JP2012011287A - Measurement method and automatic measurement apparatus of aluminum concentration in test water, and control method of silica-based scale adhesion inhibitor concentration - Google Patents

Measurement method and automatic measurement apparatus of aluminum concentration in test water, and control method of silica-based scale adhesion inhibitor concentration Download PDF

Info

Publication number
JP2012011287A
JP2012011287A JP2010148402A JP2010148402A JP2012011287A JP 2012011287 A JP2012011287 A JP 2012011287A JP 2010148402 A JP2010148402 A JP 2010148402A JP 2010148402 A JP2010148402 A JP 2010148402A JP 2012011287 A JP2012011287 A JP 2012011287A
Authority
JP
Japan
Prior art keywords
concentration
aluminum
test water
absorbance
aluminum concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010148402A
Other languages
Japanese (ja)
Inventor
Ikuko Nishida
育子 西田
Takushi Yokoyama
拓史 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Kurita Water Industries Ltd
Original Assignee
Kyushu University NUC
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Kurita Water Industries Ltd filed Critical Kyushu University NUC
Priority to JP2010148402A priority Critical patent/JP2012011287A/en
Publication of JP2012011287A publication Critical patent/JP2012011287A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for efficiently measuring concentration of aluminum being a factor which causes silica-based scale adhesion occurring on cooling water system, a boiler water, a membrane processing and a reduction well of geothermal power plant or the like, in situ.SOLUTION: There is provided the method (1) for measuring the concentration of aluminum being a factor which causes silica-based scale in test water. In the method, a reaction reagent comprising a combination of 7-iodine-8-hydroxyquinoline-5-sulfonic acid and a buffer solution is added to the test water and, thereafter, the aluminum concentration is obtained from the absorbance measured at a wavelength of aluminum analysis. There is also provided the automatic measurement apparatus (2) of aluminum concentration in the test water and the control method (3) of silica-based scale adhesion inhibitor concentration.

Description

本発明は、冷却水系やボイラ水系等の水系における、処理対象水中のシリカ系スケールの要因となるアルミニウムの濃度測定方法、好ましくは自動測定方法、及び該アルミニウムの濃度を現地において測定するためのアルミニウム濃度自動測定装置、並びに測定されたアルミニウム濃度に基づいて、該処理対象水に添加されるシリカ系スケール付着防止剤濃度を制御する方法に関する。   The present invention relates to an aluminum concentration measurement method, preferably an automatic measurement method, and aluminum for measuring the aluminum concentration in the field in water systems such as cooling water systems and boiler water systems, which cause silica-based scales in the water to be treated. The present invention relates to an automatic concentration measuring device and a method for controlling the concentration of a silica-based scale adhesion inhibitor added to the water to be treated based on the measured aluminum concentration.

冷却水系、ボイラ水系、膜処理、地熱発電所の還元井において、水と接触する伝熱面、配管、膜面ではスケール障害が発生する。省資源、省エネルギーの立場から、高濃縮運転をした場合(膜処理の場合、回収率を高くした場合)、溶解する塩類が濃縮され難溶性の塩となってスケール化する。熱交換部に生成したスケールは伝熱阻害、配管への付着は流量低下、膜への付着はフラックス低下を引き起こし、また生成したスケールが剥離し、系内を循環し、ポンプ、配管、熱交換部の閉塞や、閉塞に伴う配管、熱交換部でのスケール化の促進を引き起こす。また、地熱発電所の還元井でも同様の現象が起こることが知られている。   In cooling water systems, boiler water systems, membrane treatment, and reduction wells of geothermal power plants, scale obstacles occur on heat transfer surfaces, piping, and membrane surfaces that come into contact with water. From the standpoint of resource saving and energy saving, when highly concentrated operation is performed (in the case of membrane treatment, when the recovery rate is increased), the dissolved salts are concentrated to form a sparingly soluble salt. The scale generated in the heat exchange section inhibits heat transfer, the adhesion to the piping reduces the flow rate, the adhesion to the membrane causes the flux to decrease, and the generated scale peels off and circulates in the system, pumping, piping, heat exchange Cause blockage of parts, and the promotion of scaling in piping and heat exchange parts associated with blockage. It is also known that the same phenomenon occurs in the reduction well of a geothermal power plant.

生成するスケール種としては、炭酸カルシウム、硫酸カルシウム、亜硫酸カルシウム、リン酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、水酸化マグネシウム、リン酸亜鉛、水酸化亜鉛、塩基性炭酸亜鉛等がある。
従来、カルシウム系スケールに対しては、マレイン酸、アクリル酸、イタコン酸等のカルボキシル基が有効で、必要に応じてそれとビニルスルホン酸、アリルスルホン酸、3−アリロキシー2−ヒドロキシプロパンスルホン酸等のスルホン酸基を有するビニルモノマーや、アクリルアミド等のノニオン性ビニルモノマーを対象水質に応じて組み合わせたコポリマーがスケール防止剤として一般的に使用されている。また、ヘキサメタリン酸ナトリウムやトリポリリン酸ナトリウム等の無機ポリリン酸類、ヒドロキシエチリデンジホスホン酸やホスホノブタントリカルボン酸等のホスホン酸類も一般的に使用されている。
Examples of the scale species to be generated include calcium carbonate, calcium sulfate, calcium sulfite, calcium phosphate, calcium silicate, magnesium silicate, magnesium hydroxide, zinc phosphate, zinc hydroxide, and basic zinc carbonate.
Conventionally, for calcium-based scales, carboxyl groups such as maleic acid, acrylic acid, and itaconic acid are effective, and if necessary, vinyl sulfonic acid, allyl sulfonic acid, 3-allyloxy-2-hydroxypropane sulfonic acid, etc. In general, a copolymer obtained by combining a vinyl monomer having a sulfonic acid group with a nonionic vinyl monomer such as acrylamide according to the water quality of interest is used. Further, inorganic polyphosphoric acids such as sodium hexametaphosphate and sodium tripolyphosphate, and phosphonic acids such as hydroxyethylidene diphosphonic acid and phosphonobutanetricarboxylic acid are generally used.

一方、シリカ系スケールの防止剤として、ポリアクリルアミド(例えば、特許文献1参照)、ポリエチレングリコール(例えば、特許文献2参照)、ポリビニルホルムアミド(PNVF)(例えば、特許文献3参照)アクリル酸、アクリルアミドメチルプロパンスルホン酸、置換アクリルアミドのターポリマー(例えば、特許文献4参照)、ポリビニルピロリドン(例えば、特許文献5参照)等が提案されている。
しかしながら、アクリルアミド系ポリマーは、水中のケイ酸濃度が低い場合には効果が認められるものの、ケイ酸濃度が高い場合には、効果が乏しい。ポリエチレングリコールは、ケイ酸濃度が低い場合には、スケールの付着防止効果が認められるが、共存する他種イオンの影響を受けやすいために効果が安定しない、ポリビニルホルムアミドはカチオン性を帯びるため、組成比率の高いものは配管等の水系を構成する金属に吸着されやすい。アクリル酸、アクリルアミドメチルプロパンスルホン酸、置換アクリルアミドのターポリマーは、高温部で生成するシリカ系スケールに対しては有効であるが、低温部で生成するシリカ系スケールに対しては効果が十分でなく、特に低温部に付着するスケールを防止することが困難であった。
On the other hand, as a silica-based scale inhibitor, polyacrylamide (for example, see Patent Document 1), polyethylene glycol (for example, see Patent Document 2), polyvinylformamide (PNVF) (for example, see Patent Document 3) acrylic acid, acrylamide methyl Propanesulfonic acid, substituted acrylamide terpolymers (see, for example, Patent Document 4), polyvinylpyrrolidone (see, for example, Patent Document 5), and the like have been proposed.
However, although the acrylamide polymer is effective when the silicic acid concentration in water is low, the effect is poor when the silicic acid concentration is high. Polyethylene glycol has an anti-scale adhesion effect when the silicic acid concentration is low, but the effect is not stable because it is easily affected by other coexisting ions. Polyvinyl formamide has a cationic composition, A thing with a high ratio tends to be adsorbed by the metal which comprises water systems, such as piping. Terpolymers of acrylic acid, acrylamidomethylpropane sulfonic acid, and substituted acrylamide are effective for silica-based scales produced at high temperatures, but not sufficiently effective for silica-based scales produced at low temperatures. In particular, it was difficult to prevent scales adhering to the low temperature part.

また、アルミニウムが関与し低温部で生成するシリカ系スケールに対してアクリル酸/スルホン酸/N−ビニルカルボン酸アミドのコポリマー(例えば、特許文献6参照)が提案されている。
このようにシリカ系スケール防止剤として種々の薬剤が提案されているが、シリカ系スケールの生成には、マグネシウム、アルミニウム等の共存物質が関与するため、各水系において影響する共存物質に応じた薬剤を適用する必要がある。しかし、シリカ系スケールの生成に関与する共存物質を事前に調査して薬剤を適用することは行われていないのが現状である。
Further, a copolymer of acrylic acid / sulfonic acid / N-vinylcarboxylic acid amide has been proposed for silica-based scales produced in the low temperature part with aluminum involved (see, for example, Patent Document 6).
As described above, various agents have been proposed as silica-based scale inhibitors, but since the coexisting substances such as magnesium and aluminum are involved in the formation of the silica-based scale, the agents corresponding to the coexisting substances affecting each aqueous system. Need to apply. However, the present condition is that it is not performed in advance to investigate the coexisting substances involved in the generation of the silica-based scale in advance.

