JPH07286811A - Optical device - Google Patents

Optical device

Info

Publication number
JPH07286811A
JPH07286811A JP10227894A JP10227894A JPH07286811A JP H07286811 A JPH07286811 A JP H07286811A JP 10227894 A JP10227894 A JP 10227894A JP 10227894 A JP10227894 A JP 10227894A JP H07286811 A JPH07286811 A JP H07286811A
Authority
JP
Japan
Prior art keywords
light
light receiving
spot
receiving element
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10227894A
Other languages
Japanese (ja)
Inventor
Yoshimasa Osumi
吉正 大角
Kohei Tomita
公平 冨田
Hayami Hosokawa
速美 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP10227894A priority Critical patent/JPH07286811A/en
Publication of JPH07286811A publication Critical patent/JPH07286811A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To expand the distance measuring range of an optical device by constituting the optical device so that the dividing line of a photoreceptor element can become parallel to the position changing direction of the spot of reflected light on a light receiving surface generated when the distance from a light emitting section or light receiving section to an object varies. CONSTITUTION:A light emitting section is composed of a light emitting element 1 which emits a luminous flux toward objects (M4, M5, and M6) and a light projecting lens 3 and a light receiving section is composed of a light receiving element 2 and light receiving lens 4 which receive reflected light from the objects in the form of a spot. The light emitting element 1 is composed of a photodiode, etc., and the light receiving element 2 is constituted so that the dividing line in its area can become parallel to the position changing direction of the received spot of the reflected light when the distances from element 2 to the objects change. Therefore, the extent in which the spot intersects the dividing line becomes larger and the moving extent of the spot is expanded, and then, the distance measuring range is expanded, because the spot moves in parallel with the dividing line.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、対象物に光を出射し、
その反射光を受光することにより、対象物までの距離を
測定する光学装置に関する。
BACKGROUND OF THE INVENTION The present invention emits light to an object,
The present invention relates to an optical device that measures the distance to an object by receiving the reflected light.

【0002】[0002]

