JPH07290083A - Denitrification and dephosphorization method in oxidation ditch - Google Patents

Denitrification and dephosphorization method in oxidation ditch

Info

Publication number
JPH07290083A
JPH07290083A JP6112127A JP11212794A JPH07290083A JP H07290083 A JPH07290083 A JP H07290083A JP 6112127 A JP6112127 A JP 6112127A JP 11212794 A JP11212794 A JP 11212794A JP H07290083 A JPH07290083 A JP H07290083A
Authority
JP
Japan
Prior art keywords
tank
sludge
aeration
oxidation ditch
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6112127A
Other languages
Japanese (ja)
Other versions
JP3634403B2 (en
Inventor
Teruhisa Yoshida
輝久 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kiden Kogyo Ltd
Original Assignee
Hitachi Kiden Kogyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kiden Kogyo Ltd filed Critical Hitachi Kiden Kogyo Ltd
Priority to JP11212794A priority Critical patent/JP3634403B2/en
Publication of JPH07290083A publication Critical patent/JPH07290083A/en
Application granted granted Critical
Publication of JP3634403B2 publication Critical patent/JP3634403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To provide a treating method small in installation space than conventional oxidation ditch and capable of providing stable denitrificaton and dephosphorization performance. CONSTITUTION:In the oxidation ditch method for treating sewage with a high concn. activated sludge by providing a mechanical aeration machine 8 to a circulation water passage type aeration tank 7, a flow rate control tank 4 is provided at a preceding stage of the aeration tank 7. Then, a sludge settled at a sedimentation tank 9 is returned to the flow rate control tank 4 and mixed with an influent sewage to make sludge in completely anaerobic state, then returned to the aeration tank 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は小規模下水の処理方式で
あるオキシデーションディッチ法において、脱窒・脱リ
ンを適正に処理する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for appropriately treating denitrification and dephosphorization in an oxidation ditch method which is a treatment method for small-scale sewage.

【0002】[0002]

【従来の技術】小規模下水は、流入水量の時間変動が大
きく、下水処理場を管理する技術者が少ないことから、
維持管理が容易で、負荷変動に強いオキシデーションデ
ィッチ法が近年普及しつつある。また大規模な下水処理
場に用いられている標準活性汚泥法に比べ、処理時間や
汚泥の対流時間が長いため、脱窒が進みやすいという特
長を持つ。
2. Description of the Related Art Small-scale sewage has large fluctuations in the amount of inflowing water over time, and few engineers manage sewage treatment plants.
Oxidation ditch method, which is easy to maintain and resistant to load fluctuation, is becoming popular in recent years. In addition, compared to the standard activated sludge method used in large-scale sewage treatment plants, the treatment time and sludge convection time are longer, so denitrification is easier to proceed.

【0003】[0003]

