酸、アミノ化合物、アンモニウム塩、糖類である請求項2に記載のバイオフィルムのモニタリング方法。   The method for monitoring a biofilm according to claim 2, wherein the water-soluble low molecular weight compound that can be used for a microorganism is an organic acid, an amino compound, an ammonium salt, or a saccharide. 有機酸が、ギ酸、酢酸、プロピオン酸、酪酸、乳酸、マロン酸、リンゴ酸、クエン酸、コハク酸、シュウ酸、ピルビン酸である請求項3に記載のバイオフィルムのモニタリング方法。   The method for monitoring a biofilm according to claim 3, wherein the organic acid is formic acid, acetic acid, propionic acid, butyric acid, lactic acid, malonic acid, malic acid, citric acid, succinic acid, oxalic acid, and pyruvic acid. アミノ化合物が、アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン酸、グルタミン、グリシン、ヒスチジン、イソロイシン、ロイシン、リジン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、バリン、尿素である請求項3に記載のバイオフィルムのモニタリング方法。   The amino compound is alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, urea 4. The method for monitoring a biofilm according to 3. アンモニウム塩が、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、酢酸アンモニウムである請求項3に記載のバイオフィルムのモニタリング方法。   The biofilm monitoring method according to claim 3, wherein the ammonium salt is ammonium chloride, ammonium sulfate, ammonium nitrate, or ammonium acetate. 糖類が、グルコース、フラクトース、ガラクトース、マンノース、マルトース、スクロース、ラクトースである請求項3に記載のバイオフィルムのモニタリング方法。

The method for monitoring a biofilm according to claim 3, wherein the saccharide is glucose, fructose, galactose, mannose, maltose, sucrose, or lactose.

JP2006017019A 2006-01-26 2006-01-26 Biofilm monitoring method of aqueous system Pending JP2007198869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006017019A JP2007198869A (en) 2006-01-26 2006-01-26 Biofilm monitoring method of aqueous system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006017019A JP2007198869A (en) 2006-01-26 2006-01-26 Biofilm monitoring method of aqueous system

Publications (1)

Publication Number Publication Date
JP2007198869A true JP2007198869A (en) 2007-08-09

Family

ID=38453616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006017019A Pending JP2007198869A (en) 2006-01-26 2006-01-26 Biofilm monitoring method of aqueous system

Country Status (1)

Country Link
JP (1) JP2007198869A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104703925A (en) * 2012-10-12 2015-06-10 东丽株式会社 Method for operating reverse osmotic membrane filtration plant, and biofilm formation monitoring device
CN107352602A (en) * 2017-09-08 2017-11-17 青岛科洋水产技术研究有限公司 A kind of water quality antidote in aquaculture and preparation method thereof
JP2019189974A (en) * 2018-04-26 2019-10-31 アクアス株式会社 Addition method of germicide in paper making facility

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006006237A (en) * 2004-06-28 2006-01-12 Kanazawa Univ Method for decomposing antibiotic and microorganism used for the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006006237A (en) * 2004-06-28 2006-01-12 Kanazawa Univ Method for decomposing antibiotic and microorganism used for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104703925A (en) * 2012-10-12 2015-06-10 东丽株式会社 Method for operating reverse osmotic membrane filtration plant, and biofilm formation monitoring device
CN107352602A (en) * 2017-09-08 2017-11-17 青岛科洋水产技术研究有限公司 A kind of water quality antidote in aquaculture and preparation method thereof
JP2019189974A (en) * 2018-04-26 2019-10-31 アクアス株式会社 Addition method of germicide in paper making facility

Similar Documents

Publication Publication Date Title
CN102680350B (en) Scale inhibitor performance evaluation method suitable for circulating cooling water systems
US9057093B2 (en) Detection and enumeration of microorganisms
WO2008038575A1 (en) Method for operating reverse osmosis membrane filtration plant, and reverse osmosis membrane filtration plant
AU2016206941B2 (en) Apparatus for maintaining sensor accuracy
CA2598775C (en) Method for determining and controlling the formation of deposits in a water system
US20180017522A1 (en) Apparatus for, System for and Methods of Maintaining Sensor Accuracy
JP2007198869A (en) Biofilm monitoring method of aqueous system
Qiu et al. Variations regularity of microorganisms and corrosion of cast iron in water distribution system
Doğruöz Güngör et al. Effect of mixed-species biofilm on copper surfaces in cooling water system
CN108754509A (en) Multi-functional full effect cooling water system complex cleaning and washing agent
JP5833275B1 (en) Chlorine supply control device, chlorine supply control method, and pipe protection system
Tanji et al. Monitoring of biofilm in cooling water system by measuring lactic acid consumption rate
Mariscal et al. A fluorescent method for assessing the antimicrobial efficacy of disinfectant against Escherichia coli ATCC 35218 biofilm
JP2012011287A (en) Measurement method and automatic measurement apparatus of aluminum concentration in test water, and control method of silica-based scale adhesion inhibitor concentration
CN109135941A (en) A kind of taste removal scale remover and preparation method thereof
US8541194B2 (en) Detecting micro-organisms in an electrocoating process
JP2019203711A (en) Microbial amount evaluation method and evaluation apparatus
JPH07290092A (en) Method for monitoring contamination of circulating water pipeline and device therefor
NL1026287C2 (en) Measuring microbiological activity of aqueous solutions, used for monitoring drinking water quality, by measuring reduction in oxygen concentration over time
JP4424117B2 (en) Method or apparatus for measuring or determining the concentration of aqueous treatment agent
Rajala et al. The effect of hypochlorite treatment on stainless steel performance and fouling in cooling water cycles
EP3447472A1 (en) Method for estimating number of microparticles in sample
RU2255048C1 (en) Method for treatment of cleaning equipment construction
CN117026237A (en) Pre-film corrosion inhibition process by controlling initial concentration in ozone water treatment system
JP2001194364A (en) Method for measuring assimilatory organic carbon in sea water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Effective date: 20101130

Free format text: JAPANESE INTERMEDIATE CODE: A02