ところで、最近シリカ系スケールの生成に関与する共存物質の一つとしてアルミニウムが報告されており、冷却水系において負電荷のシリカと静電的相互作用する正電荷のアルミニウムがシリカ系スケール生成のバインダーであることが報告されている(例えば、非特許文献1参照)。しかしながら、その報告においては、孔径の異なるろ紙による分画及びゼータ電位による測定によって、正電荷のアルミニウムを特定しており、水系においてシリカ系スケール生成に関与するアルミニウム濃度をモニタリングする方法として適用することは困難である。   Recently, aluminum has been reported as one of the coexisting substances involved in the formation of silica-based scale, and positively charged aluminum that interacts with negatively charged silica electrostatically in the cooling water system is a binder for silica-based scale formation. It has been reported (see, for example, Non-Patent Document 1). However, in that report, positively charged aluminum is identified by fractionation using filter paper with different pore sizes and measurement by zeta potential, and it should be applied as a method for monitoring the aluminum concentration involved in silica-based scale formation in aqueous systems. It is difficult.

特開昭61−107998号公報JP 61-107998 A 特開平2−31894号公報JP-A-2-31894 特開平11−57783号公報Japanese Patent Laid-Open No. 11-57883 特許第3055815号明細書Japanese Patent No. 3055815 特許第4048580号明細書Japanese Patent No. 4048580 特開2008−36562号広報JP 2008-36562 A

Journal of Colloid and Interface Science 335, 18-23 (2009)Journal of Colloid and Interface Science 335, 18-23 (2009)

本発明は、このような状況下になされたもので、冷却水系、ボイラ水、膜処理、地熱発電所の還元井等で発生するシリカ系スケール付着の要因となるアルミニウムの濃度を現地において効率よく測定する方法、及びその装置、並びに測定されたアルミニウム濃度に基づいて、処理対象水に添加されるシリカ系スケール付着防止剤濃度を制御する方法を提供することを目的とする。   The present invention has been made under such circumstances, and the concentration of aluminum that causes silica-based scale adhesion that occurs in cooling water systems, boiler water, membrane treatment, reduction wells of geothermal power plants, etc. is efficiently reduced locally. It is an object of the present invention to provide a method for measuring, a device for the same, and a method for controlling the concentration of the silica-based scale adhesion inhibitor added to the water to be treated based on the measured aluminum concentration.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、下記の知見を得た。
シリカ系スケールの生成の要因となるアルミニウムは、正電荷を有し、負電荷のシリカと静電的相互作用することによりシリカ系スケールが生成し、正電荷を有するアルミニウムは、7−ヨード−8−ヒドロキシキノリン−5−スルホン酸と瞬時に反応することに着目し、さらに研究を重ね、7−ヨード−8−ヒドロキシキノリン−5−スルホン酸と、緩衝液との組み合わせからなる反応試薬を検水に添加後、アルミニウムが吸収を示す波長における吸光度を測定することにより、該アルミニウム濃度を求め得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
As a result of intensive studies to achieve the above object, the present inventors have obtained the following knowledge.
Aluminum that causes generation of the silica-based scale has a positive charge, and the silica-based scale is generated by electrostatic interaction with the negatively-charged silica. The aluminum having a positive charge is 7-iodo-8. Focusing on the fact that it reacts instantaneously with -hydroxyquinoline-5-sulfonic acid, further research is conducted, and a reaction reagent comprising a combination of 7-iodo-8-hydroxyquinoline-5-sulfonic acid and a buffer is sampled. It was found that the aluminum concentration can be obtained by measuring the absorbance at a wavelength at which aluminum exhibits absorption after the addition. The present invention has been completed based on such findings.

すなわち、本発明は、上記の(1)〜(10)を提供するものである。
(1)検水中のシリカ系スケールの要因となるアルミニウムの濃度を測定する方法であって、7−ヨード−8−ヒドロキシキノリン−5−スルホン酸と、緩衝液との組み合わせからなる反応試薬を検水に添加後、アルミニウム分析波長において測定した吸光度より、アルミニウム濃度を求めることを特徴とする検水中のアルミニウム濃度測定方法。
(2)反応試薬を検水に添加後、アルミニウム分析波長及び鉄分析波長において、それぞれ吸光度を測定し、鉄分析波長における吸光度より鉄濃度を求め、この鉄濃度を基にアルミニウム分析波長における鉄寄与分の吸光度を求め、アルミニウム分析波長における吸光度より前記鉄寄与分の吸光度を除いた吸光度よりアルミニウム濃度を求める請求項1に記載の検水中のアルミニウム濃度測定方法。
(3)反応試薬添加後、1分以内に吸光度を測定する上記(1)又は(2)の検水中のアルミニウム濃度測定方法。
(4)反応試薬添加後の吸光度の経時変化を測定し、各時間におけるアルミニウム濃度を算出し、得られたアルミニウム濃度の経時変化を非線形解析することで、求めた0分におけるアルミニウム濃度を算出する上記(1)又は(2)の検水中のアルミニウム濃度測定方法。
(5)検水中のシリカ系スケールの要因となるアルミニウムの濃度を自動測定する方法であって、検水を光学測定部に連続通水させる工程、7−ヨード−8−ヒドロキシキノリン−5−スルホン酸と、緩衝液との組み合わせからなる反応試薬を、前記検水に添加して測定用試料液を形成する工程、及び該測定用試料液中のアルミニウム濃度を、前記光学測定部において自動測定する工程、を少なくとも有することを特徴とする検水中のアルミニウム濃度自動測定方法。
(6)反応試薬添加後、1分以内に吸光度を測定する上記(5)の検水中のアルミニウム濃度自動測定方法。
(7)反応試薬添加後の吸光度の経時変化を測定し、各時間におけるアルミニウム濃度を算出し、得られたアルミニウム濃度の経時変化を非線形解析することで、求めた0分におけるアルミニウム濃度を算出する上記(5)の検水中のアルミニウム濃度自動測定方法。
(8)測定用試料水中のアルミニウム濃度が、光学測定用の検量線が直線性を示す定量範囲となるように、予め希釈した反応試薬溶液と検水とを混合する手段、を備える上記(5)の検水中のアルミニウム濃度自動測定方法。
(9)検水中のシリカ系スケールの要因となるアルミニウムの濃度を自動測定する装置であって、検水を光学測定部に連続通水させる手段、7−ヨード−8−ヒドロキシキノリン−5−スルホン酸と、緩衝液との組み合わせからなる反応試薬を、前記検水に添加して測定用試料液を形成する手段、及び該測定用試料液中のアルミニウム濃度を、前記光学測定部において自動測定する手段、を少なくとも備えたことを特徴とする検水中のアルミニウム濃度自動測定装置。
(10)上記(1)〜(4)のいずれかの検水中のアルミニウム濃度測定方法又は上記(5)〜(8)のいずれかの検水中のアルミニウム濃度自動測定方法によって得られた、検水中のシリカ系スケールの要因となるアルミニウムの濃度測定データに基づいて、検水源の処理対象水に添加されるシリカ系スケール付着防止剤の量を制御することを特徴とするシリカ系スケール付着防止剤濃度の制御方法。
That is, the present invention provides the above (1) to (10).
(1) A method for measuring the concentration of aluminum that causes silica-based scale in test water, wherein a reaction reagent comprising a combination of 7-iodo-8-hydroxyquinoline-5-sulfonic acid and a buffer solution is tested. A method for measuring aluminum concentration in test water, wherein the aluminum concentration is determined from the absorbance measured at the aluminum analysis wavelength after being added to water.
(2) After adding the reaction reagent to the test water, the absorbance is measured at the aluminum analysis wavelength and the iron analysis wavelength, respectively, and the iron concentration is determined from the absorbance at the iron analysis wavelength, and the iron contribution at the aluminum analysis wavelength is based on this iron concentration. The method for measuring an aluminum concentration in test water according to claim 1, wherein the absorbance of water is obtained and the aluminum concentration is obtained from the absorbance obtained by removing the absorbance of the iron contribution from the absorbance at the aluminum analysis wavelength.
(3) The method for measuring the aluminum concentration in the test water according to (1) or (2), wherein the absorbance is measured within 1 minute after the addition of the reaction reagent.
(4) Measure the change in absorbance with time after addition of the reaction reagent, calculate the aluminum concentration at each time, and calculate the obtained aluminum concentration at 0 minutes by nonlinear analysis of the change in the obtained aluminum concentration over time. The method for measuring aluminum concentration in test water according to (1) or (2) above.
(5) A method for automatically measuring the concentration of aluminum that causes a silica-based scale in test water, the step of continuously passing the test water through an optical measurement unit, 7-iodo-8-hydroxyquinoline-5-sulfone A step of adding a reaction reagent comprising a combination of an acid and a buffer solution to the test water to form a measurement sample solution, and the aluminum concentration in the measurement sample solution is automatically measured in the optical measurement unit And a method for automatically measuring the aluminum concentration in the test water.
(6) The method for automatically measuring the aluminum concentration in the test water of (5) above, wherein the absorbance is measured within 1 minute after the addition of the reaction reagent.
(7) Measure the change in absorbance over time after addition of the reaction reagent, calculate the aluminum concentration at each time, and calculate the obtained aluminum concentration at 0 minutes by nonlinear analysis of the change over time in the obtained aluminum concentration. The method for automatically measuring aluminum concentration in test water according to (5) above.
(8) The above (5), comprising means for mixing the prediluted reaction reagent solution and test water so that the aluminum concentration in the measurement sample water is within a quantitative range in which the calibration curve for optical measurement shows linearity. ) Automatic method for measuring aluminum concentration in test water.
(9) A device for automatically measuring the concentration of aluminum that causes silica-based scale in the test water, and means for continuously passing the test water through the optical measurement unit, 7-iodo-8-hydroxyquinoline-5-sulfone A means for forming a measurement sample solution by adding a reaction reagent comprising a combination of an acid and a buffer solution to the test water, and automatically measuring the aluminum concentration in the measurement sample solution in the optical measurement unit A device for automatically measuring the aluminum concentration in the test water.
(10) The test water obtained by the method for measuring aluminum concentration in the test water of any one of (1) to (4) or the method for automatically measuring the aluminum concentration in the test water of any of (5) to (8) Silica scale anti-sticking agent concentration, characterized by controlling the amount of silica-based scale anti-sticking agent added to the water to be treated of the sample water source based on the concentration measurement data of aluminum that causes silica scale Control method.