【発明が解決するための課題】図2は従来のオキシデー
ションディッチのフローを示したもので、流入下水aは
ポンプ井1に流入後、原水ポンプ2により沈砂槽3を介
して直接曝気槽7へと流入する。ポンプ井1の容量は小
さいため、流入下水aの負荷変動は曝気槽7、さらには
沈殿槽9にそのまま伝わる。一般の小規模下水では時間
平均水量に対して時間最大水量が2〜3倍程度に大きく
変動する。そのため沈殿槽は1日、1平方メートル当た
り20〜30立法メートル程度の水面積負荷の標準活性
汚泥法に対して従来のオキシデーションディッチ法では
1日、1平方メートル当たり8立法メートル程度の水面
積負荷しかとれず、さらに曝気槽の滞留時間が24〜3
6時間と長いため、広いスペースを必要とした。また曝
気槽内では流れに沿って好気ゾーンと嫌気ゾーンを形成
させることにより、硝化と脱窒を進めるものの、負荷の
変動が大きく、安定したゾーン形成が難しい。そこで高
い脱窒性能を得るために、またこの負荷変動に対応する
ため、沈殿槽の水面積が1日、1平方メートル当たり8
立法メートル程度の小さい値となるように水面積を広く
取る必要があることから、処理場全体のスペースが大き
くなるという問題があった。また、従来のオキシデーシ
ョンディッチ法は富栄養化のもう一つの指標であるリン
に対してはあまり脱リン効果がなく、また脱窒性能に対
しても流入負荷の変動を考慮して曝気量を適切に制御し
なければ、安定した脱窒性能が得られないという欠点が
あった。
FIG. 2 shows a flow of a conventional oxidation ditch. Inflowing sewage a flows into a pump well 1 and is then directly aerated by a raw water pump 2 through a settling tank 3 through an aeration tank 7. Flows into. Since the capacity of the pump well 1 is small, the load fluctuation of the inflow sewage a is directly transmitted to the aeration tank 7 and further to the precipitation tank 9. In general small-scale sewage, the maximum hourly water volume fluctuates 2-3 times as much as the hourly average water volume. Therefore, in the sedimentation tank, the water area load of about 20 to 30 cubic meters per square meter per day is compared with the standard activated sludge method per day by the conventional oxidation ditch method. In addition, the aeration tank residence time is 24 to 3
Since it was 6 hours long, it required a large space. Further, in the aeration tank, nitrification and denitrification are promoted by forming an aerobic zone and an anaerobic zone along the flow, but the fluctuation of the load is large and stable zone formation is difficult. Therefore, in order to obtain high denitrification performance and to cope with this load fluctuation, the water area of the sedimentation tank is 8 per square meter per day.
Since it is necessary to take a large water area so that the value is as small as a cubic meter, there is a problem that the space of the entire treatment plant becomes large. In addition, the conventional oxidation ditch method does not have a significant dephosphorization effect on phosphorus, which is another indicator of eutrophication, and the aeration amount is also considered for the denitrification performance by considering the fluctuation of the inflow load. There is a drawback that stable denitrification performance cannot be obtained unless it is properly controlled.

【0004】本発明は、従来のオキシデーションディッ
チよりも設置スペースが小さく、安定した脱窒・脱リン
性能が得られる処理方法を提供することを目的とするも
のである。
An object of the present invention is to provide a treatment method which requires a smaller installation space than the conventional oxidation ditch and can obtain stable denitrification and dephosphorization performance.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を解決
するためになしたもので、循環水路状の曝気槽に機械式
の曝気機を設けて高濃度の活性汚泥により下水を処理す
るオキシデーションディッチ法において、曝気槽の前段
に流量調整槽を設け、沈殿槽で沈殿させた汚泥を流量調
整槽に返送し、流入下水と混合して汚泥を完全嫌気状態
にした後、曝気槽に流入させることを要旨とする。また
必要に応じて前記流量調整槽には撹拌機を設けて流入下
水と返送汚泥を十分撹拌混合させ、曝気槽では間欠曝気
を行って好気と嫌気を交互に繰り返すことを要旨とす
る。
The present invention has been made to solve the above-mentioned object, and an oxygenator for treating sewage with a high-concentration activated sludge is provided by providing a mechanical aerator in an aeration tank in the form of a circulating water channel. In the foundation ditch method, a flow control tank is installed in front of the aeration tank, and the sludge settled in the settling tank is returned to the flow control tank, mixed with the inflowing sewage to make the sludge completely anaerobic, and then flowed into the aeration tank. The main point is to do. Further, if necessary, an agitator is provided in the flow rate adjusting tank to sufficiently stir and mix the inflowing sewage and the returned sludge, and intermittent aeration is performed in the aeration tank to alternately repeat aerobic and anaerobic.

【0006】[0006]

