JPH07286969A - Discriminating method for copper including scraps - Google Patents

Discriminating method for copper including scraps

Info

Publication number
JPH07286969A
JPH07286969A JP6077636A JP7763694A JPH07286969A JP H07286969 A JPH07286969 A JP H07286969A JP 6077636 A JP6077636 A JP 6077636A JP 7763694 A JP7763694 A JP 7763694A JP H07286969 A JPH07286969 A JP H07286969A
Authority
JP
Japan
Prior art keywords
copper
scrap
value
pixel
hue angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6077636A
Other languages
Japanese (ja)
Other versions
JP3073647B2 (en
Inventor
Tomio Tanaka
富三男 田中
Sumitada Kakimoto
純忠 柿本
Toshio Akagi
俊夫 赤木
Shuji Naito
修治 内藤
Masahiro Ito
雅浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP06077636A priority Critical patent/JP3073647B2/en
Publication of JPH07286969A publication Critical patent/JPH07286969A/en
Application granted granted Critical
Publication of JP3073647B2 publication Critical patent/JP3073647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sorting Of Articles (AREA)

Abstract

PURPOSE:To automatically discriminate the copper including scraps in an iron scrap group at a high accuracy, by finding the brightness value, the saturation value, and the hue angle value, from the RGB signals the picture elements in the pickup images of the iron scrap group have, and comparing them with specific values. CONSTITUTION:An RGB signal 4 obtained by photographing the scope to require the copper discrimination in an iron scrap group 1 by a TV camera 3 is converted into signals of the hue angle 6, the saturation 7, and the brightness 8, by an HSI converter 5, and they are delivered to a discrimination processing device 9. The discrimination processing device 9 finds the hue angles 6 of the picture elements, when the saturations 7 of the picture elements are more than the threshold value and compares with and refers to the corresponding relation of the hue angle scope of the copper, and when the hue angle 6 is within the specific scope, the picture elements are decided to be the copper. When the hue angle 6 is not within the scope, it is decided not to be the copper, and when the saturation 8 is less than a threshold value, it is decided not to be the copper. And when the ratio of the total area of individual scraps, and the copper area in the image area the scraps occupy is a threshold value or higher, it is decided to be the copper including scraps.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鉄スクラップ回生処理に
おいて、鉄スクラップ群から不純物元素である銅を含有
したスクラップを自動識別する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for automatically identifying scrap containing copper, which is an impurity element, from a group of iron scraps in iron scrap regenerative processing.

【0002】[0002]

【従来の技術】スクラップ回生により生産される鉄の品
質低下を避けるためには、一般にトランプエレメントと
呼称される銅、亜鉛、錫などの非鉄不純物元素の混入を
防ぐ必要がある。亜鉛や錫は主としてめっき鋼板の表層
に存在しているのに対し、銅は主として自動車、家電製
品中のモーターコアの中に銅線として存在するため破砕
屑段階で識別し分離するのが混入防止に最も効果的であ
る。
2. Description of the Related Art In order to avoid deterioration of the quality of iron produced by scrap regeneration, it is necessary to prevent the inclusion of non-ferrous impurity elements such as copper, zinc and tin, which are generally called Trump elements. Zinc and tin are mainly present on the surface of the plated steel sheet, whereas copper is mainly present as copper wire in the motor core of automobiles and home appliances, so it is possible to identify and separate at the crushing scrap stage to prevent contamination. Most effective in.

【0003】従来より回生業者により行われてきた処理
は、自動車、家電製品などの廃棄物をまずシュレッダー
と呼ばれる破砕機により長寸サイズで約数十mmのスクラ
ップ片に裁断し、風選により布、プラスチックなど非金
属の細片、粉体を除去したり、渦流式選別により非金属
片と金属片の分離を行ったり、さらには磁気選別により
鉄と非鉄金属片の分離を行うというものであり、最終的
に分離された鉄スクラップが製鉄メーカーに鉄原料とし
て引き渡されている。
Conventionally, a regenerator has been used for processing. Waste such as automobiles and home electric appliances is first cut by a shredder called a shredder into long-sized scrap pieces of about several tens of millimeters, which are then clothed by wind-screening. , Non-metal pieces such as plastics, powders are removed, non-metal pieces and metal pieces are separated by eddy-current sorting, and iron and non-ferrous metal pieces are separated by magnetic sorting. The finally separated iron scrap is handed over to the steelmaker as an iron raw material.

【0004】しかしながら銅の最も大きな混入源である
モーターコアは銅線と鉄芯が機械的に絡み合っているた
め磁選によっても銅と鉄を分離することができないた
め、結局はベルトコンベア上を搬送される途中で作業員
の目視による識別と手選別により分離されてきた。
However, since the copper core and the iron core are mechanically intertwined in the motor core, which is the largest source of copper contamination, the copper and iron cannot be separated even by magnetic separation, so that they are eventually conveyed on the belt conveyor. During the process, the workers were separated by visual identification and manual selection.