本発明によれば、冷却水系やボイラ水系等における、処理対象水中のシリカ系スケールの要因となるアルミニウムの濃度測定方法、好ましくは自動測定方法、及び該アルミニウムの濃度を現地において測定するためのアルミニウム濃度自動測定装置、並びに測定されたアルミニウム濃度に基づいて、該処理対象水に添加されるシリカ系スケール付着防止剤濃度を制御する方法を提供することができる。   According to the present invention, in a cooling water system, a boiler water system, or the like, a method for measuring the concentration of aluminum that causes a silica-based scale in water to be treated, preferably an automatic measuring method, and aluminum for measuring the aluminum concentration on site An automatic concentration measuring device and a method for controlling the concentration of the silica-based scale adhesion inhibitor added to the water to be treated can be provided based on the measured aluminum concentration.

本発明における検水中のアルミニウム濃度自動測定装置の一例のフロー図である。It is a flowchart of an example of the aluminum concentration automatic measurement apparatus in the test water in this invention. 実施例3における、経過時間による吸光度変化[(a)]及びAl濃度変化[(b)]を、それぞれ示すグラフである。It is a graph which shows the absorbance change [(a)] and Al concentration change [(b)] by elapsed time in Example 3, respectively. 実施例5における、経過時間による波長370nmの吸光度変化[(a)]及び波長600nmの吸光度変化[(b)]、並びに吸光度解析結果[(c)]及びAl濃度算出[(d)]をそれぞれ示すグラフである。In Example 5, the absorbance change [(a)] at a wavelength of 370 nm and the absorbance change [(b)] at a wavelength of 600 nm, and the absorbance analysis result [(c)] and Al concentration calculation [(d)] in Example 5 are shown. It is a graph to show. 実施例1、実施例3と比較例1との相関性を示すグラフである。6 is a graph showing the correlation between Example 1, Example 3 and Comparative Example 1. 熱交換器を有する保有水量100Lの模擬冷却水系の装置模式図である。It is a device schematic diagram of a simulated cooling water system with a retained water amount of 100 L having a heat exchanger. Al濃度の自動測定装置を用いて制御した結果を示すグラフである。It is a graph which shows the result controlled using the automatic measurement apparatus of Al concentration.

まず、本発明の検水中のアルミニウム濃度測定方法について説明する。
[検水中のアルミニウム濃度測定方法]
検水、特に処理対象水又は処理対象水の給水(補給水)中のアルミニウム濃度測定方法(以下、単に「Al濃度測定方法」と略記することがある。)は、検水中のシリカ系スケールの要因となるアルミニウムの濃度を測定する方法であって、7−ヨード−8−ヒドロキシキノリン−5−スルホン酸と、緩衝液との組み合わせからなる反応試薬を検水に添加後、アルミニウムが吸収を示す波長(アルミニウム分析波長)において測定した吸光度より、アルミニウム濃度を求めることを特徴とする。
First, the method for measuring the aluminum concentration in the test water of the present invention will be described.
[Measurement method of aluminum concentration in test water]
The method of measuring the aluminum concentration in the test water, particularly the water to be treated or the supply water (make-up water) of the water to be treated (hereinafter sometimes simply referred to as “Al concentration measuring method”) is a silica-based scale in the test water. This is a method for measuring the concentration of aluminum as a factor, and after a reaction reagent comprising a combination of 7-iodo-8-hydroxyquinoline-5-sulfonic acid and a buffer solution is added to the test water, aluminum shows absorption. The aluminum concentration is obtained from the absorbance measured at the wavelength (aluminum analysis wavelength).

(吸光度測定用試料液の調製)
当該Al濃度測定方法においては、7−ヨード−8−ヒドロキシキノリン−5−スルホン酸と緩衝液との組み合わせからなる反応試薬を検水に添加して、吸光度測定用試料液を調製する。
この吸光度測定用試料液の具体的な調製方法について、全量を10mLにメスアップする場合の仕様を以下に示すが、メスアップする量を変化させる場合は、試薬量や検水量を比例量用いればよい。
(Preparation of sample solution for absorbance measurement)
In the Al concentration measurement method, a reaction reagent composed of a combination of 7-iodo-8-hydroxyquinoline-5-sulfonic acid and a buffer solution is added to test water to prepare a sample solution for absorbance measurement.
Regarding the specific method for preparing the sample solution for absorbance measurement, the specifications when the total volume is made up to 10 mL are shown below. When changing the volume to be measured up, if the amount of reagent or sample water is used in proportion, Good.

<反応試薬>
当該Al濃度測定方法においては、反応試薬として、7−ヨード−8−ヒドロキシキノリン−5−スルホン酸と、緩衝液、好ましくはpH4.5〜5.5の緩衝液、例えばpH5の酢酸緩衝液との組み合わせを用いる。
7−ヨード−8−ヒドロキシキノリン−5−スルホン酸は、通常1〜5mmol/L濃度の水溶液の形態で用いられ、その量は検水1mL当たり、2.5mmol/L濃度の水溶液で、通常1mL以上、好ましくは1mLである。
一方、pH4.5〜5.5の緩衝液、例えばpH5の酢酸緩衝液は、酢酸と酢酸塩(Na塩、K塩、アンモニウム塩等)とのモル比1:2程度の混合物を、0.1〜1mol/L程度の濃度で含む水溶液の形態で用いられる。その量は、検水1mL当たり、1mol/L濃度の酢酸緩衝液で、通常2mL以上、好ましくは2mLである。
<Reaction reagent>
In the Al concentration measurement method, as a reaction reagent, 7-iodo-8-hydroxyquinoline-5-sulfonic acid and a buffer solution, preferably a buffer solution of pH 4.5 to 5.5, for example, an acetate buffer solution of pH 5 Use a combination of
7-iodo-8-hydroxyquinoline-5-sulfonic acid is usually used in the form of an aqueous solution having a concentration of 1 to 5 mmol / L, and the amount thereof is an aqueous solution having a concentration of 2.5 mmol / L per 1 mL of test water, and usually 1 mL. Above, preferably 1 mL.
On the other hand, a buffer solution having a pH of 4.5 to 5.5, for example, an acetic acid buffer solution having a pH of 5, is a mixture of acetic acid and an acetate salt (Na salt, K salt, ammonium salt, etc.) having a molar ratio of about 1: 2. It is used in the form of an aqueous solution containing at a concentration of about 1 to 1 mol / L. The amount is usually 1 mL or more, preferably 2 mL, with an acetic acid buffer solution having a concentration of 1 mol / L per 1 mL of test water.

吸光度測定用試料液は、メスフラスコ、比色管、蓋付き測定セル等の一定容量を計測できる蓋付き容器に、前記の7−ヨード−8−ヒドロキシキノリン−5−スルホン酸水溶液と、緩衝液とをそれぞれ所定量加え、次いで検水1〜8mLを加えて、全量を一定量にメスアップすることにより、調製することができる。
なお、本発明においては、反応試薬として、7−ヨード−8−ヒドロキシキノリン−5−スルホン酸水溶液と、緩衝液とを、予め所定の割合で混合した溶液を用いてもよい。
The sample solution for absorbance measurement is prepared by adding a 7-iodo-8-hydroxyquinoline-5-sulfonic acid aqueous solution and a buffer solution to a container with a lid capable of measuring a certain volume, such as a measuring flask, a colorimetric tube, a lid with a measuring cell. Can be prepared by adding a predetermined amount of each and then adding 1 to 8 mL of test water to make the whole amount constant.
In the present invention, a solution prepared by previously mixing a 7-iodo-8-hydroxyquinoline-5-sulfonic acid aqueous solution and a buffer solution at a predetermined ratio may be used as a reaction reagent.

(吸光度測定によるアルミニウム濃度の算出)
当該Al濃度測定方法においては、前記のようにして調製された吸光度測定用試料液について、アルミニウムが吸収を示す波長(アルミニウム分析波長)及び鉄が吸収を示す波長(鉄分析波長)における吸光度を測定し、これらの吸光度の値からアルミニウム濃度を算出する。その手順を以下に示す。
まず、純水に反応試薬を添加して、得られた水溶液を測定セルに入れ、アルミニウムが吸収を示す波長(アルミニウム分析波長)、具体的には350〜400nm、好ましくは370nm及び鉄が吸収を示す波長(鉄分析波長)、具体的には500〜700nm、好ましくは600nmにおける吸光度をそれぞれ測定し、ゼロ補正を行う。次に、吸光度測定用試料液を測定セルに入れ、アルミニウム分析波長及び鉄分析波長における吸光度をそれぞれ測定する。この際、前記吸光度測定用試料液は、調製後、直ちに、好ましくは1分以内に吸光度の測定、又は吸光度の経時変化を測定する。
なお、鉄分析波長については、波長500〜700nm、好ましくは600nmにおける吸光度の代わりに、波長400〜600nm、好ましくは450nmにおける吸光度を用いることもできる。
(Calculation of aluminum concentration by absorbance measurement)
In the Al concentration measurement method, the absorbance at the wavelength at which aluminum absorbs (aluminum analysis wavelength) and the wavelength at which iron absorbs (iron analysis wavelength) is measured for the sample solution for absorbance measurement prepared as described above. Then, the aluminum concentration is calculated from these absorbance values. The procedure is shown below.
First, a reaction reagent is added to pure water, and the obtained aqueous solution is put into a measurement cell, and a wavelength at which aluminum absorbs (aluminum analysis wavelength), specifically 350 to 400 nm, preferably 370 nm and iron absorbs. The indicated wavelength (iron analysis wavelength), specifically, the absorbance at 500 to 700 nm, preferably 600 nm, is measured, respectively, and zero correction is performed. Next, the sample solution for absorbance measurement is put into a measurement cell, and the absorbance at the aluminum analysis wavelength and the iron analysis wavelength is measured. At this time, the absorbance measurement sample solution is measured immediately after the preparation, preferably within 1 minute, or the change in absorbance with time is measured.
Regarding the iron analysis wavelength, the absorbance at a wavelength of 400 to 600 nm, preferably 450 nm, can be used instead of the absorbance at a wavelength of 500 to 700 nm, preferably 600 nm.