【作用】本発明はオキシデーションディッチの曝気槽の
前段に流量調整槽を設けて流入負荷変動を吸収し、調整
槽からは一定流量で曝気槽に汚水を供給することにより
自然流下する沈殿槽に対しても負荷を一定とする。曝気
槽は嫌気好気の交互運転とし、沈殿槽の沈殿汚泥を調整
槽に返送して、流入下水と混合して汚泥を完全嫌気状態
とした後、曝気槽に送水する。これにより、返送汚泥を
調整槽において完全嫌気状態とした後、曝気槽に送水し
て好気状態とするため、生物学的な脱リン作用によりリ
ンを除去することができ、また曝気槽で好気・嫌気の交
互運転を行いながら調整槽から一定流量で汚水を供給す
るため、従来のオキシデーションディッチよりも安定し
た脱窒性能が得られ、曝気槽や沈殿槽の容量を小さくす
ることができる。
The present invention is provided with a flow rate adjusting tank in front of the aeration tank of the oxidation ditch to absorb the inflow load fluctuation, and from the adjusting tank to a settling tank which naturally flows down by supplying sewage to the aeration tank at a constant flow rate. On the contrary, the load is constant. The aeration tank is operated alternately with anaerobic and aerobic, and the sludge in the settling tank is returned to the adjusting tank and mixed with the inflow sewage to make the sludge completely anaerobic, and then sent to the aeration tank. As a result, since the returned sludge is completely anaerobicized in the adjustment tank and then sent to the aeration tank to be aerobic, phosphorus can be removed by the biological dephosphorization action, and the aeration tank is also favorable. Since sewage is supplied from the adjustment tank at a constant flow rate while performing alternate operation of air and anaerobic, more stable denitrification performance than conventional oxidation ditch can be obtained, and the capacity of the aeration tank and sedimentation tank can be reduced. .

【0007】[0007]

【実施例】以下本発明オキシデーションディッチにおけ
る脱窒・脱リン方法の一実施例を図1に基づいて説明す
る。図1は本発明の処理フローを示したもので、流入下
水aは通常地下深くに設けられたポンプ井1に流入す
る。ポンプ井1に設けた原水ポンプ2により下水を揚水
し、沈砂槽3へ送りこの沈砂槽3において下水中の砂分
やスクリーンかすを除去した後、流量調整槽4へと流入
させる。なお、下水中の砂分やスクリーン渣を除去する
前処理の方法や位置は、処理の規模や立地条件により適
宜選ばれるものである。
EXAMPLE An example of a denitrification / dephosphorization method in the oxidation ditch of the present invention will be described below with reference to FIG. FIG. 1 shows a processing flow of the present invention. Inflow sewage a generally flows into a pump well 1 deep underground. Sewage is pumped up by a raw water pump 2 provided in a pump well 1 and sent to a sand settling tank 3 to remove sand components and screen debris in the sewage, and then to flow into a flow rate adjusting tank 4. The method and position of the pretreatment for removing sand and screen residue in the sewage are appropriately selected depending on the scale of the treatment and site conditions.

【0008】流量調整槽4には撹拌機5と流調ポンプ6
を設け、この流量調整槽4からは流調ポンプ6により曝
気槽7に汚水を送水し、機械式曝気機8により間欠的に
曝気処理を行い、汚泥混合液として曝気槽7からオーバ
ーフローさせ、沈殿槽9へと流入させる。この曝気槽7
の形状は図1に示したような長円形に限定されず、また
曝気機8も図1に示したスクリュー形に限定されること
なく、種々のものを用いることができる。なお曝気機8
は曝気と嫌気撹拌を交互に行うことができる方式が好ま
しいが、嫌気撹拌できない場合には曝気機を間欠運転す
る方法を用いてもよい。
The flow rate adjusting tank 4 has an agitator 5 and a flow adjusting pump 6
The sewage water is sent from the flow rate adjusting tank 4 to the aeration tank 7 by the flow control pump 6, the aeration process is intermittently performed by the mechanical aerator 8, and the sludge mixed liquid is overflowed from the aeration tank 7 to precipitate. It is made to flow into the tank 9. This aeration tank 7
The shape of is not limited to the elliptical shape shown in FIG. 1, and the aerator 8 is not limited to the screw shape shown in FIG. Aerator 8
Is preferably a method in which aeration and anaerobic stirring can be alternately performed, but when anaerobic stirring cannot be performed, a method of intermittently operating the aerator may be used.