【0005】このような人手による識別作業にはスク
ラップ処理量の拡大が困難、多大な人件費投入が経済
的に困難、銅除去後のスクラップの均一品質確保が困
難、作業環境の改善が困難、などの問題がある。この
作業の自動化手段として、レーザ光線照射によりスクラ
ップ自動識別を行う方法の提案もなされている(Dr. H.
-P Sattler: VDI BERICHTE NR. 934, 1991: 'Scrap sor
ting with Lazer-an automatic process for mixed non
-ferrous metals from automobile shredders')。
In such a manual identification work, it is difficult to expand the scrap processing amount, it is economically difficult to invest a large amount of labor cost, it is difficult to secure uniform quality of scrap after copper removal, and it is difficult to improve the working environment. There are problems such as. As a means of automating this work, a method of performing scrap automatic identification by laser beam irradiation has also been proposed (Dr. H.
-P Sattler: VDI BERICHTE NR. 934, 1991: 'Scrap sor
ting with Lazer-an automatic process for mixed non
-ferrous metals from automobile shredders').

【0006】[0006]

【発明が解決しようとする課題】しかし、前述の方法は
高価なパルスレーザ照射器を利用するために、装置コス
ト削減が難しく、またレーザおよび分光器を悪環境で使
用しなければならないため、装置メンテナンスにコスト
と人手がかかることが実用上問題であった。また、銅を
含有したスクラップを自動識別する方法としてはすでに
色相角による自動識別方法を特許出願している(特願平
5−135119号;鉄スクラップ群から銅の含有され
たスクラップを識別する方法)。
However, since the above-described method uses an expensive pulse laser irradiator, it is difficult to reduce the apparatus cost, and the laser and the spectroscope must be used in a bad environment. Practical problems have been that maintenance requires cost and manpower. As a method for automatically identifying scrap containing copper, a patent application has already been filed for an automatic identification method based on hue angle (Japanese Patent Application No. 5-135119; method for identifying scrap containing copper from a group of iron scraps). ).

【0007】しかし色相角のみによる方法ではスクラッ
プ中彩度値の低い部分において、色相角が不安定になる
ため銅と鉄の識別精度の低下が認められた。また、分離
プロセスで銅含有スクラップの分離を効率的に行うため
には、識別処理の中で個々のスクラップの認識処理と銅
含有スクラップの位置情報を求めて分離プロセスへ伝送
する必要があり、それらの情報を同時に獲得する必要が
あった。
However, in the method using only the hue angle, the hue angle becomes unstable in the portion where the chroma value in the scrap is low, so that the accuracy of discrimination between copper and iron is lowered. In order to efficiently separate copper-containing scrap in the separation process, it is necessary to identify each scrap in the identification process and obtain the position information of the copper-containing scrap and transmit it to the separation process. It was necessary to obtain the information of.

【0008】本発明が解決しようとする課題は、装置コ
ストおよびメンテナンスコストが小さな識別方法を実現
するために、色相角を用いて銅含有スクラップの識別精
度の向上を図るとともに、銅含有スクラップの位置情報
を分離プロセスへ伝送できるための識別方法を構築する
ことである。
The problem to be solved by the present invention is to improve the identification accuracy of the copper-containing scrap by using the hue angle in order to realize an identification method with low equipment cost and maintenance cost, and to determine the position of the copper-containing scrap. To build an identification method so that the information can be transmitted to the separation process.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は次の通り
である。 1)カラーテレビカメラにより鉄スクラップ群を撮像
し; 2)該画像内の各画素について、該点の持つRGB信号
値から輝度値I、彩度値S、色相角値H、を求め; 3)該画像に対して各画素の彩度値が予め設定されたし
きい値以上であるか否かを判別し;該画素の彩度値がし
きい値以上である場合は、該画素の色相角値が予め設定
された銅の色相角値範囲内にあるとき、該画素は銅であ
ると判別し;該画素の色相角値が予め設定された銅の色
相角値範囲内にないとき、該画素は銅でないと判別し;
該画素の彩度値がしきい値以上でない場合は、該画素は
銅でないと判別する;ことにより該画像内の銅と判別さ
れる画素を求め; 4)輝度値Iを用いて該画像全体にラベリング処理を施
してスクラップの個体認識を行うとともに、個々のスク
ラップの総面積Stすなわちスクラップが占める画素数
を求め;該スクラップの占める画像領域の中の銅面積S
Cuすなわち銅と判別された画素の総数を求め; 5)各スクラップに対して銅面積SCuとStの比R=
SCu/Stを求めて、比Rが予め設定されたしきい値
Rmin 以上である場合には該スクラップを銅含有スクラ
ップと識別し、その重心位置(X,Y)すなわち総面積
Stの重心の画素番地を求める。
The gist of the present invention is as follows. 1) An iron scrap group is imaged by a color television camera; 2) For each pixel in the image, a luminance value I, a saturation value S, and a hue angle value H are obtained from the RGB signal value of the point; 3) It is determined whether or not the saturation value of each pixel is greater than or equal to a preset threshold value for the image; if the saturation value of the pixel is greater than or equal to the threshold value, the hue angle of the pixel is determined. When the value is within the preset copper hue angle value range, it is determined that the pixel is copper; and when the hue angle value of the pixel is not within the preset copper hue angle value range, Determine that the pixel is not copper;
If the saturation value of the pixel is not greater than or equal to the threshold value, it is determined that the pixel is not copper; thereby obtaining a pixel in the image that is determined to be copper; 4) Using the luminance value I, the entire image Is subjected to a labeling process to identify individual scraps, and the total area St of the individual scraps, that is, the number of pixels occupied by the scraps is determined; the copper area S in the image area occupied by the scraps is calculated.
Obtain the total number of pixels determined to be Cu, that is, copper; 5) Ratio of copper area SCu to St for each scrap R =
SCu / St is calculated, and when the ratio R is equal to or more than a preset threshold value Rmin, the scrap is identified as a copper-containing scrap, and its center of gravity (X, Y), that is, the pixel of the center of gravity of the total area St is identified. Ask for a street address.