(1)前記の1分以内に測定した吸光度を基に解析してAl濃度を算出する場合には、予め作成した3つの検量線、すなわち、アルミニウム分析波長におけるAlの検量線、鉄分析波長におけるFeの検量線、アルミニウム分析波長におけるFeの検量線より下記手順で試料液中のAl濃度を算出する。
Fe濃度:鉄分析波長において測定した吸光度および鉄分析波長におけるFeの検量線より試料液中のFe濃度を算出する。
Al濃度:上記で算出したFe濃度およびアルミニウム分析波長におけるFeの検量線より、アルミニウム分析波長においてFeが示す吸光度を算出する。
アルミニウム分析波長において測定した吸光度より上記Feが示す吸光度を差し引くことによりAl由来の吸光度を求める。このAl由来の吸光度及びアルミニウム分析波長におけるAlの検量線から試料液中のAl濃度を算出する。
(2)一方、前記の吸光度の経時変化を基に、時間ゼロにおけるAl濃度を算出する場合には、予め作成したAl、Feの検量線より上記(1)と同様の手順で、各測定時間におけるAl濃度を算出する。この算出したAl濃度の経時変化を下記式に基づいて非線形解析を行い、時間ゼロにおけるAl濃度(Al0)を算出する。
Al0+Al1+Al2 = Al0+Al1(1−et/t1)+Al2(1−et/t2
(1) When calculating the Al concentration by analyzing based on the absorbance measured within 1 minute, three calibration curves prepared in advance, that is, the Al calibration curve at the aluminum analysis wavelength, the iron analysis wavelength The Al concentration in the sample solution is calculated by the following procedure from the Fe calibration curve and the Fe calibration curve at the aluminum analysis wavelength.
Fe concentration: The Fe concentration in the sample solution is calculated from the absorbance measured at the iron analysis wavelength and the Fe calibration curve at the iron analysis wavelength.
Al concentration: From the Fe concentration calculated above and the Fe calibration curve at the aluminum analysis wavelength, the absorbance indicated by Fe at the aluminum analysis wavelength is calculated.
The absorbance derived from Al is determined by subtracting the absorbance indicated by Fe from the absorbance measured at the aluminum analysis wavelength. The Al concentration in the sample solution is calculated from the absorbance derived from Al and the calibration curve of Al at the aluminum analysis wavelength.
(2) On the other hand, when calculating the Al concentration at time zero based on the above-mentioned change in absorbance over time, each measurement time is measured in the same procedure as in the above (1) from the previously prepared calibration curves for Al and Fe. The Al concentration at is calculated. A non-linear analysis is performed on the calculated change in Al concentration over time based on the following equation to calculate the Al concentration (Al 0 ) at time zero.
Al 0 + Al 1 + Al 2 = Al 0 + Al 1 (1- et / t1 ) + Al 2 (1- et / t2 )

[検水中のアルミニウム濃度自動測定方法]
本発明はまた、検水中のシリカスケールの要因となるアルミニウムの濃度を自動測定する方法であって、検水を光学測定部に連続通水させる工程、7−ヨード−8−ヒドロキシキノリン−5−スルホン酸と、緩衝液との組み合わせからなる反応試薬を、前記検水に添加して測定用試料液を形成する工程、及び該測定用試料液中のアルミニウム濃度を、前記光学測定部において自動測定する工程、を少なくとも有することを特徴とする検水中のアルミニウム濃度自動測定方法、を提供する。
このAl濃度自動測定方法における、吸光度測定によるアルミニウム濃度の算出については、前述で示したとおりである。
また、このAl濃度自動測定方法においては、測定用試料液中のAl濃度が、光学測定用の検量線が直線性を示す定量範囲となるように、予め希釈した反応試薬溶液と検水とを混合する手段を備えていることが望ましい。
[Aluminum concentration automatic measurement method in test water]
The present invention is also a method for automatically measuring the concentration of aluminum that causes silica scale in test water, the step of continuously passing the test water through an optical measuring unit, 7-iodo-8-hydroxyquinoline-5 A step of forming a measurement sample solution by adding a reaction reagent comprising a combination of a sulfonic acid and a buffer solution to the sample water, and automatically measuring the aluminum concentration in the measurement sample solution in the optical measurement unit And a method for automatically measuring the aluminum concentration in the test water.
The calculation of the aluminum concentration by the absorbance measurement in this Al concentration automatic measurement method is as described above.
Further, in this Al concentration automatic measurement method, the reaction reagent solution and test water diluted in advance are used so that the Al concentration in the measurement sample solution falls within the quantitative range in which the calibration curve for optical measurement shows linearity. It is desirable to have a means for mixing.

[Al濃度自動測定装置]
本発明の検水中のアルミニウム濃度自動測定装置(以下、単に「Al濃度自動測定装置」と略記することがある。)は、検水中のシリカ系スケールの要因となるアルミニウムの濃度を自動測定する装置であって、検水を光学測定部に連続通水させる手段、7−ヨード−8−ヒドロキシキノリン−5−スルホン酸と、緩衝液との組み合わせからなる反応試薬を、前記検水に添加して測定用試料液を形成する手段、及び該測定用試料液中のアルミニウム濃度を、前記光学測定部において自動測定する手段、を少なくとも備えたことを特徴とする。
本発明のAl濃度自動測定装置について、添付図面に従い、さらに詳細に説明する。
[Al concentration automatic measuring device]
The apparatus for automatically measuring aluminum concentration in test water of the present invention (hereinafter sometimes simply referred to as “Al concentration automatic measuring apparatus”) is an apparatus for automatically measuring the concentration of aluminum that causes a silica-based scale in test water. A reaction reagent comprising a combination of 7-iodo-8-hydroxyquinoline-5-sulfonic acid and a buffer, which is a means for continuously passing the test water through the optical measurement unit, is added to the test water. It comprises at least means for forming a measurement sample solution and means for automatically measuring the aluminum concentration in the measurement sample solution in the optical measurement unit.
The Al concentration automatic measuring apparatus of the present invention will be described in more detail with reference to the accompanying drawings.

図1は本発明のAl濃度自動測定装置の一例のフロー図である。
対象水の水路1から流量調整バルブ2によって流量が調整されて、試料水が取り込まれる。測定時のみに試料水を取り込む場合には、測定開始時に流量調整バルブ2を解放し、測定終了時には閉めるという操作を行えばよい。また、定量ポンプ(図示せず)を用いて測定時のみに試料水を取り込む場合には測定開始時に定量ポンプを運転し、測定終了時には停止するという操作を行うこともできる。
取り込まれた試料水はストレーナ3によって混入している夾雑物の粒子が除去され、後続の本発明に係る処理薬剤濃度の自動測定装置4に向けて通水される。なお、ストレーナ3は必須ではない。
FIG. 1 is a flow chart of an example of an Al concentration automatic measuring apparatus according to the present invention.
The flow rate is adjusted by the flow rate adjusting valve 2 from the water channel 1 of the target water, and the sample water is taken in. When sample water is taken in only at the time of measurement, the flow adjustment valve 2 may be released at the start of measurement and closed at the end of measurement. Further, when sample water is taken in only at the time of measurement using a metering pump (not shown), the metering pump can be operated at the start of measurement and stopped at the end of the measurement.
The sample water taken in is removed from the contaminant particles mixed by the strainer 3 and then passed to the subsequent automatic measuring device concentration measuring device 4 according to the present invention. The strainer 3 is not essential.

自動測定装置4は、まず前記ストレーナ3に連設された試料水供給流路401を備えている。この試料水供給経路401(以下「供給流路」)には、前記試料水中に含まれているアルミニウムと化学反応し、反応生成物をつくる性質を備える反応試薬Rが貯蔵されている反応試薬槽402に連結されている反応試薬注入経路403(以下「注入経路」)が開口している。なお、試料水中に反応試薬を添加する反応試薬槽402及び注入経路403は複数設けることが可能である。
注入経路403の途中には、反応試薬Rの注入量を調節するための注入ポンプP1が敷設されている、反応試薬Rは、測定時に前記注入ポンプP1によって添加量が調整されながら供給経路401に注入される。なお、反応試薬Rの添加量は、試料水中のアルミニウム濃度の程度に応じて定めるようにする。
The automatic measuring device 4 includes a sample water supply channel 401 that is connected to the strainer 3 first. In this sample water supply channel 401 (hereinafter referred to as “supply channel”), a reaction reagent tank in which a reaction reagent R having a property of chemically reacting with aluminum contained in the sample water to produce a reaction product is stored. A reaction reagent injection path 403 (hereinafter referred to as “injection path”) connected to 402 is open. A plurality of reaction reagent tanks 402 and injection paths 403 for adding a reaction reagent to the sample water can be provided.
In the middle of the injection path 403, an injection pump P1 for adjusting the injection amount of the reaction reagent R is laid. The reaction reagent R is supplied to the supply path 401 while the addition amount is adjusted by the injection pump P1 during measurement. Injected. The addition amount of the reaction reagent R is determined according to the level of aluminum concentration in the sample water.