【0009】沈殿槽9において固液分離された上澄水は
処理水bとして排出し、沈殿槽9内にて沈殿した汚泥c
は排泥管、汚泥返送ポンプ10により汚泥マス11を介
して調整槽4へと返送dする。また汚泥マス11を介し
て、汚泥の一部は余剰汚泥eとして汚泥処理設備12に
移送する。汚泥処理設備12はリンを取り込んだ汚泥か
ら、リンが再放出するのを防ぐため、機械式の濃縮を用
いたり、短時間で重力濃縮を行って脱水処理するなど、
リン含有汚泥に適した処理設備を設けるものとする。
The supernatant water that has been solid-liquid separated in the settling tank 9 is discharged as treated water b, and sludge c that has settled in the settling tank 9 is discharged.
Is returned to the adjusting tank 4 through the sludge mass 11 by the sludge pipe and the sludge return pump 10. Further, a part of the sludge is transferred to the sludge treatment facility 12 as excess sludge e via the sludge mass 11. The sludge treatment facility 12 uses mechanical concentration, or performs gravity concentration in a short time to perform dehydration treatment in order to prevent phosphorus from being re-released from the sludge that has taken in phosphorus.
A treatment facility suitable for phosphorus-containing sludge shall be provided.

【0010】次に本発明の動作・作用を説明する。本発
明の方法は、調整槽4から曝気槽7への流入水量を一定
とすることにより、曝気槽において所定の間隔で曝気を
行うことにより、好気と嫌気の時間配分を形成して硝化
と脱窒を進める。従来のオキシデーションディッチのよ
うに連続曝気を行いながら好気ゾーン、嫌気ゾーンを形
成させて硝化と脱窒を進める方法に対して、このように
間欠曝気により硝化と脱窒を進める方法では1.5倍程
度大きい硝化速度、及び脱窒速度が得られることから、
より効率的に硝化・脱窒を進めることができる。
Next, the operation and action of the present invention will be described. According to the method of the present invention, the amount of water flowing into the aeration tank 7 from the adjusting tank 4 is made constant, and aeration is performed at a predetermined interval in the aeration tank, thereby forming a time distribution of aerobic and anaerobic to form nitrification. Advance denitrification. In contrast to the conventional oxidation ditch method that promotes nitrification and denitrification by forming aerobic zones and anaerobic zones while performing continuous aeration, the method that promotes nitrification and denitrification by intermittent aeration in this way is 1. Since a nitrification rate and denitrification rate about 5 times higher can be obtained,
Nitrification and denitrification can be promoted more efficiently.

【0011】また本発明の方法では沈殿槽で沈殿させた
汚泥を流量調整槽4に返送して撹拌機5により流入下水
と混合することにより、汚泥を完全嫌気の状態に保つ。
このとき返送汚泥の微生物体内に蓄積されていたポリリ
ンが溶解性のリン酸の形で体外に排出され、水中のリン
濃度が一時的に上昇する。生物脱リンのメカニズムにお
いては、このような微生物からのリン放出の過程が重要
であり、効果的に脱リンを行うために完全嫌気の状態が
1〜4時間となるように調整槽の最低水位における容量
を設定する。次にリン放出した汚泥は流調ポンプ6によ
り曝気槽7に送水し、曝気機8の運転時に好気状態にな
ったときに水中のリン酸が汚泥微生物の体内に取り込ま
れ、ポリリンとして蓄積されるが、このときに取り込ま
れるリンの量は調整槽において放出された量よりも多
く、従って流入下水中に存在していたリン酸が汚泥微生
物に取り込まれたことになる。
In the method of the present invention, the sludge settled in the settling tank is returned to the flow rate adjusting tank 4 and mixed with the inflowing sewage by the stirrer 5 to keep the sludge in a completely anaerobic state.
At this time, polyphosphorus accumulated in the microorganism body of the returned sludge is discharged out of the body in the form of soluble phosphoric acid, and the phosphorus concentration in the water temporarily rises. In the mechanism of biological dephosphorization, the process of phosphorus release from such microorganisms is important, and in order to perform effective dephosphorization, the minimum water level in the adjusting tank should be set so that the completely anaerobic state is 1 to 4 hours. Set the capacity at. Next, the sludge that has released phosphorus is sent to the aeration tank 7 by the flow control pump 6, and when the aerator 8 is in an aerobic state, the phosphoric acid in the water is taken into the body of the sludge microorganisms and accumulated as polyphosphorus. However, the amount of phosphorus taken in at this time is larger than the amount released in the adjusting tank, and thus the phosphoric acid present in the inflowing sewage is taken in by the sludge microorganisms.