【0010】[0010]

【作用】図1に示すように、鉄スクラップ群1を光源2
で照らした状態で、鉄スクラップ群1内の銅識別を要す
る範囲についてカラーテレビカメラ3で撮像する。ただ
し、特に光源が無くともカラーテレビカメラによる撮像
が可能である場合には、光源が必ずしも必要でない。
As shown in FIG. 1, the iron scrap group 1 is connected to the light source 2
The area of the iron scrap group 1 where copper is required to be identified is imaged by the color television camera 3 in the state of being illuminated with. However, the light source is not always necessary if the image can be taken by the color television camera without the light source.

【0011】カラーテレビカメラのRGB信号4はHS
I変換装置5により色相角度H(6),彩度S(7),
および輝度I(8)信号に変換されて識別処理装置9に
伝送される。識別処理装置9は後述する,,の画
像処理を行って銅を含有すると識別されたスクラップの
重心位置(X,Y)信号10を出力する。
The RGB signal 4 of the color television camera is HS
By the I conversion device 5, the hue angle H (6), the saturation S (7),
And a luminance I (8) signal and transmitted to the identification processing device 9. The identification processing device 9 performs the image processing of, which will be described later, and outputs the barycentric position (X, Y) signal 10 of the scrap identified as containing copper.

【0012】ベルトコンベアの搬送方向後部に設置され
ている分離装置(図示せず)の制御装置は銅含有スクラ
ップの重心位置(X,Y)信号10を受けるとともに、
該スクラップの搬送時間遅れを補正するいわゆるトラッ
キング処理を行って該スクラップが分離装置に到達する
時刻にしかるべき分離処理を実行する。
The control device of the separating device (not shown) installed at the rear of the belt conveyor in the conveying direction receives the barycentric position (X, Y) signal 10 of the copper-containing scrap, and
A so-called tracking process is performed to correct a delay in the transportation time of the scrap, and an appropriate separation process is executed at the time when the scrap reaches the separation device.

【0013】識別処理装置9での処理は複雑な画像処理
を含むため場合によっては実時間処理ができないことも
あるが、そのときは図1に示すように該画像の撮像時刻
信号11を分離装置の制御装置に伝送すれば適切なトラ
ッキング処理を行うことが可能である。識別処理装置9
で実時間処理が可能な場合には、該画像の撮像時刻信号
11を分離装置の制御装置に伝送しなくても、搬送時間
遅れの補正のみで適切なトラッキング処理を行うことが
可能であることは言うまでもない。
Since the processing in the identification processing device 9 includes complicated image processing, real-time processing may not be possible in some cases. In that case, as shown in FIG. 1, the image pickup time signal 11 of the image is separated by the separation device. If it is transmitted to the control device, it is possible to perform an appropriate tracking process. Identification processing device 9
If real-time processing is possible with, it is possible to perform appropriate tracking processing only by correcting the transport time delay without transmitting the imaging time signal 11 of the image to the control device of the separation device. Needless to say.

【0014】識別処理装置9は撮影した画像に対して、
以下の処理を行うことにより銅含有スクラップの識別を
行う。 各画素についてその彩度値が、予め設定されたしきい
値以上であるか否かを調べ;彩度値がしきい値以上の場
合には該画素の色相角値を求め、その値を予め設定され
ている銅の色相角値範囲の対応関係と比較参照し、色相
角がその範囲内に収まっている場合は、該画素を銅であ
ると判別し、収まっていない場合には銅ではないと判別
し、彩度値がしきい値未満の場合には、銅ではないと判
別する。
The identification processing device 9 applies to the photographed image,
Copper-containing scrap is identified by performing the following processing. It is checked whether or not the saturation value of each pixel is equal to or larger than a preset threshold value; if the saturation value is equal to or larger than the threshold value, a hue angle value of the pixel is obtained, and the value is previously set. By comparing and referring to the correspondence relationship of the set hue angle value range of copper, if the hue angle is within that range, it is determined that the pixel is copper, and if it is not, it is not copper. When the saturation value is less than the threshold value, it is determined that it is not copper.

【0015】該画像全体に輝度値Iを用いてラベリン
グ処理を施してスクラップの個体認識を行うとともに、
個々のスクラップの総面積Stすなわちスクラップが占
める画素数を求め;該スクラップの占める画像領域の中
の銅面積SCuすなわちの処理により銅と判別された
画素の総数を求め; 各スクラップに対して銅面積SCuとStの比R=S
Cu/Stを求めて、比Rが予め設定されたしきい値R
min 以上である場合には該スクラップを銅含有スクラッ
プと識別し、その重心位置(X,Y)すなわち総面積S
tの重心の画素番地を求める。
Labeling processing is performed on the entire image using the brightness value I to identify individual scraps.
The total area St of each scrap, that is, the number of pixels occupied by the scrap is obtained; the copper area SCu in the image area occupied by the scrap, that is, the total number of pixels determined to be copper by the processing; Ratio of SCu and St R = S
Calculating Cu / St, the ratio R is a preset threshold value R
When it is more than min, the scrap is identified as a copper-containing scrap, and its center of gravity (X, Y), that is, the total area S
Find the pixel address of the center of gravity of t.

【0016】[0016]

【実施例】図2に本発明の方法を実施した識別装置構成
例を示す。この例では工場内の蛍光灯などの光の影響を
減ずるため暗室22を設けてその中で測定を行った。光
源としてはベルトコンベア上を搬送されるスクラップを
4方向から照らす4点光源24を使用し、カラーテレビ
カメラとしてCCDカメラ23を使用した。4点光源2
4は1方向から照らす光源と比較すると、スクラップ上
およびその設置台上に生ずる影を減らす効果を持つ。影
の発生を、識別処理に差し支えのない範囲にとどめるこ
とが可能なのであれば、必ずしも4点光源が必要となら
ない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 shows an example of the configuration of an identification device that implements the method of the present invention. In this example, in order to reduce the influence of light such as a fluorescent lamp in the factory, a dark room 22 is provided and the measurement is carried out in the dark room 22. A four-point light source 24 that illuminates scrap conveyed on a belt conveyor from four directions was used as a light source, and a CCD camera 23 was used as a color television camera. 4 point light source 2
4 has the effect of reducing the shadows produced on the scrap and its installation table, as compared with a light source that illuminates from one direction. The four-point light source is not necessarily required as long as the generation of shadows can be limited to a range that does not interfere with the identification process.

【0017】画像取り込み装置27はCCDカメラ23
からのRGB信号26を入力してHSI信号28に変換
して識別処理装置29へ出力する。該識別処理装置29
は、銅の色相角範囲および彩度値のしきい値を記憶し,
輝度I信号によってラベリング処理された画像内のすべ
てのスクラップに対して銅含有スクラップであるか否か
を識別し、銅含有と識別されたスクラップの位置情報
(X,Y)信号を出力する。また、本実施例では、CC
Dカメラ23で撮像された鉄スクラップ画像を識別処理
装置29に取り込むにあたってのタイミング処理の簡便
化のため、一旦RGB信号26を画像取込装置27に記
憶しHSI信号に変換して出力している。
The image capturing device 27 is a CCD camera 23.
The R, G, and B signals 26 are input, converted into HSI signals 28, and output to the identification processing device 29. The identification processing device 29
Stores the copper hue angle range and saturation threshold,
It is determined whether or not all scraps in the image subjected to the labeling processing by the luminance I signal are copper-containing scraps, and the position information (X, Y) signal of the scraps identified as copper-containing is output. Further, in this embodiment, CC
In order to simplify the timing processing when the iron scrap image captured by the D camera 23 is captured in the identification processing device 29, the RGB signal 26 is temporarily stored in the image capturing device 27, converted into an HSI signal and output. .

【0018】図2に示した識別装置を用いて、自動車の
シュレッダー屑中の鉄スクラップと、鉄と銅からなるモ
ータコアスクラップの自動識別実験を行った。本実験で
用いたシュレッダー試料は、自動車、家電製品などの廃
棄物をまずシュレッダーにより長寸サイズで約80mmの
スクラップ片に裁断し、風選により布、プラスチックな
ど非金属の細片、粉体を除去し、渦流式選別により非金
属片と金属片の分離を行い、さらに磁気選別により鉄と
非鉄金属片の分離を行った結果鉄として、すなわち磁性
を持つものとして分離されたものであり、純粋に鉄だけ
よりなる鉄スクラップと銅を混入しているモーターコア
スクラップが混在したものである。すなわち本実験で用
いたスクラップ試料は従来作業員の目視と手作業によっ
てのみ識別分離されてきたものである。
Using the discriminating apparatus shown in FIG. 2, an automatic discriminating experiment was carried out for iron scrap contained in automobile shredder scrap and motor core scrap made of iron and copper. The shredder samples used in this experiment were to cut wastes such as automobiles and home electric appliances into shredders with a long size of about 80 mm, and by wind sorting, cloth, non-metallic pieces such as plastic, and powder. The non-metal pieces were separated from the non-ferrous metal pieces by eddy-current sorting, and the iron and non-ferrous metal pieces were further separated by magnetic sorting. Is a mixture of iron scrap consisting only of iron and motor core scrap containing copper. That is, the scrap samples used in this experiment have been identified and separated only by the visual inspection of a conventional worker and manual work.