供給経路401に注入された反応試薬Rは、供給経路401中を通水されている試料水に混合され、測定用試料液となる。混合方法は、試料水の流れの作用による攪拌でもよく、オリフィス状の構造、渦流を形成するような羽構造、静的混合器(スタティックミキサー)、ラインミキサー、スラーター攪拌等別途攪拌部位を設けてもよい。
続いて、前記した測定用試料液は、供給経路401を通じて、光学測定内部404に設けられた測定セル405に導入され、この測定セル405内を通過して排出経路408から排出される。光学測定部404の測定手段は、公知の吸光光度分析の常法の光学測定手段を適宜採用することができる。
ここで、本発明では、アルミニウム濃度のオンストリーム監視に適するものであるから、長期間の連続的な測定を可能とするために、測定セル405を自動洗浄できるように工夫してもよい。すなわち測定セル405に洗浄液注入装置(図示せず)を付設して、一定時間毎に洗浄液を測定セル405内に注入できるようにする。
The reaction reagent R injected into the supply path 401 is mixed with the sample water flowing through the supply path 401 to become a measurement sample solution. The mixing method may be agitation by the action of the sample water flow, and an additional stirring site such as an orifice-like structure, a wing structure that forms a vortex, a static mixer, a line mixer, and a slater is provided. Also good.
Subsequently, the above-described measurement sample solution is introduced into the measurement cell 405 provided in the optical measurement interior 404 through the supply path 401, passes through the measurement cell 405, and is discharged from the discharge path 408. As the measuring means of the optical measuring unit 404, a well-known conventional optical measuring means for spectrophotometric analysis can be appropriately employed.
Here, since the present invention is suitable for on-stream monitoring of the aluminum concentration, the measurement cell 405 may be devised so that it can be automatically cleaned in order to enable continuous measurement over a long period of time. That is, a cleaning liquid injection device (not shown) is attached to the measurement cell 405 so that the cleaning liquid can be injected into the measurement cell 405 at regular intervals.

なお、符号406は、測定セル405中の測定用試料液に光を照射するための光源、符号407は測定セル405中の試料液に照射された光の透過光の強度を検知し、この強度を電気信号として捕捉する受光部を表しており、符号409は、前記受光部407に接続する解析部を表している。
ここで、本発明においては、前記解析部409で得られたアルミニウム濃度値を電気信号に変換してCPU等が内蔵された制御部5に送信し、水処理剤(スケール防止剤)が貯蔵されている水処理剤貯留槽6に連結する処理剤添加経路7の途中に付設された処理剤注入ポンプP2の注入量を自動制御するようにすることができる。
Reference numeral 406 denotes a light source for irradiating the measurement sample liquid in the measurement cell 405 with light, and reference numeral 407 detects the intensity of transmitted light of the light irradiated to the sample liquid in the measurement cell 405. Represents a light receiving unit that captures as an electrical signal, and reference numeral 409 represents an analysis unit connected to the light receiving unit 407.
Here, in the present invention, the aluminum concentration value obtained by the analysis unit 409 is converted into an electric signal and transmitted to the control unit 5 in which a CPU or the like is built, and the water treatment agent (scale prevention agent) is stored. The injection amount of the processing agent injection pump P2 provided in the middle of the processing agent addition path 7 connected to the water processing agent storage tank 6 can be automatically controlled.

[シリカ系スケール付着防止剤濃度の制御方法]
本発明のシリカ系スケール付着防止剤濃度の制御方法は、前述した本発明のAl濃度測定方法又はAl濃度自動測定方法によって得られた、検水中のシリカ系スケールの要因となるアルミニウム濃度測定データに基づいて、検水源の処理対象水に添加されるシリカ系スケール付着防止剤の量を制御することを特徴とする。
[Method for controlling concentration of silica-based scale adhesion inhibitor]
The method for controlling the concentration of the silica-based scale adhesion inhibitor of the present invention is based on the aluminum concentration measurement data that causes the silica-based scale in the test water obtained by the Al concentration measuring method or the Al concentration automatic measuring method of the present invention described above. Based on this, the amount of the silica-based scale adhesion inhibitor added to the water to be treated of the test water source is controlled.

(シリカ系スケール付着防止剤)
検水源の処理対象水に添加されるシリカ系スケール付着防止剤としては、例えば、トリポリリン酸ナトリウムやヘキサメタリン酸ナトリウム等の無機ポリリン酸類;アクリル酸、マレイン酸、マレイン酸/アクリル酸、マレイン酸/スルホン酸、アクリル酸/スルホン酸等をモノマー成分とするコポリマー;アクリル酸/スルホン酸/ノニオン基含有モノマー等をモノマー成分とするコポリマー等が挙げられる。また、必要に応じてさらに有機ホスホン酸、塩化亜鉛等の防食剤、ヒドラジン、Cl−MIT、次亜塩素酸+スルファミン酸等の殺菌剤等と、同じ溶液に混合して添加することもできる。
なお、本発明を適用する場合の水質条件及び運転条件には特に制限はない。
(Silica-based scale adhesion inhibitor)
Examples of the silica-based scale adhesion inhibitor added to the water to be treated of the test water source include inorganic polyphosphoric acids such as sodium tripolyphosphate and sodium hexametaphosphate; acrylic acid, maleic acid, maleic acid / acrylic acid, maleic acid / sulfone Examples thereof include copolymers having acid, acrylic acid / sulfonic acid and the like as monomer components; copolymers having acrylic acid / sulfonic acid / nonionic group-containing monomers and the like as monomer components. Further, if necessary, it can be further mixed with an anti-corrosive agent such as organic phosphonic acid and zinc chloride, a sterilizer such as hydrazine, Cl-MIT, hypochlorous acid and sulfamic acid, etc. in the same solution and added.
In addition, there is no restriction | limiting in particular in the water quality conditions and driving | running conditions in the case of applying this invention.

前記のスルホン酸としては、例えば、ビニルスルホン酸、アリルスルホン酸、スチレンスルホン酸、イソプレンスルホン酸、3−アリロキシー2−ヒドロキシプロパンスルホン酸、2−アクリルアミド−2―メチルプロパンスルホン酸、2−メタクリルアミド−2−メチルプロパンスルホン酸、メタクリル酸4−スルホブチル、アリルオキシベンゼンスルホン酸、メタリルオキシベンゼンスルホン酸及びそれらの金属塩等が挙げられ、また、前記のノニオン基含有モノマーとしては、例えば、炭素数1〜5のアルキルアミド、アクリロイルモルホリン、N−ビニルカルボン酸アミド類、ヒドロキシエチル(メタ)アクリレート、付加モル類1〜30の(ポリ)エチレンオキサイド/プロピレンオキサイドのモノ(メタ)アクリレート、付加モル数1〜30の(ポリ)エチレンオキサイド/プロピレンオキサイドのモノビニルエーテル等が挙げられる。   Examples of the sulfonic acid include vinyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, isoprene sulfonic acid, 3-allyloxy-2-hydroxypropane sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, and 2-methacrylic acid. Amido-2-methylpropanesulfonic acid, 4-sulfobutyl methacrylate, allyloxybenzenesulfonic acid, methallyloxybenzenesulfonic acid and their metal salts, etc., and as the nonionic group-containing monomer, for example, Alkylamide having 1 to 5 carbon atoms, acryloylmorpholine, N-vinylcarboxylic acid amides, hydroxyethyl (meth) acrylate, monopoly (meth) acrylate of (poly) ethylene oxide / propylene oxide having addition moles of 1 to 30 Mo 1-30 (poly) monovinyl ether of ethylene oxide / propylene oxide.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
実施例1
ポリ塩化アルミニウムを用いAl濃度がAlとして4mg/L、メタケイ酸ナトリウムを用いSiO2濃度が0、25、50mg/L、pH8.5となるように調製した各溶液を試料水とした。
2.5mmol/Lの7−ヨード−8−ヒドロキシキノリン−5−スルホン酸(以下、「Ferron」と略記する。)1mLと1mol/Lの酢酸緩衝液(pH5.0)を2mL加えた溶液に、試料水を2mL添加し、10mLにメスアップした溶液の370nmにおける吸光度を、反応試薬添加後1分以内に、10mmセルにて測定した。そして、予め作成した検量線より、試料水中のAl濃度を算出した。結果を第1表に示す。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
Example 1
Each solution prepared by using polyaluminum chloride and having an Al concentration of 4 mg / L as Al and sodium metasilicate so that the SiO 2 concentration is 0, 25, 50 mg / L and pH 8.5 was used as sample water.
To a solution of 1 mL of 2.5 mmol / L 7-iodo-8-hydroxyquinoline-5-sulfonic acid (hereinafter abbreviated as “Ferron”) and 2 mL of 1 mol / L acetate buffer (pH 5.0) The absorbance at 370 nm of the solution added to 2 mL of sample water and made up to 10 mL was measured with a 10 mm cell within 1 minute after addition of the reaction reagent. Then, the Al concentration in the sample water was calculated from a calibration curve prepared in advance. The results are shown in Table 1.