【従来の技術】従来の光学式測距装置には、図1(a)
に示すような構成の三角測距方式を用いた光電センサが
ある。この装置の光学系は、投光用の発光素子1と投光
レンズ3、及び受光用の受光素子2と受光レンズ4から
なり、受光素子2には、1次元方向(位置検出方向)で
のスポット受光位置を検知できる、例えば、2分割フォ
トダイオード(PD)や位置検出素子(PSD)等を用
いる。装置から対象物(M1,M2,M3)までの距離
が変化したとき、図1(b)に示すように、受光素子2
の受光面上で、対象物による反射光のスポット(S1,
S2,S3)は、一定方向で対象物の距離に対応する位
置に移動する。そのスポットの位置を受光素子2で検知
し、その位置に基づく出力信号を図2に示すような処理
回路で処理することで、対象物までの距離を測定する。
2. Description of the Related Art A conventional optical distance measuring device is shown in FIG.
There is a photoelectric sensor using a trigonometric distance measuring system having a configuration as shown in FIG. The optical system of this device is composed of a light emitting element 1 for projecting light, a light projecting lens 3, and a light receiving element 2 for receiving light and a light receiving lens 4, and the light receiving element 2 has a one-dimensional direction (position detection direction). For example, a two-divided photodiode (PD), a position detection element (PSD), or the like that can detect the spot light receiving position is used. When the distance from the device to the objects (M1, M2, M3) changes, as shown in FIG.
On the light receiving surface of the, the spot (S1,
S2, S3) moves to a position corresponding to the distance of the object in a fixed direction. The light receiving element 2 detects the position of the spot, and an output signal based on the position is processed by a processing circuit as shown in FIG. 2 to measure the distance to the object.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の光学式測距装置においては、測距レンジの拡
大すなわち長距離化を図るには、対象物の移動に対する
スポットの移動を小さくする必要があり、そのために
は、投・受光素子の光軸の交角を小さくする必要があ
る。その実現方法として、投・受光素子間の距離を短く
する、又は投・受光部の光軸の交点を遠くに設計する、
の2つが考えられる。しかし、前者はレンズ等の大きさ
のために限界があり、後者は装置に近い範囲の測定が困
難になる。つまり、従来の構成では、光軸の交角はある
程度以上小さくできず、測距レンジの長距離化には限界
があった。本発明は、上記従来の問題点に着目してなさ
れたもので、受光面上でのスポットの移動方向と受光素
子の分割線が平行になるように構成し、スポット径の変
化を用いて測距を行うことにより、測距レンジの拡大を
図った光学装置を提供することを目的とする。
However, in such a conventional optical distance measuring apparatus, it is necessary to reduce the movement of the spot with respect to the movement of the object in order to extend the distance measuring range, that is, to extend the distance. For that purpose, it is necessary to reduce the angle of intersection of the optical axes of the light emitting and receiving elements. As a method of realizing it, the distance between the light emitting and receiving elements is shortened, or the intersection of the optical axes of the light emitting and receiving portions is designed to be far away.
There are two possibilities. However, the former is limited due to the size of the lens and the like, and the latter makes it difficult to measure in a range close to the device. That is, in the conventional configuration, the intersection angle of the optical axes cannot be reduced to a certain extent or more, and there is a limit to the lengthening of the distance measuring range. The present invention has been made in view of the above-mentioned conventional problems, and is configured such that the moving direction of the spot on the light receiving surface and the dividing line of the light receiving element are parallel to each other, and is measured by using the change in the spot diameter. It is an object of the present invention to provide an optical device in which the distance measurement range is expanded by performing distance measurement.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に請求項1の発明は、対象物に向け光束を出射する投光
部と、対象物からの反射光をスポット受光する受光素子
を有した受光部とを備えた光学装置において、前記受光
素子は受光面が少なくとも2つの領域に分割されたもの
であり、かつ、該受光素子の分割線が、前記投光部又は
受光部から対象物までの距離が変化したときに生じる前
記反射光の受光面上でのスポットの位置変化方向に対し
ほぼ平行になるように構成されており、該受光素子の2
つの出力に基づいて対象物までの距離を測定するもので
ある。請求項2の発明は、対象物に向け光束を出射する
投光部と、対象物からの反射光をスポット受光する受光
素子を有した受光部とを備えた光学装置において、前記
受光素子は受光面が少なくとも2つの領域に分割された
ものであり、かつ、該受光素子の分割線が、前記投光部
又は受光部から対象物までの距離が変化したときに生じ
る前記反射光の受光面上でのスポットの位置変化方向に
対しほぼ平行になるように構成されており、該受光素子
の2つの出力に基づいて対象物が所定の距離範囲内にあ
るか否かを判断するものである。請求項3の発明は、請
求項2に記載の光学装置において、受光素子の受光面上
における対象物による反射光のスポットが、分割された
2つの領域にまたがるように構成され、さらに、前記各
領域から得られる出力の比をとり、その比が一定値を越
えるか否かに基づいて、対象物が所定の範囲内にあるか
否かを判断する判定手段を備えたものである。請求項4
の発明は、請求項2に記載の光学装置において、受光素
子の受光面上における対象物による反射光のスポット
が、分割された2つの領域のいずれか一方の領域のみに
存在するか否かに基づいて、対象物が所定の範囲内にあ
るか否かを判断する判定手段を備えたものである。
In order to achieve the above object, the invention of claim 1 has a light projecting portion for emitting a light beam toward an object and a light receiving element for spot-receiving reflected light from the object. In the optical device including the light receiving section, the light receiving element has a light receiving surface divided into at least two regions, and a dividing line of the light receiving element is an object from the light projecting section or the light receiving section. Is arranged so as to be substantially parallel to the direction of change of the position of the spot on the light receiving surface of the reflected light that occurs when the distance to
It measures the distance to an object based on two outputs. According to a second aspect of the present invention, in an optical device including a light projecting unit that emits a light beam toward an object and a light receiving unit that has a light receiving element that spot-receives reflected light from the object, the light receiving element receives The surface is divided into at least two regions, and the dividing line of the light receiving element is on the light receiving surface of the reflected light generated when the distance from the light projecting portion or the light receiving portion to the object changes. It is configured so as to be substantially parallel to the direction in which the position of the spot changes in position, and determines whether or not the object is within a predetermined distance range based on the two outputs of the light receiving element. According to a third aspect of the present invention, in the optical device according to the second aspect, the spot of the light reflected by the object on the light receiving surface of the light receiving element is configured to straddle two divided regions, and There is provided a determination unit that takes a ratio of the outputs obtained from the regions and determines whether or not the object is within a predetermined range based on whether or not the ratio exceeds a certain value. Claim 4
In the optical device according to claim 2, whether the spot of the reflected light by the object on the light receiving surface of the light receiving element exists in only one of the two divided areas. On the basis of this, a determination means for determining whether or not the object is within a predetermined range is provided.