【0019】実際の識別実験に先立ち、以下に記す3種
類の予備実験を実施して本実験の設定値の決定などを行
った。まず第1に、銅識別の為の彩度値と色相角値の境
界値を定めるための予備実験を実施した。識別時と同じ
光学的条件(光源24,CCDカメラ23の作動条件、
暗室22、機器間・対象スクラップ間距離などの設定条
件)において、スクラップ銅部、スクラップ鉄部、スク
ラップの置かれている台部それぞれが持つ色相角値分布
状況を実測した。
Prior to the actual discrimination experiment, the following three types of preliminary experiments were carried out to determine the set values for this experiment. First of all, a preliminary experiment was carried out to determine the boundary value between the saturation value and the hue angle value for identifying copper. The same optical conditions as those used for identification (light source 24, operating conditions of CCD camera 23,
Under the setting conditions such as the darkroom 22, the distance between devices and the distance between target scraps, the distribution of hue angle values of the scrap copper portion, the scrap iron portion, and the base portion on which scraps are placed was measured.

【0020】さらに、同じ条件で、スクラップ銅部、ス
クラップ鉄部、ベルトコンベア部それぞれがもつ彩度値
分布状況を実測した。これらの予備実験の結果より、銅
判別を行うための適正な彩度値Sの範囲および銅部の持
つ色相角度値Hの範囲を見いだした。これらは、図3,
図4に示す通り、彩度値については(0.3≦S≦1.
0)(30)、色相角値については(0≦H≦52゜お
よび329゜≦H<360゜)(31)である。以下に
記述する識別実は、これらの識別のための彩度値と色相
角値の境界値を使用した。☆第2に、輝度信号を用いて
画像内のスクラップを個体認識するいわゆるラベリング
処理実験を行った。ベルトコンベア部は黒色であり輝度
信号値はきわめて低いことを利用してある輝度信号しき
い値を設定して画像を2値化し、しきい値以上の部分の
画素の連続性を用いてラベリング処理をおこなったとこ
ろ、鉄スクラップ、銅を含有するモーターコアスクラッ
プなどをベルトコンベア部と分離し、かつ個々のスクラ
ップ片を容易に個体認識することができた。
Further, under the same conditions, the distribution of chroma values of the scrap copper portion, scrap iron portion, and belt conveyor portion was measured. From the results of these preliminary experiments, an appropriate range of saturation value S for judging copper and a range of hue angle value H of the copper part were found. These are
As shown in FIG. 4, the saturation values are (0.3 ≦ S ≦ 1.
0) (30), and the hue angle values are (0 ≦ H ≦ 52 ° and 329 ° ≦ H <360 °) (31). The discrimination values described below used the boundary values of the saturation value and the hue angle value for these discriminations. * Secondly, a so-called labeling process experiment was performed in which scraps in the image were individually recognized using the luminance signal. The belt conveyor is black and the luminance signal value is extremely low. A certain luminance signal threshold value is set to binarize the image, and the labeling process is performed by using the pixel continuity above the threshold value. As a result, iron scraps, motor core scraps containing copper, etc. were separated from the belt conveyor section, and individual scrap pieces could be easily recognized individually.

【0021】輝度信号しきい値は予め設定しておいても
よいが、照明光強度の変動がある場合にも対応できるよ
うに画像全体の平均輝度のたとえば25%の値をもって
しきい値と自動設定するなど、従来から種々提案されて
いるラベリング処理を利用することができるのは言うま
でもない。
Although the brightness signal threshold value may be set in advance, the threshold value is automatically set to a threshold value of, for example, 25% of the average brightness of the entire image so as to cope with the case where the illumination light intensity varies. Needless to say, various conventionally proposed labeling processes such as setting can be used.

【0022】第3に、銅を含有するスクラップであるか
否かを識別するために必要となる、銅面積SCuとSt
の比R=SCu/Stのしきい値Rmin を求める実験を
おこなっ。すなわち、銅を含有するモーターコアスクラ
ップ100サンプルと、鉄スクラップ100サンプルを
用いて全サンプルのR値を実測した。この結果、今回の
実験においてはRmin =0.1とすればモーターコアス
クラップと鉄スクラップをほ完全に識別可能であること
が判明した。
Third, the copper areas SCu and St, which are necessary for identifying whether or not the scrap contains copper.
An experiment for obtaining a threshold value Rmin of the ratio R = SCu / St is performed. That is, the R values of all the samples were measured using 100 samples of motor core scraps containing copper and 100 samples of iron scraps. As a result, in this experiment, it was found that the motor core scrap and the iron scrap can be completely distinguished by setting Rmin = 0.1.

【0023】すなわち、モーターコアサンプルを誤って
鉄サンプルと誤識別したのは2サンプルだけで、鉄サン
プルを誤ってモーターコアサンプルと誤識別したのは3
サンプルだけであった。ただし、実際の識別分離処理に
あたってはどの程度まで銅含有スクラップの鉄スクラッ
プへの混入が許容されるかによってRmin の設定値は変
化しうることは言うまでもない。また、銅含有スクラッ
プと識別されたスクラップの重心位置(X,Y)は、ラ
ベリング処理による2値化画像を用いて各スクラップの
画素位置を単純平均することで容易に計算できる。
That is, only two samples erroneously identified the motor core sample as the iron sample, and three erroneously identified the iron sample as the motor core sample.
It was only a sample. However, it goes without saying that the set value of Rmin may change depending on the degree to which the copper-containing scrap can be mixed into the iron scrap in the actual identification and separation process. Further, the barycentric position (X, Y) of the scrap identified as the copper-containing scrap can be easily calculated by simply averaging the pixel positions of the scraps using the binarized image obtained by the labeling process.

【0024】実際の識別実験で用いた識別処理装置29
が行う識別処理の具体的手順を示すフローチャートを図
5に示す。識別実験ではモーターコアスクラップ100
個、鉄スクラップ2,400個をランダムに混ぜて60
(m/min)の速度で運転されているベルコンベア上に送
り出して識別実験を行った。識別装置29は実時間で高
速画像処理できる能力があるものを使用したため分離装
置までの搬送時間遅れを補正するだけで容易にトラッキ
ングが可能であった。銅含有スクラップと鉄スクラップ
に分離されたスクラップをそれぞれ分析したところ、銅
含有スクラップ中に誤識別されて分離された鉄スクラッ
プが17個、鉄スクラップ中に誤識別されて分離された
銅含有スクラップが4個であり実用上充分な識別分離性
能であると評価された。
Identification processing device 29 used in an actual identification experiment
FIG. 5 is a flowchart showing a specific procedure of the identification processing performed by the. Motor core scrap 100 in the identification experiment
Randomly mix 60 pieces of iron scrap and 2,400 pieces of iron scrap
The identification experiment was performed by sending out onto a bell conveyor operating at a speed of (m / min). Since the identification device 29 used has the capability of performing high-speed image processing in real time, it was possible to easily perform tracking simply by correcting the conveyance time delay to the separation device. When the copper-containing scrap and the scrap separated into the iron scrap were analyzed, respectively, 17 iron scraps that were misidentified and separated in the copper-containing scrap and the copper-containing scrap that was misidentified and separated in the iron scrap were found. The number was four, and it was evaluated that the discrimination and separation performance was practically sufficient.

【0025】図6は採取したある画像の輝度(I)信号
を用いてベルトコンベア上のスクラップを個体認識した
結果を示した例である。この場合は、ベルトコンベアが
黒色で極めて輝度が低いために、予め設定されたしきい
値以上の部分の連続性を判断することで容易に5つのス
クラップ片を個体認識することができている。白く示し
た領域が一つ一つのスクラップと認識され、その総面積
Stが求められる。
FIG. 6 is an example showing the result of individual recognition of scraps on the belt conveyor using the luminance (I) signal of a certain sampled image. In this case, since the belt conveyor is black and has extremely low brightness, it is possible to easily recognize the five scrap pieces individually by determining the continuity of the portion equal to or more than the preset threshold value. The white areas are recognized as individual scraps, and the total area St thereof is obtained.

【0026】図7は該画像の色相角度(H)信号と彩度
(S)信号から銅と判別された画素を白く示したもので
ある。各スクラップ片に対して銅と判別された領域の面
積SCuが求められる。その結果、各スクラップ片に対
して銅と判別された領域の面積と総面積の比R=SCu
/Stが計算され、銅含有スクラップと識別するための
しきい値Rmin =0.1を超えるR値をもつ図中で2お
よび5で表示されたスクラプ片が銅含有スクラップと識
別された。
FIG. 7 shows in white the pixels determined to be copper from the hue angle (H) signal and the saturation (S) signal of the image. The area SCu of the area determined to be copper is obtained for each scrap piece. As a result, the ratio of the area of the area determined as copper to the total area of each scrap piece R = SCu
/ St was calculated and the scrap pieces labeled 2 and 5 in the figure with R-values above the threshold Rmin = 0.1 for identifying copper-containing scrap were identified as copper-containing scrap.

【0027】これに対応するカラー原画像により、各ス
クラップ片材質を確認したところ2および5は破砕され
たモーターコアであり、残りは鉄のみより構成される鉄
スクラップであることが判明した。図7に示したように
1,3,および4の鉄スクラップでも一部に銅と判別さ
れた領域が存在するがこれは銅の色調に近い赤色の塗料
が施されたスクラップ面や、赤錆が付着した面や、ある
いは照明と反射角度の関係で色相角度、彩度が銅の範囲
に入った部分と考えられた。しかしながら、このような
微小な誤識別部分があっても、比Rのしきい値Rmin を
適宜設定することにより容易に鉄スクラップと銅含有ス
クラップの誤識別を防ぐことが可能である。
From the corresponding color original images, it was found that the materials of each scrap piece were confirmed, 2 and 5 were crushed motor cores, and the rest were iron scraps composed of only iron. As shown in Fig. 7, even in the iron scraps 1, 3, and 4 there are some areas that are identified as copper, but this is due to the scrap surface coated with a red paint close to the color tone of copper and red rust. It was considered that the surface was attached or that the hue angle and saturation were within the range of copper due to the relationship between the illumination and the reflection angle. However, even if there is such a minute misidentification portion, it is possible to easily prevent the misidentification of the iron scrap and the copper-containing scrap by appropriately setting the threshold value Rmin of the ratio R.

【0028】[0028]

【発明の効果】本発明の方法を用いたスクラップ群中の
銅識別方法を利用すれば、従来作業員の目視によりなさ
れてきた識別作業の自動化と高精度化が可能になりその
結果スクラップ処理量の拡大が容易、多大な人件費
投入が不必要、銅除去後のスクラップの均一品質確保
が容易、作業環境の改善が容易、など従来の問題点の
解決が可能となる。
By utilizing the method for identifying copper in a scrap group using the method of the present invention, it is possible to automate and improve the accuracy of the identification work that has been conventionally performed by the visual inspection of workers, and as a result, the scrap processing amount can be increased. It is possible to solve the conventional problems such as easy expansion, no need to invest a large amount of labor cost, it is easy to secure uniform quality of scrap after copper removal, and it is easy to improve the working environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づく識別方法を実現する装置構成の
説明図。
FIG. 1 is an explanatory diagram of a device configuration that realizes an identification method based on the present invention.

【図2】識別実験に用いた装置構成の説明図。FIG. 2 is an explanatory diagram of a device configuration used in a discrimination experiment.

【図3】実施例における銅の彩度値範囲の分布図。FIG. 3 is a distribution diagram of a saturation value range of copper in the example.

【図4】実施例における銅の色相角度値範囲の分布図。FIG. 4 is a distribution chart of a hue angle value range of copper in the example.

【図5】実施例に用いた識別処理フローチャート。FIG. 5 is a flowchart of an identification process used in the embodiment.

【図6】輝度(I)信号によるラベリング結果例の識別
図。
FIG. 6 is an identification diagram of an example of a labeling result by a luminance (I) signal.

【図7】色相角度(H)信号と彩度(S)信号による銅
部の判別結果例の識別図。
FIG. 7 is an identification diagram of an example of a determination result of a copper portion based on a hue angle (H) signal and a saturation (S) signal.

【符号の説明】[Explanation of symbols]

1 鉄スクラップ群 2 光源 3 カラーテレビカメラ 4 RGB信号 5 HSI変換装置 6 色相角度H信号 7 彩度S信号 8 輝度I信号 9 識別処理装置 10 銅含有スクラップの重心位置(X,Y)信号 11 撮像時刻信号 22 暗室 23 CCDカメラ 24 4点式光源 25 モニタテレビ 26 RGB信号 27 画像取込装置 28 HSI信号 29 識別処理装置 30 識別処理にあたっての彩度適正範囲 31 銅のもつ色相角範囲 1 Iron Scrap Group 2 Light Source 3 Color TV Camera 4 RGB Signal 5 HSI Converter 6 Hue Angle H Signal 7 Saturation S Signal 8 Luminance I Signal 9 Discrimination Processing Device 10 Center of Gravity (X, Y) Signal of Copper-containing Scrap 11 Imaging Time signal 22 Dark room 23 CCD camera 24 Four-point light source 25 Monitor TV 26 RGB signal 27 Image capture device 28 HSI signal 29 Discrimination processor 30 Saturation proper range for discrimination 31 Copper hue angle range

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内藤 修治 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 伊藤 雅浩 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuji Naito 20-1 Shintomi, Futtsu-shi Nippon Steel Corporation Technical Development Division (72) Inventor Masahiro Ito 20-1 Shintomi, Futtsu Nippon Steel Co., Ltd. Technology Development Division