実施例2
ポリ塩化アルミニウムを用いAl濃度がAlとして4mg/L、メタケイ酸ナトリウムを用いSiO2濃度が25mg/L、pH8.5となるように調製した溶液を試料水とした。
反応試薬(2.5mmol/Lの7−ヨード−8−ヒドロキシキノリン−5−スルホン酸:1mol/Lの酢酸緩衝液(pH5.0、容量比=1:2で混合)溶液3mLに、試料水を2mL添加し、10mLにメスアップした溶液の370nmにおける吸光度を、反応試薬添加後1分以内に10mmセルにて測定した。そして、予め作成した検量線より、試料水中のAl濃度を算出した。結果を第1表に示す。
Example 2
A solution prepared by using polyaluminum chloride and having an Al concentration of 4 mg / L as Al, sodium metasilicate so that the SiO 2 concentration is 25 mg / L, and pH 8.5 was used as sample water.
To 3 mL of a reaction reagent (2.5 mmol / L 7-iodo-8-hydroxyquinoline-5-sulfonic acid: 1 mol / L acetate buffer (mixed at pH 5.0, volume ratio = 1: 2)) The absorbance at 370 nm of the solution made up to 10 mL was measured in a 10 mm cell within 1 minute after the addition of the reaction reagent, and the Al concentration in the sample water was calculated from a calibration curve prepared in advance. The results are shown in Table 1.

実施例3
ポリ塩化アルミニウムを用いAl濃度がAlとして4mg/L、メタケイ酸ナトリウムを用いSiO2濃度が0、25、50mg/L、pH8.5となるように調製した各溶液を試料水とした。
反応試薬(1mmol/Lの7−ヨード−8−ヒドロキシキノリン−5−スルホン酸:1mol/Lの酢酸緩衝液(pH5.0、容量比=1:2で混合)溶液3mLに、試料水を2mL添加し、10mLにメスアップした溶液の370nmにおける吸光度の経時変化を10mmセルにて測定した。そして、各時間における試料水中のAl濃度を、予め作成した検量線より算出し、下記式を用いて、Al0を算出した。結果を第1表に示す。
Al0+Al1+Al2 =Al0+ Al1(1−et/t1) +Al2(1−et/t2)
図2に、経過時間による吸光度変化[(a)]及びAl濃度変化[(b)]をそれぞれグラフで示す。
Example 3
Each solution prepared by using polyaluminum chloride and having an Al concentration of 4 mg / L as Al and sodium metasilicate so that the SiO 2 concentration is 0, 25, 50 mg / L and pH 8.5 was used as sample water.
To 3 mL of a reaction reagent (1 mmol / L 7-iodo-8-hydroxyquinoline-5-sulfonic acid: 1 mol / L acetate buffer (mixed at pH 5.0, volume ratio = 1: 2)), 2 mL of sample water The time-dependent change in absorbance at 370 nm of the solution that was added and made up to 10 mL was measured with a 10 mm cell, and the Al concentration in the sample water at each time was calculated from a calibration curve prepared in advance, and the following formula was used. , Al 0 was calculated and the results are shown in Table 1.
Al 0 + Al 1 + Al 2 = Al 0 + Al 1 (1- et / t1 ) + Al 2 (1- et / t2 )
FIG. 2 is a graph showing changes in absorbance [(a)] and changes in Al concentration [(b)] over time.

実施例4
ポリ塩化アルミニウムを用いAl濃度が、Alとして4mg/L、メタケイ酸ナトリウムを用いSiO2濃度が25mg/L、塩化鉄を用いFe濃度が、Feとして4mg/L、pH8.5となるように調製した溶液を試料水とした。
反応試薬(2.5mmol/Lの7−ヨード−8−ヒドロキシキノリン−5−スルホン酸:1mol/Lの酢酸緩衝液(pH5.0、容量比=1:2で混合)溶液3mLに、試料水を1mL添加し、10mLにメスアップした溶液の370nm、600nmにおける吸光度を、反応試薬添加後1分以内に10mmセルにて測定した。そして、予め作成したFeの検量線(600nm)より、試料水中のFe濃度を算出した。
算出したFe濃度及び予め作成したFeの検量線(370nm)より、370nmにおいてFeが示す吸光度を算出した。370nmにおいて測定した吸光度より、Feが示す吸光度を減算し、Al由来の吸光度を得た。予め作成したAlの検量線及びAl由来の吸光度より試料水中のAl濃度を求めた。結果を第1表に示す。
Example 4
Using polyaluminum chloride, the Al concentration is 4 mg / L as Al, using sodium metasilicate, the SiO 2 concentration is 25 mg / L, and using iron chloride, the Fe concentration is 4 mg / L as Fe, and the pH is 8.5. The solution obtained was used as sample water.
To 3 mL of a reaction reagent (2.5 mmol / L 7-iodo-8-hydroxyquinoline-5-sulfonic acid: 1 mol / L acetate buffer (mixed at pH 5.0, volume ratio = 1: 2)) The absorbance at 370 nm and 600 nm of the solution made up to 10 mL was measured in a 10 mm cell within 1 minute after the addition of the reaction reagent, and from the previously prepared Fe calibration curve (600 nm), The Fe concentration was calculated.
From the calculated Fe concentration and a previously prepared Fe calibration curve (370 nm), the absorbance indicated by Fe at 370 nm was calculated. The absorbance indicated by Fe was subtracted from the absorbance measured at 370 nm to obtain absorbance derived from Al. The Al concentration in the sample water was determined from the Al calibration curve prepared in advance and the absorbance derived from Al. The results are shown in Table 1.

実施例5
ポリ塩化アルミニウムを用いAl濃度が、Alとして4mg/L、メタケイ酸ナトリウムを用いSiO2濃度が25mg/L、塩化鉄を用いFe濃度が、Feとして4mg/L、pH8.5となるように調製した溶液を試料水とした。
反応試薬(2.5mmol/Lの7−ヨード−8−ヒドロキシキノリン−5−スルホン酸:1mol/Lの酢酸緩衝液(pH5.0、容量比=1:2で混合)溶液3mLに、試料水を1mL添加し、10mLにメスアップした溶液の370nm、600nmにおける吸光度の経時変化を、10mmセルにて測定した。そして、各時間における試料水中のAl濃度を実施例4と同様に算出し、下記式を用いて、Al0を算出した。結果を第1表に示す。
Al0+Al1+Al2= Al0+Al1(1−et/t1) +Al2(1−et/t2)
図3に、経過時間による波長370nmの吸光度変化[(a)]、波長600nmの吸光度変化[(b)]、並びに吸光度解析結果[(c)]及びAl濃度算出[(d)]を、それぞれグラフで示す。
Example 5
Using polyaluminum chloride, the Al concentration is 4 mg / L as Al, using sodium metasilicate, the SiO 2 concentration is 25 mg / L, and using iron chloride, the Fe concentration is 4 mg / L as Fe, and the pH is 8.5. The solution obtained was used as sample water.
To 3 mL of a reaction reagent (2.5 mmol / L 7-iodo-8-hydroxyquinoline-5-sulfonic acid: 1 mol / L acetate buffer (mixed at pH 5.0, volume ratio = 1: 2)) Was measured with a 10 mm cell, and the Al concentration in the sample water at each time was calculated in the same manner as in Example 4, and the following was calculated. The formula was used to calculate Al 0. The results are shown in Table 1.
Al 0 + Al 1 + Al 2 = Al 0 + Al 1 (1- et / t1 ) + Al 2 (1- et / t2 )
FIG. 3 shows changes in absorbance at a wavelength of 370 nm [(a)], changes in absorbance at a wavelength of 600 nm [(b)], and absorbance analysis results [(c)] and Al concentration calculation [(d)], respectively. Shown in the graph.

比較例1
ポリ塩化アルミニウムを用いAl濃度がAlとして4mg/L、メタケイ酸ナトリウムを用いSiO2濃度が0、25、50mg/L、pH8.5となるように調製した各溶液を試料水とした。
0.2μmのろ紙でろ過したろ液のアルミニウム濃度をICP−MSにて測定し、ゼータ電位を測定した。その結果、アルミニウム濃度は、Alとして2.76mg/L(SiO2=0mg/L)、Alとして1.37mg/L(SiO2=25mg/L)、Alとして0.97mg/L(SiO2=50mg/L)であり、ゼータ電位は+5mVであった。
図4に、実施例1、実施例3と比較例1の相関性をグラフで示す。
Comparative Example 1
Each solution prepared by using polyaluminum chloride and having an Al concentration of 4 mg / L as Al and sodium metasilicate so that the SiO 2 concentration is 0, 25, 50 mg / L and pH 8.5 was used as sample water.
The aluminum concentration of the filtrate filtered with 0.2 μm filter paper was measured by ICP-MS, and the zeta potential was measured. As a result, the aluminum concentration was 2.76 mg / L (SiO 2 = 0 mg / L) as Al, 1.37 mg / L (SiO 2 = 25 mg / L) as Al, and 0.97 mg / L (SiO 2 = L) as Al. 50 mg / L) and the zeta potential was +5 mV.
In FIG. 4, the correlation of Example 1, Example 3, and Comparative Example 1 is shown with a graph.

Figure 2012011287
Figure 2012011287

第1表及び図4から、下記のことが分かる。
実施例1と比較例1を比較すると、相関係数(R2=1)が高く、実施例1の手法と0.2μm以下のAl濃度と相関性があることを確認できた。実施例1(SiO2=25mg/L)と実施例2を比較すると同等のAl濃度が得られたことから、Ferronと、酢酸緩衝液を予め混合した溶液を用いてもよいことが分かる。
実施例3と比較例1を比較すると、高い相関性(R2=0.96)が得られたことから、実施例3の手法と0.2μm以下のAl濃度と相関性があることを確認できた。
実施例4と、実施例1(SiO2=25mg/L)、実施例5と、実施例3(SiO2=25mg/L)を比較すると同等のAl濃度が得られたことから、Feが共存しても600nmの吸光度を測定することで、目的とするAl濃度を測定できることが分かった。
The following can be understood from Table 1 and FIG.
When Example 1 and Comparative Example 1 were compared, the correlation coefficient (R 2 = 1) was high, and it was confirmed that there was a correlation between the technique of Example 1 and an Al concentration of 0.2 μm or less. When Example 1 (SiO 2 = 25 mg / L) and Example 2 were compared with each other, an equivalent Al concentration was obtained. Thus, it can be seen that a solution prepared by mixing Ferron and an acetate buffer in advance may be used.
When Example 3 and Comparative Example 1 were compared, a high correlation (R 2 = 0.96) was obtained, confirming that there was a correlation between the technique of Example 3 and an Al concentration of 0.2 μm or less. did it.
When Example 4 was compared with Example 1 (SiO 2 = 25 mg / L) and Example 5 was compared with Example 3 (SiO 2 = 25 mg / L), an equivalent Al concentration was obtained. Even so, it was found that the target Al concentration can be measured by measuring the absorbance at 600 nm.