【0005】[0005]

【作用】本発明の光学装置によれば、投光部より対象物
に向け光束を出射し、その対象物からの反射光を受光素
子にてスポット受光する。投光部又は受光部から対象物
までの距離が変化したときに受光素子上の上記スポット
の位置は移動し、かつスポット径は変化する。このと
き、スポットは受光面の分割線に平行に移動し、このス
ポットの移動と同時に生じるスポット径の変化により、
分割された受光素子の2つの出力は変化する。この変化
を検出することで対象物までの距離を測定することがで
きる。スポットが受光面の分割線に平行に移動すること
で、該分割線と交わっている範囲が大きくなり、測距レ
ンジが拡大される。
According to the optical device of the present invention, a light beam is emitted from the light projecting portion toward the object, and the reflected light from the object is spot-received by the light receiving element. When the distance from the light projecting portion or the light receiving portion to the object changes, the position of the spot on the light receiving element moves and the spot diameter changes. At this time, the spot moves parallel to the dividing line of the light receiving surface, and due to the change in the spot diameter that occurs at the same time as the movement of this spot,
The two outputs of the divided light receiving element change. By detecting this change, the distance to the object can be measured. By moving the spot in parallel with the dividing line of the light receiving surface, the range intersecting with the dividing line is increased, and the distance measuring range is expanded.

【0006】[0006]

【実施例】本発明の実施例1による測距センサ装置を図
3、図4を参照して説明する。本装置は、対象物(M
4,M5,M6)に向け光束を出射する発光素子1及び
投光レンズ3とからなる投光部と、対象物からの反射光
をスポット受光するための受光素子2及び受光レンズ4
からなる受光部とから構成される。受光素子1はフォト
ダイオード等でなり、受光面が少なくとも2つの領域に
分割されたものを用いる。そして、受光素子2は、その
領域の分割線と、センサから対象物までの距離が変化し
たときに生じる反射光の受光スポットの位置変化方向と
が平行になるように構成されている。図4は受光素子2
により得られる出力より対象物までの距離を測定するた
めの処理回路を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A distance measuring sensor device according to a first embodiment of the present invention will be described with reference to FIGS. This device is used for the object (M
4, M5, M6), a light projecting portion including a light emitting element 1 and a light projecting lens 3 for emitting a light beam, a light receiving element 2 and a light receiving lens 4 for spot-receiving reflected light from an object.
And a light-receiving section consisting of. The light receiving element 1 is composed of a photodiode or the like, and has a light receiving surface divided into at least two regions. Then, the light receiving element 2 is configured such that the dividing line of the region and the position change direction of the light receiving spot of the reflected light that occurs when the distance from the sensor to the object changes. FIG. 4 shows the light receiving element 2.
3 shows a processing circuit for measuring the distance to the object from the output obtained by.

【0007】上記構成において、対象物がM4からM6
の位置に移動した時、受光面上でスポットは、その大き
さを変えながら、図4に示すように、S4からS6へ移
動する。このとき、受光素子2の分割線2dと、スポッ
トの中心とは距離が変わらないため、スポット大きさが
変わると、受光素子2の2つの領域間の出力比が変化す
る。なお、スポットの中心は、分割線2dと一致するこ
とがないように、いずれか一方の領域側に偏らせてい
る。スポットの大きさは対象物までの距離で一意的に決
定されるので、その出力比より測距できる。処理回路で
は、加算回路11、減算回路12及び割算回路13によ
り、2つの出力の差/和をとり、その値より測距を行
う。
In the above structure, the objects are M4 to M6.
When it moves to the position, the spot moves from S4 to S6 on the light receiving surface while changing its size, as shown in FIG. At this time, since the distance between the dividing line 2d of the light receiving element 2 and the center of the spot does not change, when the spot size changes, the output ratio between the two regions of the light receiving element 2 changes. The center of the spot is biased toward one of the regions so that it does not coincide with the dividing line 2d. Since the size of the spot is uniquely determined by the distance to the object, the distance can be measured from its output ratio. In the processing circuit, the addition circuit 11, the subtraction circuit 12, and the division circuit 13 take the difference / sum of the two outputs and perform distance measurement from the value.

【0008】ところで、従来の三角測距法(図1)で
は、移動するスポットに対し分割線2eがほぼ垂直にな
るように構成されていたので、図5(a)に示すよう
に、スポットが分割線2eと交わっている範囲が小さ
く、測距レンジが狭い範囲であった。それに対して、本
実施例では、図5(b)に示すように、移動するスポッ
トが分割線2dに平行なため、交わる範囲が従来より大
きくなる。対象物までの距離が変わるとスポットが移動
するため、スポットの移動範囲が拡がることは、測定レ
ンジの拡大を示す。よって、本方式により測距レンジの
拡大ができることが分かる。また、測距レンジの拡大の
ために、従来のように発光素子1と受光素子2の光軸関
係を変える必要がないので、装置に近い距離範囲をも測
距できる。
By the way, in the conventional triangulation method (FIG. 1), the dividing line 2e is configured to be substantially perpendicular to the moving spot, so that the spot is divided as shown in FIG. 5 (a). The range intersecting the dividing line 2e was small, and the distance measuring range was narrow. On the other hand, in the present embodiment, the moving spot is parallel to the dividing line 2d as shown in FIG. Since the spot moves when the distance to the object changes, expanding the moving range of the spot indicates expansion of the measurement range. Therefore, it can be seen that the distance measuring range can be expanded by this method. Further, since it is not necessary to change the optical axis relationship between the light emitting element 1 and the light receiving element 2 in order to extend the distance measuring range, it is possible to measure a distance range close to the device.

【0009】図6は実施例2による処理回路を示す。実
施例2の光学系は実施例1(図3)と同じ構成でよい。
この処理回路では、受光素子2の各領域毎の受光スポッ
トにより得られる出力の比をとり(比をとる点は実施例
1と同じ)、その比があらかじめ設定してある設定値1
4より大きいか小さいかを判断回路15により判断し、
これより対象物が所定の距離範囲内にあるか否かを判断
する。従来の三角測距法を用いると測距レンジが狭いた
め、設定できる距離範囲も狭かったのに対して、本実施
例によれば、測距レンジが広がるため、判断する所定の
距離範囲の設定可能な範囲が拡がる。
FIG. 6 shows a processing circuit according to the second embodiment. The optical system of Example 2 may have the same configuration as that of Example 1 (FIG. 3).
In this processing circuit, the ratio of the output obtained by the light receiving spot for each region of the light receiving element 2 is taken (the point where the ratio is taken is the same as in the first embodiment), and the ratio is set to a preset value 1
The judgment circuit 15 judges whether it is larger or smaller than 4,
From this, it is determined whether or not the object is within a predetermined distance range. When the conventional triangulation method is used, the range is narrow, and therefore the range that can be set is narrow. On the other hand, according to the present example, the range is wide, and therefore, the predetermined range for determination is set. Expands the range possible.

【0010】図7、図8は実施例3による光学系の側面
図及び上面図である。この光学系の構成では、投光レン
ズ3と受光レンズ4のほぼ中心を結ぶ線と対象物Mの測
距方向により決定される面に対し、ほぼ垂直な方向に発
光素子1からの投光ビ−ムが上又は下方向(図では上)
にずらされて投光されている。それにより受光素子2の
受光面上でのスポットが上又は下方向のいずれか(投光
ビ−ムの投光方向による)にずれ、受光面上でのスポッ
トは、実施例1又は2と同じ状態になる。よって、本実
施例によっても、前記実施例1又は2と同等の効果が得
られる。
7 and 8 are a side view and a top view of an optical system according to the third embodiment. In the configuration of this optical system, the projection light from the light emitting element 1 is in a direction substantially perpendicular to the plane determined by the line connecting the centers of the light projecting lens 3 and the light receiving lens 4 and the distance measuring direction of the object M. -M is up or down (up in the figure)
It is shifted and projected. As a result, the spot on the light-receiving surface of the light-receiving element 2 shifts either upward or downward (depending on the projection direction of the projection beam), and the spot on the light-receiving surface is the same as in the first or second embodiment. It becomes a state. Therefore, according to this embodiment, the same effect as that of the first or second embodiment can be obtained.

【0011】図9は実施例4による受光素子2の受光面
を、図10はその処理回路を示す。本実施例の光学系
は、実施例2に用いた構成と同じものでよく、実施例2
での受光素子の2つの領域の出力比の設定値14を
“0”とし、各領域の出力比を図示のごとく1:0に固
定する。そして、割算回路13と設定値14とを比較回
路16により比較し、検出信号を得る。なお、設定距離
を変えるには、実施例3の図7の構成で、受光素子2を
上下に可動にすればよい。
FIG. 9 shows the light receiving surface of the light receiving element 2 according to the fourth embodiment, and FIG. 10 shows its processing circuit. The optical system of the present embodiment may have the same configuration as that used in the second embodiment.
The set value 14 of the output ratio of the two regions of the light receiving element in is set to "0", and the output ratio of each region is fixed to 1: 0 as shown in the figure. Then, the division circuit 13 and the set value 14 are compared by the comparison circuit 16 to obtain a detection signal. In order to change the set distance, the light receiving element 2 may be vertically movable in the configuration of FIG. 7 of the third embodiment.

【0012】前記実施例2では測距レンジの拡大はでき
るが、図11(a)に示すように、対象物のエッジ(斜
線部)の影響により、出力1/出力2の値が変わるた
め、誤測定をしてしまうという問題がある。それに対し
て、本実施例4では、出力比はとらず各領域の出力の有
無のみで判断するため、図11(b)に示すように、ス
ポットに対象物のエッジ(斜線部)があっても、出力
1,2の値が“0”であるかどうかを調べるだけである
ので、エッジの影響を受けることがなく、安定な検出が
できる。また、設定距離は、実施例2と同様の範囲で可
変であり、従来の三角測距法を用いた装置に比べて、設
定範囲の拡大が図れる。
In the second embodiment, the range can be expanded, but as shown in FIG. 11A, the value of output 1 / output 2 changes due to the influence of the edge (hatched portion) of the object. There is a problem of making an erroneous measurement. On the other hand, in the fourth embodiment, since the output ratio is not determined and the determination is made only based on the presence or absence of the output of each area, as shown in FIG. 11B, the spot has an edge (hatched portion) of the object. Also, since it is only checked whether the values of the outputs 1 and 2 are "0", stable detection can be performed without being affected by the edge. Further, the set distance can be varied within the same range as in the second embodiment, and the set range can be expanded as compared with the conventional device using the triangulation method.

【0013】[0013]

【発明の効果】以上のように本発明によれば、投光され
た光束の対象物による反射光が少なくとも2分割された
受光素子の受光面上でスポットを形成し、そのスポット
の中心が受光素子の分割線上になく、かつ、スポットの
移動方向と分割線がほぼ平行であるようにし、2つの領
域からの出力を比較し、その出力比により対象物までの
距離を測定するようにしたので、従来に比べ、スポット
が分割線と交わっている範囲が大きいため、測距レンジ
の拡大が図れる。また、投・受光素子の光軸関係を変え
る必要がないので、装置に近い範囲をも測距できる。
As described above, according to the present invention, the light reflected by the object of the projected light beam forms a spot on the light receiving surface of the light receiving element divided into at least two, and the center of the spot receives light. Since it is not on the dividing line of the element, the moving direction of the spot is almost parallel to the dividing line, the outputs from the two areas are compared, and the distance to the object is measured by the output ratio. Since the area where the spot intersects the dividing line is larger than in the conventional case, the range can be expanded. Further, since it is not necessary to change the optical axis relationship between the light emitting / receiving elements, it is possible to measure the distance even in the range close to the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の三角測距法を示す構成図及び受光面を示
す図である。
FIG. 1 is a configuration diagram showing a conventional triangulation method and a diagram showing a light receiving surface.