【0012】なお、曝気槽では間欠曝気を行って好気と
嫌気を交互に繰り返すが、曝気槽における嫌気状態では
調整槽同様、無酸素の状態ではあるが、好気時における
硝化反応により硝酸性窒素のように窒素酸化物が存在
し、完全嫌気状態とはならないため、汚泥からのリン放
出は生じない。なお、汚泥微生物によるリン酸の摂取速
度は硝化や脱窒に比べて速いため、曝気槽における必要
滞留時間は硝化脱窒速度に左右される。前述のように間
欠曝気では従来のオキシデーションディッチのように好
気、嫌気のゾーンを形成させる連続曝気方式に比べる
と、硝化・脱窒速度が速くなるのに加えて、脱窒反応に
必要な有機物が流入下水の形で常に一定流量で曝気槽に
供給されるため、12〜20時間程度で硝化脱窒を行う
ことができる。
[0012] In the aeration tank, intermittent aeration is performed to alternately repeat aerobic and anaerobic. In the aerobic state of the aeration tank, which is anoxic as in the adjusting tank, nitric acid is generated by nitrification reaction during aerobic conditions. Since nitrogen oxides such as nitrogen are present and a complete anaerobic condition is not achieved, phosphorus is not released from sludge. Since the intake rate of phosphoric acid by sludge microorganisms is higher than that of nitrification and denitrification, the required residence time in the aeration tank depends on the nitrification and denitrification rate. As described above, in intermittent aeration, the nitrification / denitrification rate is faster than in the continuous aeration method that forms aerobic and anaerobic zones like the conventional oxidation ditch. Since organic matter is always supplied to the aeration tank in the form of inflowing sewage at a constant flow rate, nitrification denitrification can be performed in about 12 to 20 hours.

【0013】一方、硝化脱窒を効率的に進めるために
は、硝化菌、脱窒菌を高濃度に保つ必要があることか
ら、汚泥の滞留時間を長くして、曝気槽のMLSSを1
リットル当たり2500mg以上の高濃度で運転する必
要があるが、このような条件ではバルキングや放線菌に
よる発泡が生じやすい。バルキングの原因生物である糸
状菌や放線菌は好気性菌であるため、嫌気状態に保つと
活性を失い、やがて死滅する。
On the other hand, in order to effectively promote nitrification and denitrification, it is necessary to keep the nitrifying bacteria and denitrifying bacteria at a high concentration. Therefore, the retention time of sludge is lengthened and MLSS of the aeration tank is set to 1
It is necessary to operate at a high concentration of 2500 mg or more per liter, but under such conditions, bulking and foaming by actinomycetes are likely to occur. Since filamentous fungi and actinomycetes, which are the causative organisms of bulking, are aerobic bacteria, they lose their activity when kept in an anaerobic state, and eventually die.

【0014】本発明の方法によると曝気槽の前段に流量
調整槽を設けて、返送汚泥を完全嫌気条件下に数時間保
つため、、糸状菌や放線菌の増殖を抑制することがで
き、硝化脱窒に適した運転を保持することができる。
According to the method of the present invention, a flow rate adjusting tank is provided in front of the aeration tank and the returned sludge is kept under a completely anaerobic condition for several hours. Therefore, the growth of filamentous fungi and actinomycetes can be suppressed, and nitrification can be performed. The operation suitable for denitrification can be maintained.