実施例6
図5は、熱交換器を有する保有水量100Lの模擬冷却水系の装置模式図である。
伝熱面積0.25m2熱交換器を有する保有水量100Lの模擬冷却水系(装置模式図参照)を用いた。熱交換器14の材質はSUS304、外径19mmのチューブを用い、非伝熱の評価チューブ(SUS304、外径19mm)13を系内に設けた。
実際の工業用水(川崎工業用水)を補給水として加え、運転した。なお、シリカ濃度は25mg/L、アルミニウム濃度は、Alとして0.5mg/Lであった。
運転は濃縮倍数が5倍になるように、ブロー水(循環水の系外排出)をコントロールしながら30日間行った。
この間、循環水の熱交換器入口温度は30℃、出口温度は40℃に保った。また、循環水の非伝熱評価チューブ13を通過する流速は0.5m/sとした。
カルシウム系スケール付着防止剤として、ヒドロキシジエチリデンホスホン酸を、PO4として6mg/Lとなるように、シリカ系スケール付着防止剤としてアクリル酸/スルホン酸/N−ビニルピロリドンコポリマーを、薬注制御装置を用いて添加した。スライムコントロール処理は次亜塩素酸ナトリウムを、Cl2として0.5〜1.0mg/Lになるように薬注ポンプを用いて冷却水系に添加し、30日間運転した。
薬注添加量は、シリカ系スケール生成に関与するアルミニウム濃度が、Alとして0.09mg/L以下の場合は固体として10mg/L、Alとして0.1〜0.14mg/Lの場合は固体として12.5mg/L、Alとして0.15〜0.19mg/Lの場合は固体として15mg/L添加した。
また、Al濃度自動測定装置においては実施例2の方法でAl濃度測定を実施した。
その後、非伝熱チューブに付着したスケールの量を測定し、汚れ防止効果を評価した。結果を第2表に示す。
図6に、Al濃度の自動測定装置を用いて制御した結果をグラフに示す。
Example 6
FIG. 5 is a schematic diagram of an apparatus for a simulated cooling water system having a heat capacity of 100 L of retained water.
A simulated cooling water system having a heat transfer area of 0.25 m 2 and a heat capacity of 100 L (see schematic diagram of the apparatus) was used. The material of the heat exchanger 14 was SUS304, a tube having an outer diameter of 19 mm, and a non-heat transfer evaluation tube (SUS304, outer diameter 19 mm) 13 was provided in the system.
Actual industrial water (Kawasaki Industrial Water) was added as makeup water and operated. The silica concentration was 25 mg / L, and the aluminum concentration was 0.5 mg / L as Al.
The operation was performed for 30 days while controlling blow water (exhaust of circulating water outside the system) so that the concentration factor was 5 times.
During this time, the inlet temperature of the circulating water heat exchanger was kept at 30 ° C., and the outlet temperature was kept at 40 ° C. Moreover, the flow velocity which passes the non-heat-transfer evaluation tube 13 of circulating water was 0.5 m / s.
As a calcium-based scale adhesion inhibitor, hydroxydiethylidenephosphonic acid is used as PO 4 , and 6 mg / L as PO 4. As a silica-based scale adhesion inhibitor, acrylic acid / sulfonic acid / N-vinylpyrrolidone copolymer is used as a chemical injection control device. Was added using. In the slime control treatment, sodium hypochlorite was added to the cooling water system using a chemical injection pump so as to be 0.5 to 1.0 mg / L as Cl 2 , and was operated for 30 days.
When the aluminum concentration involved in silica-based scale formation is 0.09 mg / L or less as Al, it is 10 mg / L as a solid, and when Al is 0.1 to 0.14 mg / L as a solid, In the case of 12.5 mg / L and 0.15 to 0.19 mg / L as Al, 15 mg / L was added as a solid.
Moreover, in the Al concentration automatic measuring apparatus, the Al concentration was measured by the method of Example 2.
Thereafter, the amount of scale adhered to the non-heat transfer tube was measured to evaluate the antifouling effect. The results are shown in Table 2.
FIG. 6 is a graph showing the results of control using an Al concentration automatic measuring apparatus.

比較例2
シリカ系スケール付着防止剤の添加方法以外は、実施例6と同様に模擬冷却水系にて評価し、シリカ系スケール付着防止剤は、5mg/L、10mg/L、15mg/Lとなるように定量注入添加した。結果を第2表に示す。
Comparative Example 2
Except for the addition method of the silica-based scale adhesion inhibitor, evaluation was performed with a simulated cooling water system in the same manner as in Example 6. The silica-based scale adhesion inhibitor was quantitatively determined to be 5 mg / L, 10 mg / L, and 15 mg / L. Injection was added. The results are shown in Table 2.

Figure 2012011287
Figure 2012011287

第2表から、実施例6と比較例2を比較すると、比較例2では、15mg/L添加することによるスケール付着を低減できていることが分かる。しかし10mg/L以下では、スケール付着速度は十分に低減できていない。
一方実施例6では、薬注制御装置を用いることによる、少ないスケール防止剤の使用量にて、15mg/L添加と同等のスケール付着速度に低減できることが分かった。
From Table 2, when Example 6 and Comparative Example 2 are compared, it can be seen that Comparative Example 2 can reduce scale adhesion due to the addition of 15 mg / L. However, at 10 mg / L or less, the scale deposition rate cannot be reduced sufficiently.
On the other hand, in Example 6, it turned out that it can reduce to the scale adhesion rate equivalent to 15 mg / L addition by the usage-amount of a small scale inhibitor by using a chemical injection control apparatus.

本発明のアルミニウム濃度測定方法は、冷却水系やボイラ水系等における、処理対象水中のシリカ系スケール付着の要因となるアルミニウムの濃度を効果的に測定することができ、また、該アルミニウム濃度に基づいて、処理対象に添加されるシリカ系スケール付着防止剤濃度を制御することができる。また、本発明のアルミニウム濃度測定方法は自動化が可能である。さらに本発明のアルミニウム濃度自動測定装置は、該アルミニウム濃度を現地において測定することができる。   The aluminum concentration measurement method of the present invention can effectively measure the concentration of aluminum that causes silica-based scale adhesion in water to be treated in a cooling water system, a boiler water system, and the like, and based on the aluminum concentration. The concentration of the silica-based scale adhesion inhibitor added to the treatment target can be controlled. Moreover, the aluminum concentration measuring method of the present invention can be automated. Furthermore, the aluminum concentration automatic measuring device of the present invention can measure the aluminum concentration on site.

1 対象水の水路 2 流量調整バルブ
3 ストレーナ 4 自動測定装置
5 制御部 6 水処理剤貯槽
7 処理剤添加経路
11 循環水ピット 12 循環ポンプ
13 非伝熱チューブ 14 熱交換器
15 レベルセンサー 16 導電率計
17 ブロー配管 18、19 薬注ポンプ
20 補給水ポンプ 21 スケール付着防止剤
22 次亜塩素酸ナトリウム槽 23 補給水槽
24 アルミニウム濃度自動測定装置
401 供給経路 402 反応試薬層
403 試薬注入経路 404 光学測定部
405 測定セル 406 光源
407 受光部 408 排出経路
409 解析部
P1 反応試薬注入ポンプ P2 処理剤注入ポンプ
DESCRIPTION OF SYMBOLS 1 Channel of target water 2 Flow control valve 3 Strainer 4 Automatic measuring device 5 Control part 6 Water treatment agent storage tank 7 Treatment agent addition path 11 Circulating water pit 12 Circulating pump 13 Non-heat transfer tube 14 Heat exchanger 15 Level sensor 16 Conductivity Total 17 Blow piping 18, 19 Chemical injection pump 20 Replenishment water pump 21 Scale adhesion inhibitor 22 Sodium hypochlorite tank 23 Replenishment water tank 24 Aluminum concentration automatic measuring device 401 Supply path 402 Reaction reagent layer 403 Reagent injection path 404 Optical measurement section 405 Measurement cell 406 Light source 407 Light receiving unit 408 Discharge path 409 Analysis unit P1 Reaction reagent injection pump P2 Treatment agent injection pump

Claims (10)

検水中のシリカ系スケールの要因となるアルミニウムの濃度を測定する方法であって、7−ヨード−8−ヒドロキシキノリン−5−スルホン酸と、緩衝液との組み合わせからなる反応試薬を検水に添加後、アルミニウム分析波長において測定した吸光度より、アルミニウム濃度を求めることを特徴とする検水中のアルミニウム濃度測定方法。   A method for measuring the concentration of aluminum that causes silica-based scale in test water, comprising adding a reaction reagent comprising a combination of 7-iodo-8-hydroxyquinoline-5-sulfonic acid and a buffer to the test water Thereafter, the aluminum concentration is determined from the absorbance measured at the aluminum analysis wavelength. 反応試薬を検水に添加後、アルミニウム分析波長及び鉄分析波長において、それぞれ吸光度を測定し、鉄分析波長における吸光度より鉄濃度を求め、この鉄濃度を基にアルミニウム分析波長における鉄寄与分の吸光度を求め、アルミニウム分析波長における吸光度より前記鉄寄与分の吸光度を除いた吸光度よりアルミニウム濃度を求める請求項1に記載の検水中のアルミニウム濃度測定方法。   After adding the reaction reagent to the test water, the absorbance is measured at the aluminum analysis wavelength and the iron analysis wavelength, and the iron concentration is determined from the absorbance at the iron analysis wavelength. Based on this iron concentration, the absorbance of the iron contribution at the aluminum analysis wavelength The method for measuring aluminum concentration in test water according to claim 1, wherein the aluminum concentration is determined from the absorbance obtained by removing the absorbance of the iron contribution from the absorbance at the aluminum analysis wavelength. 反応試薬添加後、1分以内に吸光度を測定する請求項1又は2に記載の検水中のアルミニウム濃度測定方法。   The method for measuring an aluminum concentration in test water according to claim 1 or 2, wherein the absorbance is measured within 1 minute after the addition of the reaction reagent. 反応試薬添加後の吸光度の経時変化を測定し、各時間におけるアルミニウム濃度を算出し、得られたアルミニウム濃度の経時変化を非線形解析することで、求めた0分におけるアルミニウム濃度を算出する請求項1又は2に記載の検水中のアルミニウム濃度測定方法。   2. The change in absorbance with time after addition of a reaction reagent is measured, the aluminum concentration at each time is calculated, and the obtained aluminum concentration at 0 minutes is calculated by nonlinear analysis of the change over time in the obtained aluminum concentration. Or the aluminum concentration measuring method in the test water of 2. 検水中のシリカ系スケールの要因となるアルミニウムの濃度を自動測定する方法であって、検水を光学測定部に連続通水させる工程、7−ヨード−8−ヒドロキシキノリン−5−スルホン酸と、緩衝液との組み合わせからなる反応試薬を、前記検水に添加して測定用試料液を形成する工程、及び該測定用試料液中のアルミニウム濃度を、前記光学測定部において自動測定する工程、を少なくとも有することを特徴とする検水中のアルミニウム濃度自動測定方法。   A method of automatically measuring the concentration of aluminum that causes silica-based scale in test water, the step of continuously passing the test water through an optical measurement unit, 7-iodo-8-hydroxyquinoline-5-sulfonic acid, A step of adding a reaction reagent comprising a combination with a buffer solution to the test water to form a measurement sample solution, and a step of automatically measuring the aluminum concentration in the measurement sample solution in the optical measurement unit, A method for automatically measuring an aluminum concentration in test water, characterized by comprising at least: 反応試薬添加後、1分以内に吸光度を測定する請求項5に記載の検水中のアルミニウム濃度自動測定方法。   The method for automatically measuring aluminum concentration in test water according to claim 5, wherein the absorbance is measured within 1 minute after the addition of the reaction reagent. 反応試薬添加後の吸光度の経時変化を測定し、各時間におけるアルミニウム濃度を算出し、得られたアルミニウム濃度の経時変化を非線形解析することで、求めた0分におけるアルミニウム濃度を算出する請求項5に記載の検水中のアルミニウム濃度自動測定方法。   6. The time-dependent change in absorbance after the addition of the reaction reagent is measured, the aluminum concentration at each time is calculated, and the obtained aluminum concentration at 0 minutes is calculated by nonlinear analysis of the change over time in the obtained aluminum concentration. The method for automatically measuring the aluminum concentration in the test water described in 1. 測定用試料水中のアルミニウム濃度が、光学測定用の検量線が直線性を示す定量範囲となるように、予め希釈した反応試薬溶液と検水とを混合する手段、を備える請求項5に記載の検水中のアルミニウム濃度自動測定方法。   The apparatus according to claim 5, further comprising means for mixing the reaction reagent solution diluted in advance and the test water so that the aluminum concentration in the measurement sample water falls within a quantitative range in which the calibration curve for optical measurement shows linearity. Automatic measurement method of aluminum concentration in test water. 検水中のシリカ系スケールの要因となるアルミニウムの濃度を自動測定する装置であって、検水を光学測定部に連続通水させる手段、7−ヨード−8−ヒドロキシキノリン−5−スルホン酸と、緩衝液との組み合わせからなる反応試薬を、前記検水に添加して測定用試料液を形成する手段、及び該測定用試料液中のアルミニウム濃度を、前記光学測定部において自動測定する手段、を少なくとも備えたことを特徴とする検水中のアルミニウム濃度自動測定装置。   An apparatus for automatically measuring the concentration of aluminum that causes a silica-based scale in the test water, the means for continuously passing the test water through the optical measurement unit, 7-iodo-8-hydroxyquinoline-5-sulfonic acid, Means for adding a reaction reagent comprising a combination with a buffer solution to the test water to form a measurement sample solution, and means for automatically measuring the aluminum concentration in the measurement sample solution in the optical measurement unit; An apparatus for automatically measuring aluminum concentration in test water, characterized by comprising at least. 請求項1〜4のいずれかに記載の検水中のアルミニウム濃度測定方法又は請求項5〜8のいずれかに記載の検水中のアルミニウム濃度自動測定方法によって得られた、検水中のシリカ系スケールの要因となるアルミニウムの濃度測定データに基づいて、検水源の処理対象水に添加されるシリカ系スケール付着防止剤の量を制御することを特徴とするシリカ系スケール付着防止剤濃度の制御方法。   The silica-based scale in the test water obtained by the aluminum concentration measuring method in the test water according to any one of claims 1 to 4 or the aluminum concentration automatic measuring method in the test water according to any one of claims 5 to 8. A method for controlling the concentration of a silica-based scale adhesion inhibitor characterized by controlling the amount of the silica-based scale adhesion inhibitor added to the water to be treated of the water sampling source based on the concentration measurement data of aluminum as a factor.
JP2010148402A 2010-06-30 2010-06-30 Measurement method and automatic measurement apparatus of aluminum concentration in test water, and control method of silica-based scale adhesion inhibitor concentration Withdrawn JP2012011287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010148402A JP2012011287A (en) 2010-06-30 2010-06-30 Measurement method and automatic measurement apparatus of aluminum concentration in test water, and control method of silica-based scale adhesion inhibitor concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010148402A JP2012011287A (en) 2010-06-30 2010-06-30 Measurement method and automatic measurement apparatus of aluminum concentration in test water, and control method of silica-based scale adhesion inhibitor concentration

Publications (1)

Publication Number Publication Date
JP2012011287A true JP2012011287A (en) 2012-01-19

Family

ID=45598367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010148402A Withdrawn JP2012011287A (en) 2010-06-30 2010-06-30 Measurement method and automatic measurement apparatus of aluminum concentration in test water, and control method of silica-based scale adhesion inhibitor concentration

Country Status (1)

Country Link
JP (1) JP2012011287A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5751365B1 (en) * 2014-03-28 2015-07-22 栗田工業株式会社 Composition for measuring chlorine concentration
CN112415089A (en) * 2019-08-21 2021-02-26 格兰富控股联合股份公司 Pump system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5751365B1 (en) * 2014-03-28 2015-07-22 栗田工業株式会社 Composition for measuring chlorine concentration
WO2015146326A1 (en) * 2014-03-28 2015-10-01 栗田工業株式会社 Chlorine-concentration-measuring composition
US10585079B2 (en) 2014-03-28 2020-03-10 Kurita Water Industries Ltd. Chlorine-concentration-measuring composition
CN112415089A (en) * 2019-08-21 2021-02-26 格兰富控股联合股份公司 Pump system

Similar Documents

Publication Publication Date Title
Xie et al. Effects of flow and water chemistry on lead release rates from pipe scales
ES2741651T3 (en) Method and device to monitor and control the status of a process stream
Rebreanu et al. The diffusion coefficient of dissolved silica revisited
Edwards et al. The blue water phenomenon
JP2005288436A (en) Modulated electromagnetic field treatment apparatus and method for fluid to be treated
Wang et al. Effect of connection methods on lead release from galvanic corrosion
Melidis et al. Corrosion control by using indirect methods
TW200921313A (en) Control system for industrial water system and method for its use
JP2010167320A (en) Slime inhibition method
JP2012011287A (en) Measurement method and automatic measurement apparatus of aluminum concentration in test water, and control method of silica-based scale adhesion inhibitor concentration
US20190178834A1 (en) Bead Mixer / Cleaner For Use With Sensor Devices
KR101274983B1 (en) Method and apparatus for determining of the remained chlorine concentration using a sensor, and purified-water treatment system using the same
JPH03288586A (en) Method for monitoring contamination of water system
JP2014129978A (en) Heat exchanger antifouling processing method and antifouling processing system
JP7264888B2 (en) Fluorine concentration measuring method, fluorine concentration measuring device, water treatment method, and water treatment device
JP5012508B2 (en) How to remove acidic deposits
JP4543388B2 (en) Concentration control method for water treatment chemicals
WO2009132727A1 (en) On-line quantitative analysis method of the content of antiscalant compounds containing phosphorous in sea water in a reverse osmosis desalination plant and corresponding control method and equipment
Vysotsky et al. Calcium carbonate formation in the water systems and on the heating surfaces
JP2022062815A (en) Analysis system, management system, analysis method, and analysis program
CN103030224B (en) A kind of deionized water does the circulating water treatment method of moisturizing
JP2013166092A (en) Scale adhesion preventing method, and scale adhesion inhibitor
JP2002210454A (en) Method and device for controlling concentration of water treating chemical in cooling water system
CN101153397A (en) Anticorrosive agent and anticorrosive method
US20230279313A1 (en) Cleaning agent, cleaning method of water treatment apparatus, and cleaning method of silica-based scale

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130903