【図2】従来の三角測距法での処理回路の回路図であ
る。
FIG. 2 is a circuit diagram of a processing circuit in a conventional triangulation method.

【図3】本発明の実施例1による測距センサ装置の光学
系の構成図である。
FIG. 3 is a configuration diagram of an optical system of the distance measuring sensor device according to the first embodiment of the present invention.

【図4】同上装置における処理回路の回路図である。FIG. 4 is a circuit diagram of a processing circuit in the same apparatus.

【図5】従来と本実施例による測距レンジを示す図であ
る。
FIG. 5 is a diagram showing a distance measuring range according to the related art and the present embodiment.

【図6】実施例2における処理回路の回路図である。FIG. 6 is a circuit diagram of a processing circuit according to a second embodiment.

【図7】実施例3の光学系の側面図である。7 is a side view of the optical system of Example 3. FIG.

【図8】同上の光学系の上面図である。FIG. 8 is a top view of the above optical system.

【図9】実施例4での受光面を示す図である。FIG. 9 is a diagram showing a light receiving surface in Example 4.

【図10】実施例4における処理回路の回路図である。FIG. 10 is a circuit diagram of a processing circuit according to a fourth embodiment.

【図11】実施例2と実施例4との作用の違いを説明す
るための図である。
FIG. 11 is a diagram for explaining a difference in operation between the second embodiment and the fourth embodiment.

【符号の説明】[Explanation of symbols]

1 発光素子 2 受光素子 2d 分割線 14 設定値 15 判断回路 16 比較回路 1 Light emitting element 2 Light receiving element 2d Dividing line 14 Set value 15 Judgment circuit 16 Comparison circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 対象物に向け光束を出射する投光部と、
対象物からの反射光をスポット受光する受光素子を有し
た受光部とを備えた光学装置において、 前記受光素子は受光面が少なくとも2つの領域に分割さ
れたものであり、かつ、該受光素子の分割線が、前記投
光部又は受光部から対象物までの距離が変化したときに
生じる前記反射光の受光面上でのスポットの位置変化方
向に対しほぼ平行になるように構成されており、該受光
素子の2つの出力に基づいて対象物までの距離を測定す
ることを特徴とする光学装置。
1. A light projecting unit for emitting a light beam toward an object,
In an optical device including a light receiving section having a light receiving element for spot receiving reflected light from an object, the light receiving element has a light receiving surface divided into at least two regions, and The dividing line is configured to be substantially parallel to the position change direction of the spot on the light receiving surface of the reflected light that occurs when the distance from the light projecting portion or the light receiving portion to the object changes, An optical device which measures a distance to an object based on two outputs of the light receiving element.
【請求項2】 対象物に向け光束を出射する投光部と、
対象物からの反射光をスポット受光する受光素子を有し
た受光部とを備えた光学装置において、 前記受光素子は受光面が少なくとも2つの領域に分割さ
れたものであり、かつ、該受光素子の分割線が、前記投
光部又は受光部から対象物までの距離が変化したときに
生じる前記反射光の受光面上でのスポットの位置変化方
向に対しほぼ平行になるように構成されており、該受光
素子の2つの出力に基づいて対象物が所定の距離範囲内
にあるか否かを判断することを特徴とする光学装置。
2. A light projecting section for emitting a light beam toward an object,
In an optical device including a light receiving section having a light receiving element for spot receiving reflected light from an object, the light receiving element has a light receiving surface divided into at least two regions, and The dividing line is configured to be substantially parallel to the position change direction of the spot on the light receiving surface of the reflected light that occurs when the distance from the light projecting portion or the light receiving portion to the object changes, An optical device for determining whether or not an object is within a predetermined distance range based on two outputs of the light receiving element.
【請求項3】 受光素子の受光面上における対象物によ
る反射光のスポットが、分割された2つの領域にまたが
るように構成され、さらに、 前記各領域から得られる出力の比をとり、その比が一定
値を越えるか否かに基づいて、対象物が所定の範囲内に
あるか否かを判断する判定手段を備えたことを特徴とす
る請求項2に記載の光学装置。
3. A spot of reflected light from an object on the light-receiving surface of the light-receiving element is configured to straddle two divided areas, and the ratio of the outputs obtained from the respective areas is calculated, and the ratio thereof is calculated. The optical device according to claim 2, further comprising a determination unit that determines whether or not the target object is within a predetermined range based on whether or not is greater than a certain value.
【請求項4】 受光素子の受光面上における対象物によ
る反射光のスポットが、分割された2つの領域のいずれ
か一方の領域のみに存在するか否かに基づいて、対象物
が所定の範囲内にあるか否かを判断する判定手段を備え
たことを特徴とする請求項2に記載の光学装置。
4. The object has a predetermined range based on whether or not a spot of reflected light from the object on the light receiving surface of the light receiving element exists in only one of the two divided areas. The optical device according to claim 2, further comprising a determination unit that determines whether or not the optical device is inside.
JP10227894A 1994-04-15 1994-04-15 Optical device Withdrawn JPH07286811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10227894A JPH07286811A (en) 1994-04-15 1994-04-15 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10227894A JPH07286811A (en) 1994-04-15 1994-04-15 Optical device

Publications (1)

Publication Number Publication Date
JPH07286811A true JPH07286811A (en) 1995-10-31

Family

ID=14323143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10227894A Withdrawn JPH07286811A (en) 1994-04-15 1994-04-15 Optical device

Country Status (1)

Country Link
JP (1) JPH07286811A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226851A (en) * 2005-02-18 2006-08-31 Keyence Corp Position detection-type photoelectric sensor and setting method of reference interval thereof
JP2006226852A (en) * 2005-02-18 2006-08-31 Keyence Corp Distance setting type photoelectric switch
JP2006244139A (en) * 2005-03-03 2006-09-14 Denso Wave Inc Optical information reading device
JP2007033096A (en) * 2005-07-25 2007-02-08 Keyence Corp Trigonometrical range-finding type photoelectric sensor
JP2014510909A (en) * 2011-02-15 2014-05-01 ビーエーエスエフ ソシエタス・ヨーロピア Detector for optically detecting at least one object

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226851A (en) * 2005-02-18 2006-08-31 Keyence Corp Position detection-type photoelectric sensor and setting method of reference interval thereof
JP2006226852A (en) * 2005-02-18 2006-08-31 Keyence Corp Distance setting type photoelectric switch
JP2006244139A (en) * 2005-03-03 2006-09-14 Denso Wave Inc Optical information reading device
JP2007033096A (en) * 2005-07-25 2007-02-08 Keyence Corp Trigonometrical range-finding type photoelectric sensor
JP2014510909A (en) * 2011-02-15 2014-05-01 ビーエーエスエフ ソシエタス・ヨーロピア Detector for optically detecting at least one object

Similar Documents

Publication Publication Date Title
JP2943499B2 (en) Height measuring method and device
US4529316A (en) Arrangement of eliminating erroneous data in three-dimensional optical sensors
US6683675B2 (en) Distance measuring apparatus and distance measuring method
JPH05240640A (en) Optical distance measuring device
JPH07286811A (en) Optical device
EP0654690B1 (en) Active-type automatic focusing apparatus
JPH07260439A (en) Method and apparatus for measuring inside
JP3945120B2 (en) Ranging sensor and adjustment method thereof
JPH07286847A (en) Optical device
JP2544733B2 (en) Photoelectric switch
JP2885703B2 (en) Optical distance measuring device
US6633730B2 (en) Rangefinder device and camera incorporating the same
JPH07280513A (en) Optical device
JPS6262208A (en) Range-finding apparatuws and method
JP3091276B2 (en) Displacement measuring device
JPS63124909A (en) Noncontact distance measuring machine
JP3117389B2 (en) Distance measuring device
JPH0715374B2 (en) Shape detection method
JP2000097630A (en) Optical sensor
JPH0664076B2 (en) Speckle speed measuring device
JP2005221330A (en) Distance calibration method of range sensor
JPH0642929A (en) Surface displacement sensor
JPH04307308A (en) Displacement measuring instrument
JPS63127103A (en) Position measuring apparatus
JPH08219766A (en) Distance measuring sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010703