【0015】[0015]

【発明の効果】本発明オキシデーションディッチにおけ
る脱窒・脱リン方法は、曝気槽の前段に流量調整槽を設
け、沈殿槽で沈殿させた汚泥を流量調整槽に返送し、流
入下水と混合して汚泥を完全嫌気状態にした後、曝気槽
に流入させるようになし、また必要に応じて前記流量調
整槽には撹拌機を設けて流入下水と返送汚泥を十分撹拌
混合させ、曝気槽では間欠曝気を行って好気と嫌気を交
互に繰り返すになしているため、 (1)従来のオキシデーションディッチに比べ、硝化・
脱窒を効率的に行うことができるため、各槽の容量を小
さくして、設置スペースを小さくすることができる。 (2)従来のオキシデーションディッチでは、脱リン性
能が50%以下であったのに対し、80%以上の高い脱
リン性能が得られる。 (3)バルキングや放線菌による発泡スカムなど、固液
分離障害が、従来のオキシデーションディッチに比べて
発生しにくい。 等の数々の利点を有する。
EFFECTS OF THE INVENTION The denitrification / dephosphorization method in the oxidation ditch according to the present invention is provided with a flow rate adjusting tank in front of the aeration tank, the sludge precipitated in the settling tank is returned to the flow rate adjusting tank, and mixed with inflowing sewage. After the sludge has been completely anaerobicized, the sludge is allowed to flow into the aeration tank.If necessary, a stirrer is installed in the flow rate adjustment tank to mix the inflowing sewage and the returned sludge with sufficient agitation, and the aeration tank is operated intermittently. Since aeration is performed to alternate between aerobic and anaerobic, (1) Nitrification / compared to conventional oxidation ditch
Since denitrification can be performed efficiently, the capacity of each tank can be reduced and the installation space can be reduced. (2) While the conventional oxidation ditch has a dephosphorization performance of 50% or less, a high dephosphorization performance of 80% or more can be obtained. (3) Solid-liquid separation defects such as foaming scum due to bulking and actinomycetes are less likely to occur than in the conventional oxidation ditch. And so on.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明オキシデーションディッチにおける脱窒
・脱リン方法の処理フローを示した説明図である。
FIG. 1 is an explanatory diagram showing a processing flow of a denitrification / dephosphorization method in the oxidation ditch of the present invention.

【図2】従来のオキシデーションディッチの処理フロー
を示した説明図である。
FIG. 2 is an explanatory diagram showing a processing flow of a conventional oxidation ditch.

【符号の説明】[Explanation of symbols]

1 ポンプ井 2 原水ポンプ 3 沈砂槽 4 流量調整槽 5 撹拌機 6 流調ポンプ 7 曝気槽 8 機械式曝気機 9 沈殿槽 10 汚泥返送ポンプ 11 汚泥マス 12 汚泥処理設備 a 流入下水 b 処理水 c 汚泥 d 返送汚泥 e 余剰汚泥 1 Pump well 2 Raw water pump 3 Sand setter 4 Flow rate control tank 5 Stirrer 6 Flow control pump 7 Aeration tank 8 Mechanical aerator 9 Sedimentation tank 10 Sludge return pump 11 Sludge mass 12 Sludge treatment facility a Influent sewage b Treated water c Sludge d Return sludge e Excess sludge

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 循環水路状の曝気槽に機械式の曝気機を
設けて高濃度の活性汚泥により下水を処理するオキシデ
ーションディッチ法において、曝気槽の前段に流量調整
槽を設け、沈殿槽で沈殿させた汚泥を流量調整槽に返送
し、流入下水と混合して汚泥を完全嫌気状態にした後、
曝気槽に流入させることを特徴とするオキシデーション
ディッチにおける脱窒・脱リン方法。
1. In an oxidation ditch method in which a mechanical aerator is installed in an aeration tank in the form of a circulating water channel to treat sewage with high-concentration activated sludge, a flow rate adjusting tank is provided in the preceding stage of the aeration tank, and a sedimentation tank is used. After returning the precipitated sludge to the flow rate adjustment tank and mixing it with the inflowing sewage to make the sludge completely anaerobic,
A denitrification and dephosphorization method in an oxidation ditch, which is characterized by flowing into an aeration tank.
【請求項2】 流量調整槽には撹拌機を設けて流入下水
と返送汚泥を十分撹拌混合させ、曝気槽では間欠曝気を
行って好気と嫌気を交互に繰り返すことを特徴とする第
1項記載のオキシデーションディッチにおける脱窒・脱
リン方法。
2. The flow control tank is equipped with a stirrer to sufficiently stir and mix the inflowing sewage and the returned sludge, and the aeration tank performs intermittent aeration to alternately repeat aerobic and anaerobic. Method for denitrification and dephosphorization in the described oxidation ditch.
JP11212794A 1994-04-26 1994-04-26 Denitrification and dephosphorization methods in oxidation ditch Expired - Fee Related JP3634403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11212794A JP3634403B2 (en) 1994-04-26 1994-04-26 Denitrification and dephosphorization methods in oxidation ditch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11212794A JP3634403B2 (en) 1994-04-26 1994-04-26 Denitrification and dephosphorization methods in oxidation ditch