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ベルトコンベア上を搬送される破砕後の
鉄スクラップ群から銅含有スクラップを識別分離するプ
ロセスにおいて 1)カラーテレビカメラにより鉄スクラップ群を撮像
し; 2)該画像内の各画素について、該点の持つRGB信号
値から輝度値I、彩度値S、色相角値H、を求め; 3)該画像に対して各画素の彩度値が予め設定されたし
きい値以上であるか否かを判別し;該画素の彩度値がし
きい値以上である場合は、該画素の色相角値が予め設定
された銅の色相角値範囲内にあるとき、該画素は銅であ
ると判別し;該画素の色相角値が予め設定された銅の色
相角値範囲内にないとき、該画素は銅でないと判別し;
該画素の彩度値がしきい値以上でない場合は、該画素は
銅でないと判別する;ことにより該画像内の銅と判別さ
れる画素を求め; 4)輝度値Iを用いて該画像全体にラベリング処理を施
してスクラップの個体認識を行うとともに、個々のスク
ラップの総面積Stすなわちスクラップが占める画素数
を求め;該スクラップの占める画像領域の中の銅面積S
Cuすなわち銅と判別された画素の総数を求め; 5)各スクラップに対して銅面積SCuとStの比R=
SCu/Stを求めて、比Rが予め設定されたしきい値
Rmin 以上である場合には該スクラップを銅含有スクラ
ップと識別し、その重心位置(X,Y)すなわち総面積
Stの重心の画素番地を求める;ことによる銅含有スク
ラップの識別方法。
1. A process for identifying and separating copper-containing scrap from a crushed iron scrap group conveyed on a belt conveyor. 1) An image of the iron scrap group is picked up by a color television camera; 2) Each pixel in the image. , The luminance value I, the saturation value S, and the hue angle value H are obtained from the RGB signal value of the point; 3) the saturation value of each pixel in the image is greater than or equal to a preset threshold value. If the saturation value of the pixel is greater than or equal to the threshold value, and the hue angle value of the pixel is within the preset copper hue angle value range, the pixel is determined to be copper. When the hue angle value of the pixel is not within the preset copper hue angle value range, it is determined that the pixel is not copper;
If the saturation value of the pixel is not greater than or equal to the threshold value, it is determined that the pixel is not copper; thereby obtaining a pixel in the image that is determined to be copper; 4) Using the luminance value I, the entire image Is subjected to a labeling process to identify individual scraps, and the total area St of the individual scraps, that is, the number of pixels occupied by the scraps is determined; the copper area S in the image area occupied by the scraps is calculated.
Obtain the total number of pixels determined to be Cu, that is, copper; 5) Ratio of copper area SCu to St for each scrap R =
SCu / St is calculated, and when the ratio R is equal to or more than a preset threshold value Rmin, the scrap is identified as a copper-containing scrap, and its center of gravity (X, Y), that is, the pixel of the center of gravity of the total area St is identified. Obtaining a street address; thereby identifying copper-containing scrap.
JP06077636A 1994-04-15 1994-04-15 Method for identifying copper-containing scrap Expired - Lifetime JP3073647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06077636A JP3073647B2 (en) 1994-04-15 1994-04-15 Method for identifying copper-containing scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06077636A JP3073647B2 (en) 1994-04-15 1994-04-15 Method for identifying copper-containing scrap

Publications (2)

Publication Number Publication Date
JPH07286969A true JPH07286969A (en) 1995-10-31
JP3073647B2 JP3073647B2 (en) 2000-08-07

Family

ID=13639388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06077636A Expired - Lifetime JP3073647B2 (en) 1994-04-15 1994-04-15 Method for identifying copper-containing scrap

Country Status (1)

Country Link
JP (1) JP3073647B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759528A (en) * 2012-07-09 2012-10-31 陕西科技大学 Method for detecting diseases of crop leaves
US20120323766A1 (en) * 2011-06-18 2012-12-20 Robert Galindo Method for recycling scrap
KR101981031B1 (en) * 2018-05-18 2019-05-23 제이에이치데이터시스템 주식회사 Platform for scrapping metal based on artificial intelligence
CN115026010A (en) * 2022-05-23 2022-09-09 中联钢信电子商务有限公司 Automatic steel scrap identification and classification system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP1545540S (en) * 2015-02-20 2016-03-14

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120323766A1 (en) * 2011-06-18 2012-12-20 Robert Galindo Method for recycling scrap
CN102759528A (en) * 2012-07-09 2012-10-31 陕西科技大学 Method for detecting diseases of crop leaves
KR101981031B1 (en) * 2018-05-18 2019-05-23 제이에이치데이터시스템 주식회사 Platform for scrapping metal based on artificial intelligence
CN115026010A (en) * 2022-05-23 2022-09-09 中联钢信电子商务有限公司 Automatic steel scrap identification and classification system
CN115026010B (en) * 2022-05-23 2024-01-12 中联钢信电子商务有限公司 Automatic scrap steel identification and classification system

Also Published As

Publication number Publication date
JP3073647B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
US5911327A (en) Method of automatically discriminating and separating scraps containing copper from iron scraps
MX9705701A (en) Method and apparatus to follow and to inspect an edge or margin.
CA2227815A1 (en) Apparatus and method for automated visual inspection of objects
JPH0736001B2 (en) Bottle defect inspection method
JPH07286969A (en) Discriminating method for copper including scraps
JP3187244B2 (en) Apparatus for identifying and separating copper-containing scrap
JP3148073B2 (en) Method for discriminating and regenerating iron and copper from crushed waste
JP3187237B2 (en) Method for automatically identifying copper-containing scrap from iron scrap group
JP2001021332A (en) Surface inspecting device and its method
JPH07333197A (en) Automatic surface flaw detector
JPH1010054A (en) Inspection device for surface defect
JPS62156547A (en) Detecting method for surface defect
Vascotto High speed surface defect identification on steel strip
JPH06229929A (en) Inspection of indentation defect
JPH05126761A (en) Empty-bottle separating apparatus
JPH11277000A (en) Classifying device
JPH1114323A (en) Pattern inspection method and pattern inspection device
JPH0682390A (en) Method and apparatus for inspecting surface defect
CN117470872B (en) Board splitting quality detection method and device, board splitting machine and circuit board production line
JP3132932B2 (en) Image filtering method
JPH03229678A (en) Apparatus for classifying grade of shellfish
JP3132931B2 (en) Scratch inspection device
JP3043144B2 (en) Method for determining the number of uniform particulate matter
JPS63200279A (en) Hue deciding device
JP2000105831A (en) Device and method for surface defect inspection

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000502

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080602

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term