Publications (2)

Publication Number Publication Date
JPH07290083A true JPH07290083A (en) 1995-11-07
JP3634403B2 JP3634403B2 (en) 2005-03-30

Family

ID=14578878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11212794A Expired - Fee Related JP3634403B2 (en) 1994-04-26 1994-04-26 Denitrification and dephosphorization methods in oxidation ditch

Country Status (1)

Country Link
JP (1) JP3634403B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110040852A (en) * 2019-05-31 2019-07-23 凌志环保股份有限公司 A kind of pot type oxidation ditch integrating device of intermittent duty
CN113387441A (en) * 2021-07-14 2021-09-14 上海泓济环保科技股份有限公司 Oxidation ditch and non-outage upgrading and transforming method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110040852A (en) * 2019-05-31 2019-07-23 凌志环保股份有限公司 A kind of pot type oxidation ditch integrating device of intermittent duty
CN113387441A (en) * 2021-07-14 2021-09-14 上海泓济环保科技股份有限公司 Oxidation ditch and non-outage upgrading and transforming method thereof

Also Published As

Publication number Publication date
JP3634403B2 (en) 2005-03-30

Similar Documents

Publication Publication Date Title
CN101519265B (en) Sewage treatment process and system
CN100569669C (en) Anaerobic-anoxic oxidation pitch technique denitrification dephosphorization device and method thereof
CN101306878B (en) Process control device of CAST step-feed and further denitrification and method
US4917805A (en) Cyclical complete mix activated sludge process
CN103991958B (en) Method for upgrading and expanding sequencing batch biological pool by utilizing moving bed biofilm process
CN104710087A (en) Hypoxia-aerobic comprehensive treatment method for tannery waste water
KR100428047B1 (en) A Waste Water Purifier Using Overflow Sediment and Method
KR20170101664A (en) Advanced treatment Apparatus effectively removes the nutrients in sewage/waste water
WO1995024361A1 (en) Method of operating a sequencing batch reactor
CN201229714Y (en) Segmental influent and biological denitrification process control experimental apparatus by circulating type active sludge process
JP3771870B2 (en) Sewage treatment system by oxidation ditch method
CN101434438B (en) CAST sectional water inlet synchronous denitrification and dephosphorization strenghthening procedure control device and method
KR20040075413A (en) Wastewater treatment system by multiple sequencing batch reactor and its operation methods
CN111908735A (en) AAO process transformation method for urban sewage treatment plant based on anaerobic ammonia oxidation
CN112551828A (en) Low-carbon-nitrogen-ratio rural domestic sewage treatment device and treatment process thereof
CN101402488B (en) CAST segmenting water feed reinforced denitrification control method
CN201130472Y (en) Reinforced circulation type activated sludge process denitriding teaching experimental equipment
KR100814743B1 (en) Removal of nitrogen and phosphate using small sewage treatment system with an anaerobic, anoxic, aerobic combined biofilters
JP3634403B2 (en) Denitrification and dephosphorization methods in oxidation ditch
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JPH1157778A (en) Waste water treating device and treatment
CN201136824Y (en) Denitrification phosphorus removal device through anaerobic- anoxic oxidation channel process
JPH05192688A (en) Anaerobic-aerobic activated sludge treating device using buffer tank
JP3303475B2 (en) Operation control method of activated sludge circulation method
JPH0691292A (en) Operation control method of aerobic-anaerobic active sludge treatment apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees