JPH07286562A - Intake air temperature and egr control device of internal combustion engine - Google Patents

Intake air temperature and egr control device of internal combustion engine

Info

Publication number
JPH07286562A
JPH07286562A JP6080049A JP8004994A JPH07286562A JP H07286562 A JPH07286562 A JP H07286562A JP 6080049 A JP6080049 A JP 6080049A JP 8004994 A JP8004994 A JP 8004994A JP H07286562 A JPH07286562 A JP H07286562A
Authority
JP
Japan
Prior art keywords
intake
passage
intake air
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6080049A
Other languages
Japanese (ja)
Inventor
Taiji Isobe
大治 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP6080049A priority Critical patent/JPH07286562A/en
Publication of JPH07286562A publication Critical patent/JPH07286562A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To attain improvement of fuel consumption, reduction of emission, avoidance of knocking, or improvement of output desired in every operation territory of an internal combustion engine. CONSTITUTION:Based on the operating condition of an internal combustion engine 1, the target opening SINV of an intake passage valve 5 is computed by an ECU 20, corresponding to the temperature of intake air after passing and mixing through an intake air heating passage 13a arranged with a heat exchanger 7 heating intake air and an intake air cooling passage 13b arranged with a heat exchanger 8 cooling intake air, and hence the intake passage valve 5 is controlled. In addition, the target opening SEGR of an EGR valve 4 is computed by the ECU 20 based on the operating condition of the engine l, and hence the EGR valve 4 is controlled. Hereby, the intake air temperature and the EGR quantity are independently properly controlled based on the operating condition of the engine 1, and hence improvement of fuel consumption, decrease of emission, avoidance of knocking, or improvement of output desired in every operation territory can be attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関(エンジン)
の運転状態に対応して燃費向上、排気ガス中の窒素酸化
物(NOx )低減、ノッキング回避または出力向上させ
る吸気温度及びEGR(Exhaust Gas Recirculation)制
御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal combustion engine (engine).
The present invention relates to an intake air temperature and EGR (Exhaust Gas Recirculation) control device for improving fuel efficiency, reducing nitrogen oxides (NOx) in exhaust gas, avoiding knocking, or improving output in accordance with the operating state of.

【0002】[0002]

【従来の技術】従来、内燃機関の吸気温度及びEGR制
御装置に関連する先行技術文献としては、実開昭57−
101359号公報及び特開昭58−150022号公
報にて開示されたものが知られている。
2. Description of the Related Art Conventionally, as a prior art document related to an intake air temperature of an internal combustion engine and an EGR control device, there has been disclosed in Japanese Utility Model Publication No. 57-
The ones disclosed in JP-A-101359 and JP-A-58-150022 are known.

【0003】前者のものには、内燃機関の暖機途中で燃
料系に対して吸気温度補正を行うことで機関の熱効率を
向上させる技術が示されている。また、後者のものに
は、強制的に冷却水を用いて吸気温度を下降させ吸気の
充填効率を向上させる技術が示されている。
The former one discloses a technique for improving the thermal efficiency of the engine by correcting the intake air temperature of the fuel system while the internal combustion engine is warming up. In the latter, there is disclosed a technique for forcibly lowering the intake air temperature by using cooling water to improve the intake charging efficiency.

【0004】[0004]

【発明が解決しようとする課題】ところで、吸気温度を
補正し、前者では実走行時の燃費向上、後者では機関の
出力向上をそれぞれ達成するものであるが、目的が互い
に異なり使用される機関運転領域が限定されていること
から実用域での効果が薄くなる可能性があった。
By the way, although the intake temperature is corrected to improve the fuel consumption during actual driving in the former case, and to improve the output of the engine in the latter case, the purpose of engine operation differs from each other. Since the area is limited, the effect in the practical range may be diminished.

【0005】そこで、この発明は、内燃機関の運転領域
毎に所望の燃費向上、エミッション低減、ノッキング回
避または出力向上等の種々の目的を達成することが可能
な内燃機関の吸気温度及びEGR制御装置の提供を課題
としている。
Therefore, the present invention provides an intake air temperature and EGR control device for an internal combustion engine capable of achieving various objects such as desired improvement of fuel consumption, reduction of emissions, avoidance of knocking or improvement of output for each operating region of the internal combustion engine. Is an issue.

【0006】[0006]

【課題を解決するための手段】請求項1にかかる内燃機
関の吸気温度及びEGR制御装置は、内燃機関の排気系
から取出した排気ガスの一部であるEGRガスを前記内
燃機関の吸気系に導入するEGR弁と、前記内燃機関の
吸気系の吸気通路途上に形成される吸気加熱通路及び吸
気冷却通路からなる2つの通路を通過する吸入空気の通
過割合を設定する吸気通路弁と、前記吸気加熱通路側に
配設され、吸入空気を加熱する吸気加熱手段と、前記吸
気冷却通路側に配設され、吸入空気を冷却する吸気冷却
手段と、前記吸気通路弁を制御し、前記吸気加熱通路と
前記吸気冷却通路とを通過したのちに混合される吸気温
度を調節する吸気通路弁制御手段と、前記内燃機関の運
転状態に基づいて前記EGR弁のEGR弁開度を算出す
るEGR弁開度演算手段と、前記EGR弁開度演算手段
で算出された前記EGR弁開度に応じて前記EGR弁を
制御するEGR弁制御手段とを具備するものである。
According to a first aspect of the present invention, there is provided an intake air temperature and EGR control device for an internal combustion engine, wherein an EGR gas, which is a part of exhaust gas taken out from an exhaust system of the internal combustion engine, is introduced into the intake system of the internal combustion engine. An EGR valve to be introduced, an intake passage valve for setting a passage ratio of intake air passing through two passages formed of an intake air heating passage and an intake cooling passage formed in the intake passage of the internal combustion engine, and the intake air Intake air heating means disposed on the heating passage side for heating the intake air, intake air cooling means disposed on the intake cooling passage side for cooling the intake air, and the intake passage valve for controlling the intake air heating passage Intake passage valve control means for adjusting the temperature of the intake air mixed after passing through the intake air cooling passage and the EGR valve opening degree for calculating the EGR valve opening degree of the EGR valve based on the operating state of the internal combustion engine. Performance Means, in which includes an EGR valve control means for controlling said EGR valve in response to the EGR valve opening degree calculated by the EGR valve opening degree calculating means.

【0007】請求項2にかかる内燃機関の吸気温度及び
EGR制御装置は、内燃機関の排気系から取出した排気
ガスの一部であるEGRガスを前記内燃機関の吸気系に
導入するEGR弁と、前記内燃機関の吸気系の吸気通路
途上に形成される吸気加熱通路及び吸気冷却通路からな
る2つの通路を通過する吸入空気の通過割合を設定する
吸気通路弁と、前記吸気加熱通路側に配設され、吸入空
気を加熱する吸気加熱手段と、前記吸気冷却通路側に配
設され、吸入空気を冷却する吸気冷却手段と、前記内燃
機関の運転状態に基づいて前記吸気加熱通路と前記吸気
冷却通路とを通過して混合されたのちの吸気温度に対応
する前記吸気通路弁の吸気通路弁開度を算出する吸気通
路弁開度演算手段と、前記吸気通路弁開度演算手段で算
出された前記吸気通路弁開度に応じて前記吸気通路弁を
制御する吸気通路弁制御手段と、前記内燃機関の運転状
態に基づいて前記EGR弁のEGR弁開度を算出するE
GR弁開度演算手段と、前記EGR弁開度演算手段で算
出された前記EGR弁開度に応じて前記EGR弁を制御
するEGR弁制御手段とを具備するものである。
An intake air temperature and EGR control device for an internal combustion engine according to a second aspect includes an EGR valve for introducing an EGR gas, which is a part of exhaust gas taken out from an exhaust system of the internal combustion engine, into the intake system of the internal combustion engine, An intake passage valve that sets a passage ratio of intake air that passes through two passages that are formed in the intake passage of the intake system of the internal combustion engine and that are formed of an intake heating passage and an intake cooling passage, and the intake passage valve is disposed on the intake heating passage side. The intake air heating means for heating the intake air, the intake cooling means arranged on the intake cooling passage side for cooling the intake air, the intake heating passage and the intake cooling passage based on the operating state of the internal combustion engine. And an intake passage valve opening calculation means for calculating an intake passage valve opening degree of the intake passage valve corresponding to the intake air temperature after being mixed by passing through Intake And an intake manifold valve control means for controlling said intake passage valve according to way valve opening degree, E for calculating the EGR valve opening degree of the EGR valve based on the operating state of the internal combustion engine
It is provided with a GR valve opening calculation means and an EGR valve control means for controlling the EGR valve in accordance with the EGR valve opening calculated by the EGR valve opening calculation means.

【0008】請求項3にかかる内燃機関の吸気温度及び
EGR制御装置は、内燃機関の排気系から取出した排気
ガスの一部であるEGRガスを前記内燃機関の吸気系に
導入するEGR弁と、前記内燃機関の吸気系の吸気通路
途上に形成される吸気加熱通路及び吸気冷却通路からな
る2つの通路を通過する吸入空気の通過割合を設定する
吸気通路弁と、前記吸気加熱通路側に配設され、吸入空
気を加熱する吸気加熱手段と、前記吸気冷却通路側に配
設され、吸入空気を冷却する吸気冷却手段と、前記吸気
加熱通路と前記吸気冷却通路とを通過したのちに混合さ
れる吸気温度を検出する吸気温センサと、前記吸気温セ
ンサの出力に応じて前記吸気通路弁をフィードバック制
御する吸気通路弁フィードバック制御手段と、前記内燃
機関の運転状態に基づいて前記EGR弁のEGR弁開度
を算出するEGR弁開度演算手段と、前記EGR弁開度
演算手段で算出された前記EGR弁開度に応じて前記E
GR弁を制御するEGR弁制御手段とを具備するもので
ある。
An intake air temperature and EGR control device for an internal combustion engine according to a third aspect of the present invention includes an EGR valve for introducing EGR gas, which is a part of exhaust gas taken out from an exhaust system of the internal combustion engine, into the intake system of the internal combustion engine, An intake passage valve that sets a passage ratio of intake air that passes through two passages that are formed in the intake passage of the intake system of the internal combustion engine and that are formed of an intake heating passage and an intake cooling passage, and the intake passage valve is disposed on the intake heating passage side. The intake air heating means for heating the intake air, the intake cooling means arranged on the intake cooling passage side for cooling the intake air, and the intake heating passage and the intake cooling passage are mixed after passing through the intake heating passage and the intake cooling passage. An intake air temperature sensor that detects an intake air temperature, an intake passage valve feedback control unit that feedback-controls the intake passage valve according to the output of the intake air temperature sensor, and an operating state of the internal combustion engine. An EGR valve opening degree calculating means for calculating an EGR valve opening degree of the EGR valve Zui, wherein E in response to the EGR valve opening degree calculated by the EGR valve opening degree calculating means
And an EGR valve control means for controlling the GR valve.

【0009】請求項4にかかる内燃機関の吸気温度及び
EGR制御装置は、内燃機関の排気系から取出した排気
ガスの一部であるEGRガスを前記内燃機関の吸気系に
導入するEGR弁と、前記内燃機関の吸気系の吸気通路
途上に形成される吸気加熱通路及び吸気冷却通路からな
る2つの通路を通過する吸入空気の通過割合を設定する
吸気通路弁と、前記吸気加熱通路側に配設され、吸入空
気を加熱する吸気加熱手段と、前記吸気冷却通路側に配
設され、吸入空気を冷却する吸気冷却手段と、前記内燃
機関のノッキング発生を検出するノックセンサと、前記
ノックセンサの出力に応じてノッキング回避する方向に
前記吸気通路弁をフィードバック制御する吸気通路弁フ
ィードバック制御手段と、前記ノックセンサの出力に応
じてノッキング回避する方向に前記EGR弁をフィード
バック制御するEGR弁フィードバック制御手段とを具
備するものである。
An intake air temperature and EGR control device for an internal combustion engine according to a fourth aspect of the invention includes an EGR valve for introducing EGR gas, which is a part of exhaust gas taken out from an exhaust system of the internal combustion engine, into the intake system of the internal combustion engine. An intake passage valve that sets a passage ratio of intake air that passes through two passages that are formed in the intake passage of the intake system of the internal combustion engine and that are formed of an intake heating passage and an intake cooling passage, and the intake passage valve is disposed on the intake heating passage side. An intake air heating means for heating the intake air, an intake air cooling means disposed on the intake air cooling passage side for cooling the intake air, a knock sensor for detecting occurrence of knocking of the internal combustion engine, and an output of the knock sensor. In response to the output of the knock sensor, the intake passage valve feedback control means for feedback-controlling the intake passage valve in a direction to avoid knocking in accordance with Those comprising an EGR valve feedback control means for feedback controlling the EGR valve in the direction of.

【0010】[0010]

【作用】請求項1においては、吸気通路弁制御手段で吸
気通路弁が制御され、吸入空気を加熱する吸気加熱手段
が配設される吸気加熱通路と吸入空気を冷却する吸気冷
却手段が配設される吸気冷却通路とを通過したのちに混
合される吸気温度が調節される。また、EGR弁開度演
算手段で内燃機関の運転状態に基づいてEGR弁のEG
R弁開度が算出され、このEGR弁開度に応じてEGR
弁制御手段にてEGR弁が制御される。このようにし
て、吸気温度とEGR量とが独立して適宜制御される。
According to the first aspect of the present invention, the intake passage valve is controlled by the intake passage valve control means, the intake heating passage for heating the intake air is provided, and the intake cooling means for cooling the intake air is provided. The intake air temperature is adjusted after passing through the intake air cooling passage. In addition, the EGR valve opening calculation means determines the EG of the EGR valve based on the operating state of the internal combustion engine.
The R valve opening degree is calculated, and the EGR valve opening degree is calculated according to the EGR valve opening degree.
The EGR valve is controlled by the valve control means. In this way, the intake air temperature and the EGR amount are independently and appropriately controlled.

【0011】請求項2においては、吸気通路弁開度演算
手段で内燃機関の運転状態に基づいて吸入空気を加熱す
る吸気加熱手段が配設される吸気加熱通路と吸入空気を
冷却する吸気冷却手段が配設される吸気冷却通路とを通
過して混合されたのちの吸気温度に対応する吸気通路弁
の吸気通路弁開度が算出され、この吸気通路弁開度に応
じて吸気通路弁制御手段にて吸気通路弁が制御される。
また、EGR弁開度演算手段で内燃機関の運転状態に基
づいてEGR弁のEGR弁開度が算出され、このEGR
弁開度に応じてEGR弁制御手段にてEGR弁が制御さ
れる。このようにして、吸気温度とEGR量とが内燃機
関の運転状態に基づき独立して適宜制御される。
According to another aspect of the present invention, the intake air passage is provided with an intake air heating means for heating the intake air based on the operating condition of the internal combustion engine by the intake passage valve opening calculation means, and the intake cooling means for cooling the intake air. The intake passage valve opening degree of the intake passage valve corresponding to the intake air temperature after being mixed by passing through the intake cooling passage in which is arranged is calculated, and the intake passage valve control means is calculated according to the intake passage valve opening degree. The intake passage valve is controlled by.
The EGR valve opening calculation means calculates the EGR valve opening of the EGR valve based on the operating state of the internal combustion engine.
The EGR valve is controlled by the EGR valve control means according to the valve opening degree. In this way, the intake air temperature and the EGR amount are independently and appropriately controlled based on the operating state of the internal combustion engine.

【0012】請求項3においては、吸気通路弁フィード
バック制御手段で吸入空気を加熱する吸気加熱手段が配
設される吸気加熱通路と吸入空気を冷却する吸気冷却手
段が配設される吸気冷却通路とを通過したのちに混合さ
れる吸気温度を検出する吸気温センサの出力に応じて吸
気通路弁がフィードバック制御される。また、EGR弁
開度演算手段で内燃機関の運転状態に基づいてEGR弁
のEGR弁開度が算出され、このEGR弁開度に応じて
EGR弁制御手段にてEGR弁が制御される。このよう
にして、吸気温度とEGR量とが独立して適宜制御され
る。
According to another aspect of the present invention, there are provided an intake air heating passage for arranging an intake air heating means for heating the intake air by the intake passage valve feedback control means, and an intake cooling passage for arranging an intake cooling means for cooling the intake air. The intake passage valve is feedback-controlled in accordance with the output of the intake air temperature sensor that detects the intake air temperature that is mixed after passing through. The EGR valve opening calculation means calculates the EGR valve opening of the EGR valve based on the operating state of the internal combustion engine, and the EGR valve control means controls the EGR valve according to the EGR valve opening. In this way, the intake air temperature and the EGR amount are independently and appropriately controlled.

【0013】請求項4においては、吸気通路弁で吸入空
気を加熱する吸気加熱手段が配設される吸気加熱通路及
び吸入空気を冷却する吸気冷却手段が配設される吸気冷
却通路からなる2つの通路を通過する吸入空気の通過割
合が設定される。そして、吸気通路弁フィードバック制
御手段で内燃機関のノッキング発生を検出するノックセ
ンサの出力に応じてノッキング回避する方向に吸気通路
弁がフィードバック制御される。また、EGR弁フィー
ドバック制御手段でノックセンサの出力に応じてノッキ
ング回避する方向にEGR弁がフィードバック制御され
る。このようにして、吸気温度とEGR量とが独立して
適宜フィードバック制御される。
According to another aspect of the present invention, there are provided two intake air passages including an intake air heating passage for arranging an intake air heating means for heating the intake air by an intake passage valve and an intake air cooling passage for arranging an intake cooling means for cooling the intake air. The passage ratio of the intake air passing through the passage is set. Then, the intake passage valve feedback control unit feedback-controls the intake passage valve in the direction in which knocking is avoided in accordance with the output of the knock sensor that detects the occurrence of knocking of the internal combustion engine. Further, the EGR valve feedback control means feedback-controls the EGR valve in the direction in which knocking is avoided according to the output of the knock sensor. In this way, the intake air temperature and the EGR amount are independently feedback-controlled as appropriate.

【0014】[0014]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。
EXAMPLES The present invention will be described below based on specific examples.

【0015】〈第一実施例〉図1は本発明の第一実施例
にかかる内燃機関の吸気温度及びEGR制御装置の機械
的構成を示す概略図、図2は本発明の第一実施例にかか
る内燃機関の吸気温度及びEGR制御装置の電気的構成
を示すブロック図である。
<First Embodiment> FIG. 1 is a schematic diagram showing a mechanical structure of an intake air temperature and EGR control device of an internal combustion engine according to a first embodiment of the present invention, and FIG. 2 is a first embodiment of the present invention. FIG. 3 is a block diagram showing an intake air temperature of the internal combustion engine and an electrical configuration of an EGR control device.

【0016】図1において、1は内燃機関(エンジ
ン)、2は内燃機関1の回転角に同期して機関回転数N
E信号を出力する回転角センサ、3は内燃機関1の吸気
管13内の吸気管内負圧を計測して吸気管圧力PM信号
を出力する吸気圧センサ、4は排気ガスの一部であるE
GRガスを吸気管13内に再循環させる電子式(ステッ
ピングモータ等からなるアクチュエータにて電気的に開
閉される)EGR弁、5は吸気管13内の吸気通路途上
に形成された吸気加熱通路13aと吸気冷却通路13b
とからなる2つの通路を通過する吸入空気の通過割合を
設定する吸気通路弁、6は吸気通路弁5を電気的に駆動
して上記2つの通路を通過する吸入空気の通過割合を変
えるステッピングモータ等からなる通路切換アクチュエ
ータである。
In FIG. 1, 1 is an internal combustion engine (engine), 2 is an engine speed N in synchronization with the rotation angle of the internal combustion engine 1.
A rotation angle sensor for outputting an E signal, 3 is an intake pressure sensor for measuring an intake pipe negative pressure in the intake pipe 13 of the internal combustion engine 1 and outputting an intake pipe pressure PM signal, and 4 is a part of exhaust gas E
An electronic type (electrically opened and closed by an actuator including a stepping motor or the like) EGR valve 5 for recirculating the GR gas into the intake pipe 13 is an intake air heating passage 13a formed in the intake pipe 13 along the intake passage. And intake cooling passage 13b
An intake passage valve for setting the passage ratio of the intake air passing through the two passages, and 6 is a stepping motor for electrically driving the intake passage valve 5 to change the passage ratio of the intake air passing through the two passages. It is a passage switching actuator including

【0017】また、7は吸気加熱通路13a内の吸気温
度を上昇するため高温の媒体(例えば、内燃機関1の冷
却水)を内部に循環させる熱交換器、8は吸気冷却通路
13b内の吸気温度を下降するため低温の媒体(例え
ば、エアコンの冷媒)を内部に循環させる熱交換器、9
は内燃機関1の冷却水温度を計測して冷却水温THW信
号を出力する水温センサ、10は内燃機関1の吸気温度
を検出して吸気温度THA信号を出力する吸気温セン
サ、11はEGR弁4に連結されその開度を検出してE
GR弁開度PEGRV信号を出力するEGR弁開度セン
サ、12は吸気通路弁5に連結されその開度を検出して
吸気通路弁開度PINV信号を出力する吸気通路弁開度
センサである。
Further, 7 is a heat exchanger for circulating a high-temperature medium (for example, cooling water of the internal combustion engine 1) to raise the intake air temperature in the intake air heating passage 13a, and 8 is intake air in the intake air cooling passage 13b. A heat exchanger for circulating a low-temperature medium (for example, a refrigerant of an air conditioner) to lower the temperature, 9
Is a water temperature sensor that measures the cooling water temperature of the internal combustion engine 1 and outputs a cooling water temperature THW signal, 10 is an intake air temperature sensor that detects the intake air temperature of the internal combustion engine 1 and outputs an intake air temperature THA signal, and 11 is the EGR valve 4 Is connected to the
GR valve opening degree EGR valve opening degree sensor which outputs a PEGRV signal, 12 is an intake passage valve opening degree sensor which is connected to the intake passage valve 5 and detects the opening degree and outputs an intake passage valve opening degree PINV signal.

【0018】そして、20は回転角センサ2、吸気圧セ
ンサ3、水温センサ9、吸気温センサ10、EGR弁開
度センサ11及び吸気通路弁開度センサ12からの各信
号を入力し、内燃機関1の運転状態の判定に基づいて通
路切換アクチュエータ6にSINV信号、EGR弁4に
SEGR信号をそれぞれ出力するECU(ElectronicCo
ntrol Unit:電子制御装置)である。後述するように、
ECU20からのSINV信号は通路切換アクチュエー
タ6を介して吸気通路弁5を制御し吸気加熱通路13a
及び吸気冷却通路13bを通過する吸入空気の通過割合
を設定し所望の吸気温度とする、また、SEGR信号は
EGR弁4のEGR弁開度を制御し内燃機関1の燃焼温
度を低下させ、排気ガス中の窒素酸化物(NOx )を低
減(エミッション低減)する。
Further, 20 receives the respective signals from the rotation angle sensor 2, the intake pressure sensor 3, the water temperature sensor 9, the intake temperature sensor 10, the EGR valve opening degree sensor 11 and the intake passage valve opening degree sensor 12, and the internal combustion engine The ECU (Electronic Co) that outputs the SINV signal to the passage switching actuator 6 and the SEGR signal to the EGR valve 4 based on the determination of the operating state of No. 1
ntrol Unit: electronic control unit). As described below,
The SINV signal from the ECU 20 controls the intake passage valve 5 via the passage switching actuator 6 to control the intake heating passage 13a.
And a ratio of intake air passing through the intake air cooling passage 13b is set to a desired intake air temperature, and the SEGR signal controls the EGR valve opening of the EGR valve 4 to lower the combustion temperature of the internal combustion engine 1 and exhaust gas. Nitrogen oxide (NOx) in gas is reduced (emission is reduced).

【0019】図2に示すように、ECU20は主とし
て、CPU(中央処理装置)21、制御プログラムを記
憶したROM22、各種データを記憶するRAM23、
A/D変換器24、EGR弁4及び吸気通路弁5を駆動
するための出力回路25からなる。回転角センサ2、吸
気圧センサ3、水温センサ9、吸気温センサ10、EG
R弁開度センサ11及び吸気通路弁開度センサ12から
の各信号のうち、回転角センサ2からの機関回転数NE
はディジタル入力であるためそのままCPU21に取込
まれる。残りの吸気圧センサ3からの吸気管圧力PM、
水温センサ9からの冷却水温THW、吸気温センサ10
からの吸気温度THA、EGR弁開度センサ11からの
EGR弁開度PEGRV及び吸気通路弁開度センサ12
からの吸気通路弁開度PINVはアナログ入力であるた
めA/D変換器24を介してディジタル信号に変換され
たのちCPU21に取込まれる。
As shown in FIG. 2, the ECU 20 mainly comprises a CPU (central processing unit) 21, a ROM 22 storing a control program, a RAM 23 storing various data,
It comprises an A / D converter 24, an EGR valve 4, and an output circuit 25 for driving the intake passage valve 5. Rotation angle sensor 2, intake pressure sensor 3, water temperature sensor 9, intake air temperature sensor 10, EG
Of the signals from the R valve opening sensor 11 and the intake passage valve opening sensor 12, the engine speed NE from the rotation angle sensor 2
Is a digital input, it is taken into the CPU 21 as it is. Intake pipe pressure PM from the remaining intake pressure sensor 3,
Cooling water temperature THW from the water temperature sensor 9, intake air temperature sensor 10
Intake air temperature THA, EGR valve opening degree sensor 11 from EGR valve opening degree PEGRV, and intake passage valve opening degree sensor 12
Since the intake passage valve opening degree PINV from is an analog input, it is converted into a digital signal via the A / D converter 24 and then taken into the CPU 21.

【0020】このような構成により、ECU20の出力
回路25からのSEGR信号にてEGR弁4が駆動さ
れ、そのEGR弁4に連結されたEGR弁開度センサ1
1からのEGR弁開度PEGRV信号がECU20のA
/D変換器24、CPU21を介して出力回路25にフ
ィードバックされており、閉ループ制御が実施される。
また、ECU20の出力回路25からのSINV信号に
て吸気通路弁5が駆動され、その吸気通路弁5に連結さ
れた吸気通路弁開度センサ12からの吸気通路弁開度P
INV信号がECU20のA/D変換器24、CPU2
1を介して出力回路25にフィードバックされており、
同様な閉ループ制御が実施される。
With such a configuration, the EGR valve 4 is driven by the SEGR signal from the output circuit 25 of the ECU 20, and the EGR valve opening sensor 1 connected to the EGR valve 4 is driven.
The EGR valve opening degree PEGRV signal from 1 is A of the ECU 20.
It is fed back to the output circuit 25 via the / D converter 24 and the CPU 21, and closed loop control is performed.
Further, the intake passage valve 5 is driven by the SINV signal from the output circuit 25 of the ECU 20, and the intake passage valve opening degree P from the intake passage valve opening degree sensor 12 connected to the intake passage valve 5 is increased.
The INV signal is the A / D converter 24 of the ECU 20, the CPU 2
Is fed back to the output circuit 25 via 1.
Similar closed loop control is implemented.

【0021】次に、本実施例にかかる内燃機関の吸気温
度及びEGR制御装置で使用されているCPU21の処
理手順を示すフローチャートに基づき、各制御を説明す
る。
Next, each control will be described based on a flow chart showing a processing procedure of the CPU 21 used in the intake air temperature and EGR control device of the internal combustion engine according to the present embodiment.

【0022】《吸気温度及びEGR制御のベースルーチ
ン:図3参照》図3は吸気温度及びEGR制御のベース
ルーチンである。
<< Base Routine of Intake Temperature and EGR Control: See FIG. 3 >> FIG. 3 is a base routine of the intake temperature and EGR control.

【0023】電源投入と同時(電源起動時)に、まず、
ステップS100で初期化が実行され、ステップS20
0のEGR弁開度算出のサブルーチンに移行し、EGR
弁4の制御すべき内燃機関の運転状態に基づく最適な目
標EGR弁開度SEGRが算出される。次に、ステップ
S300の吸気通路弁開度算出のサブルーチンに移行
し、吸気通路弁5の制御すべき内燃機関の運転状態に基
づく最適な目標吸気通路弁開度SINVが算出される。
次に、ステップS400の吸気通路弁駆動のサブルーチ
ンに移行し、ステップS300で算出された目標吸気通
路弁開度SINVとなるように吸気通路弁5が駆動制御
される。そして、ステップS500のEGR弁駆動のサ
ブルーチンに移行し、ステップS200で算出された目
標EGR弁開度SEGRとなるようにEGR弁4が駆動
制御される。
At the same time when the power is turned on (when the power is turned on), first,
Initialization is executed in step S100, and step S20
0, the EGR valve opening calculation subroutine is executed, and EGR
The optimum target EGR valve opening degree SEGR is calculated based on the operating state of the internal combustion engine to be controlled by the valve 4. Next, the routine proceeds to the subroutine for calculating the intake passage valve opening degree in step S300, and the optimum target intake passage valve opening degree SINV based on the operating state of the internal combustion engine to be controlled by the intake passage valve 5 is calculated.
Next, the process proceeds to the subroutine for driving the intake passage valve in step S400, and the intake passage valve 5 is drive-controlled so as to reach the target intake passage valve opening SINV calculated in step S300. Then, the process proceeds to the EGR valve drive subroutine of step S500, and the EGR valve 4 is drive-controlled so that the target EGR valve opening degree SEGR calculated in step S200 is achieved.

【0024】次に、図3のベースルーチンを構成する各
サブルーチンの具体的な手順について以下詳細に説明す
る。
Next, the specific procedure of each subroutine constituting the base routine of FIG. 3 will be described in detail below.

【0025】〈EGR弁開度算出のサブルーチン:図4
参照〉図4はEGR弁開度演算手段を達成するEGR弁
開度算出のサブルーチンである。
<EGR valve opening calculation subroutine: FIG. 4
Reference> FIG. 4 is a subroutine for calculating the EGR valve opening degree which achieves the EGR valve opening degree calculating means.

【0026】ステップS201で機関回転数NE、ステ
ップS202で吸気管圧力PMが読込まれたのち、ステ
ップS203に移行し、基本EGR弁開度SEGRBが
算出される。ここで、基本EGR弁開度SEGRBは、
予め内燃機関1が冷却水温THW=80℃状態で実験に
て求められた図5に示すような、機関回転数NE及び吸
気管圧力PMをパラメータとした二次元マップに基づい
て算出される。即ち、所定の機関回転数NE(rpm)と所
定の吸気管圧力PM(mmHg)に対応する基本EGR弁開度
SEGRBはαとなる。この基本EGR弁開度SEGR
Bは、内燃機関の標準運転状態での最適EGR量に対応
したEGR弁開度であり、その最適EGR量の決定要因
は図6及び図7に示され、内燃機関の運転状態に対応す
る領域毎の最適EGR量とする。ここで、図7における
〜の領域は図6のそれぞれNo.1〜No.4の領域に
対応している。
After the engine speed NE is read in step S201 and the intake pipe pressure PM is read in step S202, the process proceeds to step S203, and the basic EGR valve opening degree SEGRB is calculated. Here, the basic EGR valve opening degree SEGRB is
It is calculated on the basis of a two-dimensional map in which the engine speed NE and the intake pipe pressure PM are parameters as shown in FIG. 5, which is obtained by an experiment in advance for the internal combustion engine 1 in the cooling water temperature THW = 80 ° C. That is, the basic EGR valve opening degree SEGRB corresponding to the predetermined engine speed NE (rpm) and the predetermined intake pipe pressure PM (mmHg) becomes α. This basic EGR valve opening degree SEGR
B is the EGR valve opening degree corresponding to the optimum EGR amount in the standard operating state of the internal combustion engine, and the determining factors of the optimum EGR amount are shown in FIGS. 6 and 7, and the region corresponding to the operating state of the internal combustion engine The optimum EGR amount is set for each. Here, the areas 1 to 4 in FIG. 7 correspond to the areas No. 1 to No. 4 in FIG. 6, respectively.

【0027】図6及び図7において、No.1のエミッシ
ョン優先領域(の領域)では、市街地走行域(0〜5
0km/h)であり、日常よく使用される領域でEGR
量を大量とし窒素酸化物(NOx )を低減すると共に吸
気温度THAを下降させ、EGRガス導入による吸気温
度上昇に伴うノッキングが回避される。なお、このとき
のEGR量と吸気温度THAとの関係は、図8に示すよ
うに、EGR量に比例して吸気温度THAが高くなるよ
うな特性である。次に、No.2の燃費優先領域(の領
域)では、車速が中速から高速までの中負荷域の比較的
安定した加減速の少ない運転域(50〜100km/h
程度)であり、吸気温度THAを上昇させ、且つ、EG
R量を大量として吸気膨張と大量EGRによるポンピン
グロス(Pumping Loss)の低減、熱効率の上昇による燃費
の低減が図られる。なお、このときの吸気温度THAと
空気膨張係数との関係は、図9に示すように、吸気温度
THAが25℃のとき空気膨張係数が1.0で、吸気温
度THAに比例して空気膨張係数が大きくなるような特
性である。次に、No.3のパワー優先領域及びノック領
域(の領域)では、EGR量を小量とし燃焼を安定化
させると共に吸気温度THAを下降させ、ノッキング回
避と吸気の充填効率が向上される。なお、No.4のノー
マル領域(の領域)では、従来制御と同様な通常制御
が実施され、EGR量及び吸気温度THAが中程度とさ
れる領域である。
6 and 7, in the emission priority area (area) of No. 1, the urban traveling area (0 to 5)
0 km / h), and EGR in the area that is commonly used in daily life.
A large amount is used to reduce the amount of nitrogen oxides (NOx) and the intake air temperature THA is lowered to avoid knocking accompanying the rise in intake air temperature due to the introduction of EGR gas. The relationship between the EGR amount and the intake air temperature THA at this time is a characteristic that the intake air temperature THA increases in proportion to the EGR amount, as shown in FIG. Next, in the fuel economy priority region (region of No. 2), the vehicle speed is in the medium load region from medium speed to high speed, which is relatively stable and has little acceleration / deceleration (50 to 100 km / h)
Is about), the intake air temperature THA is increased, and EG
With a large amount of R, intake expansion and pumping loss due to a large amount of EGR can be reduced, and fuel efficiency can be reduced by increasing thermal efficiency. The relationship between the intake air temperature THA and the air expansion coefficient at this time is, as shown in FIG. 9, that the air expansion coefficient is 1.0 when the intake air temperature THA is 25 ° C., and the air expansion is proportional to the intake air temperature THA. It is a characteristic that the coefficient becomes large. Next, in the No. 3 power priority region and the knock region (the regions thereof), the EGR amount is set to a small amount to stabilize the combustion and lower the intake air temperature THA to improve knocking avoidance and intake air charging efficiency. In the normal region of No. 4, the normal control similar to the conventional control is executed, and the EGR amount and the intake air temperature THA are in a medium range.

【0028】次にステップS204に移行して、冷却水
温THWが読込まれたのち、ステップS205に移行
し、水温補正値FTHWEGRが算出される。ここで、
水温補正値FTHWEGRは、予め実験にて求められた
図10に示すような、冷却水温THWに対応したマップ
に基づいて算出される。即ち、冷却水温THWが70℃
より低いほど水温補正値FTHWEGRを1.0より小
さくし、暖機途中での燃焼の安定化を図り、冷却水温T
HWが90℃より高温時にはノッキングを回避するため
水温補正値FTHWEGRを1.0より小さくしてEG
Rガスによる吸気温度を下降させる。そして、ステップ
S206に移行し、最終の目標EGR弁開度SEGRが
算出され、本サブルーチンを終了する。ここで、目標E
GR弁開度SEGRは、ステップS203で算出された
基本EGR弁開度SEGRBとステップS205で算出
された水温補正値FTHWEGRとの積で求められ、E
GR弁4のアクチュエータ制御信号となる。なお、この
ときの目標EGR弁開度SEGRとEGR量との関係は
図11に示すように、目標EGR弁開度SEGRに比例
してEGR量が大きくなるような特性である。
Next, in step S204, the cooling water temperature THW is read, and then in step S205, the water temperature correction value FTHWEGR is calculated. here,
The water temperature correction value FTHWEGR is calculated based on a map corresponding to the cooling water temperature THW as shown in FIG. That is, the cooling water temperature THW is 70 ° C.
The lower the water temperature correction value FTHWEGR is made to be less than 1.0, the combustion is stabilized during warming up, and the cooling water temperature T
When the HW is higher than 90 ° C., the water temperature correction value FTHWEGR is set to be smaller than 1.0 in order to avoid knocking.
The intake air temperature due to R gas is lowered. Then, the process proceeds to step S206, the final target EGR valve opening degree SEGR is calculated, and the present subroutine ends. Where goal E
The GR valve opening degree SEGR is obtained by multiplying the basic EGR valve opening degree SEGRB calculated in step S203 by the water temperature correction value FTHWEGR calculated in step S205.
It becomes an actuator control signal for the GR valve 4. The relationship between the target EGR valve opening degree SEGR and the EGR amount at this time is such a characteristic that the EGR amount increases in proportion to the target EGR valve opening degree SEGR, as shown in FIG.

【0029】〈吸気通路弁開度算出のサブルーチン:図
12参照〉図12は吸気通路弁開度演算手段を達成する
吸気通路弁開度算出のサブルーチンである。
<Subroutine for calculating intake passage valve opening: see FIG. 12> FIG. 12 is a subroutine for calculating the intake passage valve opening, which serves as an intake passage valve opening calculating means.

【0030】ステップS301で機関回転数NE、ステ
ップS302で吸気管圧力PMが読込まれたのち、ステ
ップS303に移行し、基本吸気通路弁開度SINVB
が算出される。ここで、基本吸気通路弁開度SINVB
は、予め内燃機関1が吸気温度THA=25℃状態で実
験にて求められた図13に示すような、機関回転数NE
及び吸気管圧力PMをパラメータとした二次元マップに
基づいて算出される。即ち、所定の機関回転数NE(rp
m)と所定の吸気管圧力PM(mmHg)に対応する基本吸気
通路弁開度SINVBはβとなる。この基本吸気通路弁
開度SINVBは、内燃機関の標準運転状態での最適吸
気温度に対応した吸気通路弁開度であり、その最適吸気
温度の決定要因は上述と同様に図6及び図7に示され、
内燃機関の運転状態に対応する領域毎の最適吸気温度と
する。
After the engine speed NE is read in step S301 and the intake pipe pressure PM is read in step S302, the process proceeds to step S303, and the basic intake passage valve opening SINVB is opened.
Is calculated. Here, the basic intake passage valve opening SINVB
Is the engine speed NE as shown in FIG. 13, which is obtained by an experiment in advance for the internal combustion engine 1 with the intake air temperature THA = 25 ° C.
And the intake pipe pressure PM as a parameter based on a two-dimensional map. That is, the predetermined engine speed NE (rp
m) and the predetermined intake pipe pressure PM (mmHg), the basic intake passage valve opening SINVB becomes β. This basic intake passage valve opening SINVB is the intake passage valve opening corresponding to the optimum intake temperature in the standard operating state of the internal combustion engine, and the determining factors of the optimum intake temperature are the same as those described above in FIGS. 6 and 7. Shown,
The optimum intake air temperature is set for each region corresponding to the operating state of the internal combustion engine.

【0031】次にステップS304に移行して、吸気温
度THAが読込まれたのち、ステップS305に移行
し、吸気温度補正値FTHAINVが算出される。ここ
で、吸気温度補正値FTHAINVは、予め実験にて求
められた図14に示すような、吸気温度THAに対応し
たマップに基づいて算出される。即ち、吸気温度THA
が20℃より低いほど従来と同様に、燃料系の吸気温度
補正を行うため吸気温度補正値FTHAINVを1.0
より大きくして吸気温度を上昇させ、吸気温度THAが
40℃より高温時には燃料系の吸気温度補正及びノッキ
ング防止のため吸気温度補正値FTHAINVを1.0
より小さくして吸気温度を下降させる。そして、ステッ
プS306に移行し、最終の目標吸気通路弁開度SIN
Vが算出され、本サブルーチンを終了する。ここで、目
標吸気通路弁開度SINVは、ステップS303で算出
された基本吸気通路弁開度SINVBとステップS30
5で算出された吸気温度補正値FTHAINVとの積で
求められ、吸気通路弁5のアクチュエータ制御信号とな
る。なお、このときの目標吸気通路弁開度SINVと吸
気温度との関係は図15に示すように、目標吸気通路弁
開度SINVに比例して吸気温度が高くなるような特性
である。
Next, in step S304, the intake air temperature THA is read, and then in step S305, the intake air temperature correction value FTHAINV is calculated. Here, the intake air temperature correction value FTHAINV is calculated based on a map corresponding to the intake air temperature THA as shown in FIG. That is, the intake air temperature THA
Is lower than 20 ° C, the intake air temperature correction value FTHAINV is set to 1.0 in order to correct the intake air temperature of the fuel system as in the conventional case.
When the intake air temperature THA is higher than 40 ° C., the intake air temperature correction value FTHAINV is set to 1.0 to correct the intake air temperature of the fuel system and prevent knocking.
It is made smaller to lower the intake air temperature. Then, the process proceeds to step S306, and the final target intake passage valve opening SIN
V is calculated, and this subroutine is finished. Here, the target intake passage valve opening SINV is the same as the basic intake passage valve opening SINVB calculated in step S303 and step S30.
It is obtained by the product of the intake air temperature correction value FTHAINV calculated in 5, and becomes the actuator control signal of the intake passage valve 5. The relationship between the target intake passage valve opening SINV and the intake temperature at this time is such that the intake temperature rises in proportion to the target intake passage valve opening SINV, as shown in FIG.

【0032】〈吸気通路弁駆動のサブルーチン:図16
参照〉図16は吸気通路弁制御手段を達成する吸気通路
弁駆動のサブルーチンである。
<Subroutine for driving intake passage valve: FIG. 16
Reference> FIG. 16 is a subroutine for driving the intake passage valve that achieves the intake passage valve control means.

【0033】ステップS401で、カウンタC2MSが
インクリメントされたのち、ステップS402に移行
し、カウンタC2MSが2ms以上であるかが判定され
る。ステップS402の不等号が成立しないときには、
何も処理が行われず本サブルーチンを終了する。一方、
ステップS402の不等号が成立するときには、ステッ
プS403に移行し、カウンタC2MSが0にクリアさ
れる。これらのステップS401、ステップS402及
びステップS403にて2ms周期が作られる。次にス
テップS404に移行して、この時点で吸気通路弁5に
連結された吸気通路弁開度センサ12で検出される現在
の吸気通路弁開度PINVが読込まれたのち、ステップ
S405に移行し、この吸気通路弁開度PINVが図1
2で算出された目標吸気通路弁開度SINV以上である
かが判定される。ステップS405の不等号が成立せず
現在の吸気通路弁開度PINVが目標吸気通路弁開度S
INVに到達していなければ、ステップS406に移行
し、吸気通路弁5が開側へ1LSB (Least Significant B
it:最小単位)分だけ駆動処理される。
After the counter C2MS is incremented in step S401, the process proceeds to step S402, and it is determined whether the counter C2MS is 2 ms or more. When the expression in step S402 is not satisfied,
No processing is performed and this subroutine is terminated. on the other hand,
When the expression in step S402 is satisfied, the process moves to step S403 and the counter C2MS is cleared to 0. In these steps S401, S402 and S403, a 2 ms cycle is created. Next, the process proceeds to step S404, and at this time, the current intake passage valve opening PINV detected by the intake passage valve opening sensor 12 connected to the intake passage valve 5 is read, and then the process proceeds to step S405. , The intake passage valve opening PINV is shown in FIG.
It is determined whether or not it is equal to or larger than the target intake passage valve opening SINV calculated in 2. The inequality sign in step S405 is not satisfied, and the current intake passage valve opening PINV is the target intake passage valve opening S.
If it has not reached INV, the routine proceeds to step S406, where the intake passage valve 5 is opened to 1 LSB (Least Significant B
It: The minimum unit) is processed.

【0034】一方、ステップS405の不等号が成立し
て現在の吸気通路弁開度PINVが目標吸気通路弁開度
SINVに到達していると、ステップS407に移行
し、吸気通路弁開度PINVが目標吸気通路弁開度SI
NVに等しいかが判定される。ステップS407の等号
が成立せず現在の吸気通路弁開度PINVが目標吸気通
路弁開度SINVを越えているときには、ステップS4
08に移行し、吸気通路弁5が閉側へ1LSB 分だけ駆動
処理される。また、ステップS407の等号が成立して
現在の吸気通路弁開度PINVが目標吸気通路弁開度S
INVに等しいならば、ステップS409に移行し、現
在の吸気通路弁開度PINVがホールドされる。そし
て、ステップS406、ステップS408及びステップ
S409の処理ののち、本サブルーチンを終了する。
On the other hand, when the inequality sign in step S405 is satisfied and the current intake passage valve opening PINV reaches the target intake passage valve opening SINV, the routine proceeds to step S407, where the intake passage valve opening PINV is set to the target. Intake passage valve opening SI
It is determined whether it is equal to NV. If the equal sign in step S407 is not satisfied and the current intake passage valve opening PINV exceeds the target intake passage valve opening SINV, step S4
08, the intake passage valve 5 is driven to the closing side by 1 LSB. Further, when the equal sign of step S407 is established and the current intake passage valve opening PINV is the target intake passage valve opening S.
If equal to INV, the process proceeds to step S409, and the current intake passage valve opening PINV is held. Then, after the processing of step S406, step S408 and step S409, this subroutine is ended.

【0035】〈EGR弁駆動のサブルーチン:図17参
照〉図17はEGR弁制御手段を達成するEGR弁駆動
のサブルーチンである。
<EGR Valve Driving Subroutine: See FIG. 17> FIG. 17 is an EGR valve driving subroutine for achieving the EGR valve control means.

【0036】ステップS501で、カウンタC2MSが
0とクリアされているかが判定される。ステップS50
1の等号が成立しないときには、何も処理が行われず本
サブルーチンを終了する。一方、ステップS501の等
号が成立するときには、ステップS502に移行し、こ
の時点でEGR弁4に連結されたEGR弁開度センサ1
1で検出される現在のEGR弁開度PEGRVが読込ま
れたのち、ステップS503に移行し、このEGR弁開
度PEGRVが図4で算出された目標EGR弁開度SE
GR以上であるかが判定される。ステップS503の不
等号が成立せず現在のEGR弁開度PEGRVが目標E
GR弁開度SEGRに到達していなければ、ステップS
504に移行し、EGR弁4が開側へ1LSB 分だけ駆動
処理される。
In step S501, it is determined whether the counter C2MS has been cleared to 0. Step S50
When the equal sign of 1 is not established, no processing is performed and the present subroutine ends. On the other hand, when the equal sign in step S501 is established, the process proceeds to step S502, at which point the EGR valve opening sensor 1 connected to the EGR valve 4 is connected.
After the current EGR valve opening degree PEGRV detected in 1 is read, the process proceeds to step S503, and this EGR valve opening degree PEGRV is the target EGR valve opening degree SE calculated in FIG.
It is determined whether it is equal to or higher than GR. The inequality sign in step S503 is not established, and the current EGR valve opening degree PEGRV is set to the target E.
If the GR valve opening degree SEGR is not reached, step S
The process proceeds to 504, and the EGR valve 4 is driven to the open side by 1 LSB.

【0037】一方、ステップS503の不等号が成立し
て現在のEGR弁開度PEGRVが目標EGR弁開度S
EGRに到達していると、ステップS505に移行し、
EGR弁開度PEGRVが目標EGR弁開度SEGRに
等しいかが判定される。ステップS505の等号が成立
せず現在のEGR弁開度PEGRVが目標EGR弁開度
SEGRを越えているときには、ステップS506に移
行し、EGR弁4が閉側へ1LSB 分だけ駆動処理され
る。また、ステップS505の等号が成立して現在のE
GR弁開度PEGRVが目標EGR弁開度SEGRに等
しいならば、ステップS507に移行し、現在のEGR
弁開度PEGRVがホールドされる。ステップS50
4、ステップS506及びステップS507の処理のの
ち、本サブルーチンを終了する。
On the other hand, when the inequality sign in step S503 is established and the current EGR valve opening degree PEGRV is the target EGR valve opening degree S.
If the EGR is reached, the process proceeds to step S505,
It is determined whether the EGR valve opening degree PEGRV is equal to the target EGR valve opening degree SEGR. When the equal sign in step S505 is not satisfied and the current EGR valve opening degree PEGRV exceeds the target EGR valve opening degree SEGR, the process proceeds to step S506, and the EGR valve 4 is driven toward the closing side by 1 LSB. Also, when the equal sign in step S505 is established, the current E
If the GR valve opening degree PEGRV is equal to the target EGR valve opening degree SEGR, the routine proceeds to step S507, where the current EGR
The valve opening degree PEGRV is held. Step S50
After the processing of 4, step S506 and step S507, the present subroutine is ended.

【0038】このように、本発明の第一実施例の内燃機
関の吸気温度及びEGR制御装置は、内燃機関1の排気
系から取出した排気ガスの一部であるEGRガスを内燃
機関1の吸気系に導入するEGR弁4と、内燃機関1の
吸気系の吸気通路途上に形成される吸気加熱通路13a
及び吸気冷却通路13bからなる2つの通路を通過する
吸入空気の通過割合を設定する吸気通路弁5と、吸気加
熱通路13a側に配設され、吸入空気を加熱する熱交換
器7にて達成される吸気加熱手段と、吸気冷却通路13
b側に配設され、吸入空気を冷却する熱交換器8にて達
成される吸気冷却手段と、内燃機関1の運転状態に基づ
いて吸気加熱通路13aと吸気冷却通路13bとを通過
して混合されたのちの吸気温度に対応する吸気通路弁5
の目標吸気通路弁開度SINVを算出するECU20に
て達成される吸気通路弁開度演算手段と、前記吸気通路
弁開度演算手段で算出された目標吸気通路弁開度SIN
Vに応じて吸気通路弁5を制御するECU20にて達成
される吸気通路弁制御手段と、内燃機関1の運転状態に
基づいてEGR弁4の目標EGR弁開度SEGRを算出
するECU20にて達成されるEGR弁開度演算手段
と、前記EGR弁開度演算手段で算出された目標EGR
弁開度SEGRに応じてEGR弁4を制御するECU2
0にて達成されるEGR弁制御手段とを具備するもので
あり、これを請求項2の実施例とすることができる。
As described above, the intake air temperature and EGR control device for the internal combustion engine of the first embodiment of the present invention uses the EGR gas, which is a part of the exhaust gas extracted from the exhaust system of the internal combustion engine 1, as the intake air of the internal combustion engine 1. EGR valve 4 introduced into the system, and an intake air heating passage 13a formed in the intake passage of the intake system of the internal combustion engine 1.
And an intake passage valve 5 that sets the passage ratio of the intake air passing through the two passages including the intake cooling passage 13b and the heat exchanger 7 that is disposed on the intake heating passage 13a side and heats the intake air. Intake air heating means and intake air cooling passage 13
The intake air cooling means, which is disposed on the b side and is achieved by the heat exchanger 8 that cools the intake air, and the intake air heating passage 13a and the intake air cooling passage 13b are mixed based on the operating state of the internal combustion engine 1. Intake passage valve 5 corresponding to the intake air temperature after
Of the target intake passage valve opening SINV calculated by the ECU 20, and the target intake passage valve opening SIN calculated by the intake passage valve opening calculation means
Achieved by the intake passage valve control means that is achieved by the ECU 20 that controls the intake passage valve 5 according to V, and by the ECU 20 that calculates the target EGR valve opening degree SEGR of the EGR valve 4 based on the operating state of the internal combustion engine 1. EGR valve opening calculation means and target EGR calculated by the EGR valve opening calculation means
ECU 2 for controlling EGR valve 4 according to valve opening degree SEGR
EGR valve control means achieved at 0 is provided, and this can be the embodiment of claim 2.

【0039】したがって、ECU20にて達成される吸
気通路弁開度演算手段で内燃機関1の運転状態に基づい
て吸入空気を加熱する熱交換器7にて達成される吸気加
熱手段が配設される吸気加熱通路13aと吸入空気を冷
却する熱交換器8にて達成される吸気冷却手段が配設さ
れる吸気冷却通路13bとを通過して混合されたのちの
吸気温度に対応する吸気通路弁5の目標吸気通路弁開度
SINVが算出され、この目標吸気通路弁開度SINV
に応じてECU20にて達成される吸気通路弁制御手段
にて吸気通路弁5が制御される。また、ECU20にて
達成されるEGR弁開度演算手段で内燃機関1の運転状
態に基づいてEGR弁4の目標EGR弁開度SEGRが
算出され、この目標EGR弁開度SEGRに応じてEC
U20にて達成されるEGR弁制御手段にてEGR弁4
が制御される。
Therefore, the intake air heating means achieved by the heat exchanger 7 that heats the intake air based on the operating state of the internal combustion engine 1 by the intake passage valve opening calculation means achieved by the ECU 20 is provided. The intake passage valve 5 corresponding to the intake air temperature after being mixed by passing through the intake air heating passage 13a and the intake air cooling passage 13b in which the intake air cooling means achieved by the heat exchanger 8 for cooling the intake air is arranged. Of the target intake passage valve opening SINV of
In response to the above, the intake passage valve 5 is controlled by the intake passage valve control means achieved by the ECU 20. Further, the target EGR valve opening degree SEGR of the EGR valve 4 is calculated by the EGR valve opening degree calculation means achieved by the ECU 20 based on the operating state of the internal combustion engine 1, and the EC according to the target EGR valve opening degree SEGR.
EGR valve 4 is achieved by the EGR valve control means achieved in U20.
Is controlled.

【0040】故に、本実施例装置を用いた内燃機関にお
いては、吸気温度とEGR量とがその運転状態に基づき
独立して適宜制御されることで、運転領域毎に所望の燃
費向上、エミッション低減、ノッキング回避または出力
向上が達成される。
Therefore, in the internal combustion engine using the apparatus of the present embodiment, the intake air temperature and the EGR amount are controlled independently and appropriately based on the operating state thereof, so that desired fuel consumption improvement and emission reduction can be achieved for each operating region. , Knocking avoidance or power improvement is achieved.

【0041】ところで、上述の実施例では図12に示す
ように、機関回転数NE及び吸気管圧力PMによる内燃
機関の運転状態に基づいて吸気通路弁5を制御する目標
吸気通路弁開度SINVを算出しているが、内燃機関の
運転状態に限定することなく吸気通路弁5を制御して吸
気加熱通路13aと吸気冷却通路13bとを通過したの
ちに混合される吸気温度を調節することもできる。
By the way, in the above embodiment, as shown in FIG. 12, the target intake passage valve opening SINV for controlling the intake passage valve 5 based on the operating state of the internal combustion engine based on the engine speed NE and the intake pipe pressure PM is set. Although calculated, the intake passage valve 5 can be controlled without limiting to the operating state of the internal combustion engine to adjust the intake air temperature mixed after passing through the intake heating passage 13a and the intake cooling passage 13b. .

【0042】このような内燃機関の吸気温度及びEGR
制御装置は、内燃機関1の排気系から取出した排気ガス
の一部であるEGRガスを内燃機関1の吸気系に導入す
るEGR弁4と、内燃機関1の吸気系の吸気通路途上に
形成される吸気加熱通路13a及び吸気冷却通路13b
からなる2つの通路を通過する吸入空気の通過割合を設
定する吸気通路弁5と、吸気加熱通路13a側に配設さ
れ、吸入空気を加熱する熱交換器7にて達成される吸気
加熱手段と、吸気冷却通路13b側に配設され、吸入空
気を冷却する熱交換器8にて達成される吸気冷却手段
と、吸気通路弁5を制御し、吸気加熱通路13aと吸気
冷却通路13bとを通過したのちに混合される吸気温度
を調節するECU20にて達成される吸気通路弁制御手
段と、内燃機関1の運転状態に基づいてEGR弁4の目
標EGR弁開度SEGRを算出するECU20にて達成
されるEGR弁開度演算手段と、前記EGR弁開度演算
手段で算出された目標EGR弁開度SEGRに応じてE
GR弁4を制御するECU20にて達成されるEGR弁
制御手段とを具備するものであり、これを請求項1の実
施例とすることができる。
Intake air temperature and EGR of such an internal combustion engine
The control device is formed on an EGR valve 4 that introduces an EGR gas, which is a part of the exhaust gas extracted from the exhaust system of the internal combustion engine 1, into the intake system of the internal combustion engine 1, and an intake passage of the intake system of the internal combustion engine 1. Intake heating passage 13a and intake cooling passage 13b
An intake passage valve 5 for setting the passage ratio of the intake air passing through the two passages including the intake air heating means and an intake air heating means arranged in the intake air heating passageway 13a for heating the intake air. The intake cooling means, which is arranged on the intake cooling passage 13b side and is achieved by the heat exchanger 8 for cooling the intake air, and the intake passage valve 5 are controlled to pass through the intake heating passage 13a and the intake cooling passage 13b. After that, it is achieved by the intake passage valve control means achieved by the ECU 20 that adjusts the intake air temperature to be mixed, and the ECU 20 that calculates the target EGR valve opening degree SEGR of the EGR valve 4 based on the operating state of the internal combustion engine 1. EGR valve opening calculating means and E according to the target EGR valve opening SEGR calculated by the EGR valve opening calculating means.
EGR valve control means that is achieved by the ECU 20 that controls the GR valve 4 is provided, and this can be the embodiment of claim 1.

【0043】したがって、ECU20にて達成される吸
気通路弁制御手段で吸気通路弁5が制御され、吸入空気
を加熱する熱交換器7にて達成される吸気加熱手段が配
設される吸気加熱通路13aと吸入空気を冷却する熱交
換器8にて達成される吸気冷却手段が配設される吸気冷
却通路13bとを通過したのちに混合される吸気温度が
調節される。また、ECU20にて達成されるEGR弁
開度演算手段で内燃機関1の運転状態に基づいてEGR
弁4の目標EGR弁開度SEGRが算出され、この目標
EGR弁開度SEGRに応じてECU20にて達成され
るEGR弁制御手段にてEGR弁4が制御される。
Therefore, the intake passage valve 5 is controlled by the intake passage valve control means achieved by the ECU 20, and the intake heating passage provided with the intake heating means achieved by the heat exchanger 7 for heating the intake air is arranged. The intake air temperature mixed after passing through 13a and the intake air cooling passage 13b in which the intake air cooling means achieved by the heat exchanger 8 for cooling the intake air is arranged is adjusted. Further, the EGR valve opening degree calculation means achieved by the ECU 20 is used to calculate the EGR based on the operating state of the internal combustion engine 1.
A target EGR valve opening degree SEGR of the valve 4 is calculated, and the EGR valve control means achieved by the ECU 20 controls the EGR valve 4 according to the target EGR valve opening degree SEGR.

【0044】故に、本実施例装置を用いた内燃機関にお
いては、吸気温度とEGR量とが独立して適宜制御され
ることで、運転領域毎に所望の燃費向上、エミッション
低減、ノッキング回避または出力向上が達成される。
Therefore, in the internal combustion engine using the device of the present embodiment, the intake air temperature and the EGR amount are independently controlled as appropriate, so that desired fuel efficiency improvement, emission reduction, knocking avoidance or output can be achieved for each operating region. Improvements are achieved.

【0045】また、上述の実施例では図6に示すよう
に、予めNo.3のノック領域(図7に示すの領域)を
設け、このノック領域ではノッキング回避する方向とし
てEGR量を小さく、吸気温度THAを低くして予測制
御しているが、内燃機関1のシリンダブロックにノック
センサを配設し、そのノックセンサ出力に基づきノッキ
ング発生を検出したときのみ吸気温度が低くなるように
吸気加熱通路13aと吸気冷却通路13bとからなる2
つの通路を通過する吸入空気の通過割合を設定する吸気
通路弁5の開閉位置をフィードバック制御し、且つ、E
GR量が小さくなるようにEGR弁4を閉側へフィード
バック制御することもできる。
Further, in the above-described embodiment, as shown in FIG. 6, a knock region of No. 3 (region shown in FIG. 7) is provided in advance, and in this knock region, the amount of EGR is small as a direction for avoiding knocking, Although the temperature THA is lowered and the predictive control is performed, a knock sensor is provided in the cylinder block of the internal combustion engine 1 so that the intake air temperature is lowered only when knocking occurrence is detected based on the knock sensor output. 2 consisting of 13a and intake air cooling passage 13b
Feedback control of the open / close position of the intake passage valve 5 for setting the passage ratio of the intake air passing through the two passages, and E
The EGR valve 4 may be feedback-controlled to the closing side so that the GR amount becomes small.

【0046】このような内燃機関の吸気温度及びEGR
制御装置は、内燃機関1の排気系から取出した排気ガス
の一部であるEGRガスを内燃機関1の吸気系に導入す
るEGR弁4と、内燃機関1の吸気系の吸気通路途上に
形成される吸気加熱通路13a及び吸気冷却通路13b
からなる2つの通路を通過する吸入空気の通過割合を設
定する吸気通路弁5と、吸気加熱通路13a側に配設さ
れ、吸入空気を加熱する熱交換器7にて達成される吸気
加熱手段と、吸気冷却通路13b側に配設され、吸入空
気を冷却する熱交換器8にて達成される吸気冷却手段
と、内燃機関1のノッキング発生を検出するノックセン
サと、前記ノックセンサの出力に応じてノッキング回避
する方向に吸気通路弁5をフィードバック制御するEC
U20にて達成される吸気通路弁フィードバック制御手
段と、前記ノックセンサの出力に応じてノッキング回避
する方向にEGR弁4をフィードバック制御するECU
20にて達成されるEGR弁フィードバック制御手段と
を具備するものであり、これを請求項4の実施例とする
ことができる。
Intake air temperature and EGR of such an internal combustion engine
The control device is formed on an EGR valve 4 that introduces an EGR gas, which is a part of the exhaust gas extracted from the exhaust system of the internal combustion engine 1, into the intake system of the internal combustion engine 1, and an intake passage of the intake system of the internal combustion engine 1. Intake heating passage 13a and intake cooling passage 13b
An intake passage valve 5 for setting the passage ratio of the intake air passing through the two passages including the intake air heating means and an intake air heating means arranged in the intake air heating passageway 13a for heating the intake air. In accordance with the output of the knock sensor, which is arranged on the intake cooling passage 13b side and which is achieved by the heat exchanger 8 for cooling the intake air, a knock sensor for detecting occurrence of knocking of the internal combustion engine 1, and the output of the knock sensor. EC for feedback control of the intake passage valve 5 in a direction to avoid knocking
Intake passage valve feedback control means achieved in U20, and ECU that feedback-controls the EGR valve 4 in a direction to avoid knocking according to the output of the knock sensor.
20 is provided with EGR valve feedback control means, which can be the embodiment of claim 4.

【0047】したがって、吸気通路弁5で吸入空気を加
熱する熱交換器7にて達成される吸気加熱手段が配設さ
れる吸気加熱通路13a及び吸入空気を冷却する熱交換
器8にて達成される吸気冷却手段が配設される吸気冷却
通路13bからなる2つの通路を通過する吸入空気の通
過割合が設定される。そして、ECU20にて達成され
る吸気通路弁フィードバック制御手段で内燃機関1のノ
ッキング発生を検出するノックセンサの出力に応じてノ
ッキング回避する方向に吸気通路弁5がフィードバック
制御される。また、ECU20にて達成されるEGR弁
フィードバック制御手段でノックセンサの出力に応じて
ノッキング回避する方向にEGR弁4がフィードバック
制御される。
Therefore, it is achieved by the intake air heating passage 13a in which the intake air heating means, which is achieved by the heat exchanger 7 for heating the intake air by the intake passage valve 5, is arranged, and the heat exchanger 8 for cooling the intake air. The passing ratio of the intake air passing through the two passages including the intake cooling passage 13b in which the intake cooling means is disposed is set. Then, the intake passage valve 5 is feedback-controlled in a direction to avoid knocking in accordance with the output of the knock sensor that detects the occurrence of knocking of the internal combustion engine 1 by the intake passage valve feedback control means achieved by the ECU 20. In addition, the EGR valve feedback control means achieved by the ECU 20 feedback-controls the EGR valve 4 in a direction in which knocking is avoided according to the output of the knock sensor.

【0048】故に、本実施例装置を用いた内燃機関にお
いては、吸気温度とEGR量とが独立して適宜フィード
バック制御されることで、運転領域毎に所望のノッキン
グ回避が達成される。
Therefore, in the internal combustion engine using the device of the present embodiment, the desired intake air temperature and the EGR amount are independently feedback-controlled, and the desired knocking avoidance is achieved for each operating region.

【0049】〈第二実施例〉図18は本発明の第二実施
例にかかる内燃機関の吸気温度及びEGR制御装置の機
械的構成の要部を示す概略図であり、図1に示す吸気管
13の下流側の内燃機関1、ECU20及び各種信号は
省略されている。また、本発明の第二実施例にかかる内
燃機関の吸気温度及びEGR制御装置の電気構成は図2
のブロック図と同様である。なお、上述の第一実施例と
同様の構成または相当部分からなるものについては同一
符号及び同一記号を付してその詳細な説明を省略する。
また、本実施例にかかる内燃機関の吸気温度及びEGR
制御装置で使用されるCPU21の処理手順を示すフロ
ーチャートは、第一実施例で説明した図3の吸気温度及
びEGR制御のベースルーチン、図4のEGR弁開度算
出のサブルーチン及び図17のEGR弁駆動のサブルー
チンについては同様であり、その説明を省略する。
<Second Embodiment> FIG. 18 is a schematic view showing an intake air temperature of an internal combustion engine and a mechanical structure of an EGR control device according to a second embodiment of the present invention. The intake pipe shown in FIG. The internal combustion engine 1, the ECU 20, and various signals downstream of 13 are omitted. Further, the intake air temperature of the internal combustion engine and the electrical configuration of the EGR control device according to the second embodiment of the present invention are shown in FIG.
Is similar to the block diagram of FIG. It should be noted that the same reference numerals and symbols are given to those having the same configurations or corresponding portions as those of the above-described first embodiment, and detailed description thereof will be omitted.
Further, the intake air temperature and EGR of the internal combustion engine according to the present embodiment
The flowchart showing the processing procedure of the CPU 21 used in the control device is the base routine of the intake temperature and EGR control of FIG. 3, the subroutine of the EGR valve opening calculation of FIG. 4 and the EGR valve of FIG. Since the driving subroutine is the same, the description thereof will be omitted.

【0050】上述の第一実施例では、吸気温センサ10
を吸気管13の最上流側に配設し、予め機関の標準運転
状態で吸気温度THAが25℃のとき吸気通路弁5が基
本吸気通路弁開度となるように吸気温度補正している。
これに対して、本実施例では、吸気温センサ10を吸気
管13内の吸気加熱通路13a及び吸気冷却通路13b
の合流点より下流側に配設している。
In the first embodiment described above, the intake air temperature sensor 10
Is disposed on the most upstream side of the intake pipe 13, and the intake temperature is corrected in advance so that the intake passage valve 5 becomes the basic intake passage valve opening when the intake temperature THA is 25 ° C. in the standard operating state of the engine.
On the other hand, in this embodiment, the intake air temperature sensor 10 is connected to the intake air heating passage 13a and the intake air cooling passage 13b in the intake pipe 13.
Is arranged on the downstream side of the confluence point.

【0051】この際の吸気通路弁開度算出のサブルーチ
ンは、図12に替えて図19に示すように、ステップS
311で機関回転数NE、ステップS312で吸気管圧
力PMが読込まれたのち、ステップS313に移行し、
目標吸気温度TTHAが算出される。ここで、目標吸気
温度TTHAは、予め実験にて求められた図20に示す
ような、機関回転数NE及び吸気管圧力PMをパラメー
タとした二次元マップに基づいて算出される。即ち、所
定の機関回転数NE(rpm)と所定の吸気管圧力PM(mmH
g)に対応する目標吸気温度TTHAはγとなる。
The subroutine for calculating the intake passage valve opening degree at this time is step S as shown in FIG. 19 instead of FIG.
After the engine speed NE is read at 311 and the intake pipe pressure PM is read at step S312, the process proceeds to step S313.
The target intake air temperature TTHA is calculated. Here, the target intake air temperature TTHA is calculated based on a two-dimensional map obtained by experiments in advance and shown in FIG. 20, which uses the engine speed NE and the intake pipe pressure PM as parameters. That is, a predetermined engine speed NE (rpm) and a predetermined intake pipe pressure PM (mmH
The target intake air temperature TTHA corresponding to g) becomes γ.

【0052】また、吸気通路弁駆動のサブルーチンは、
図16に替えて図21に示すように、ステップS411
で、カウンタC2MSがインクリメントされたのち、ス
テップS412に移行し、カウンタC2MSが2ms以
上であるかが判定される。ステップS412の不等号が
成立しないときには、何も処理が行われず本サブルーチ
ンを終了する。一方、ステップS412の不等号が成立
するときには、ステップS413に移行し、カウンタC
2MSが0にクリアされる。これらのステップS41
1、ステップS412及びステップS413にて2ms
周期が作られる。次にステップS414に移行して、吸
気温センサ10で検出される現在の吸気温度THAが読
込まれたのち、ステップS415に移行し、この吸気温
度THAが図19で算出された目標吸気温度TTHA以
上であるかが判定される。ステップS415の不等号が
成立せず現在の吸気温度THAが目標吸気温度TTHA
に到達していなければ、ステップS416に移行し、吸
気通路弁5が開側へ1LSB 分だけ駆動処理される。
The subroutine for driving the intake passage valve is
As shown in FIG. 21 instead of FIG. 16, step S411
Then, after the counter C2MS is incremented, the process proceeds to step S412, and it is determined whether the counter C2MS is 2 ms or more. If the expression in step S412 does not hold, no processing is performed and the present subroutine ends. On the other hand, when the expression in step S412 is satisfied, the process proceeds to step S413 and the counter C
2MS is cleared to 0. These steps S41
1, 2ms in step S412 and step S413
A cycle is created. Next, in step S414, the current intake air temperature THA detected by the intake air temperature sensor 10 is read, and then in step S415, this intake air temperature THA is equal to or higher than the target intake air temperature TTHA calculated in FIG. Is determined. The inequality sign of step S415 is not established and the current intake air temperature THA is the target intake air temperature TTHA.
If not, the process proceeds to step S416, and the intake passage valve 5 is driven to the open side by 1 LSB.

【0053】一方、ステップS415の不等号が成立し
て現在の吸気温度THAが目標吸気温度TTHAに到達
していると、ステップS417に移行し、吸気温度TH
Aが目標吸気温度TTHAに等しいかが判定される。ス
テップS417の等号が成立せず現在の吸気温度THA
が目標吸気温度TTHAを越えているときには、ステッ
プS418に移行し、吸気通路弁5が閉側へ1LSB 分だ
け駆動処理される。また、ステップS417の等号が成
立して現在の吸気温度THAが目標吸気温度TTHAに
等しいならば、ステップS419に移行し、現在の吸気
通路弁開度PINVがホールドされる。そして、ステッ
プS416、ステップS418及びステップS419の
処理ののち、本サブルーチンを終了する。つまり、現在
の吸気温度THAが目標吸気温度TTHAとなるように
吸気通路弁5がフィードバック制御されるのである。
On the other hand, when the inequality sign of step S415 is established and the current intake air temperature THA has reached the target intake air temperature TTHA, the routine proceeds to step S417, where the intake air temperature TH
It is determined whether A is equal to the target intake air temperature TTHA. Current intake air temperature THA is not satisfied in step S417.
Is above the target intake air temperature TTHA, the routine proceeds to step S418, where the intake passage valve 5 is driven to the closing side by 1 LSB. When the equal sign in step S417 is satisfied and the current intake air temperature THA is equal to the target intake air temperature TTHA, the process proceeds to step S419, and the current intake passage valve opening PINV is held. Then, after the processing of step S416, step S418, and step S419, this subroutine is ended. That is, the intake passage valve 5 is feedback-controlled so that the current intake air temperature THA becomes the target intake air temperature THHA.

【0054】このように、本発明の第二実施例の内燃機
関の吸気温度及びEGR制御装置は、内燃機関1の排気
系から取出した排気ガスの一部であるEGRガスを内燃
機関1の吸気系に導入するEGR弁4と、内燃機関1の
吸気系の吸気通路途上に形成される吸気加熱通路13a
及び吸気冷却通路13bからなる2つの通路を通過する
吸入空気の通過割合を設定する吸気通路弁5と、吸気加
熱通路13a側に配設され、吸入空気を加熱する熱交換
器7にて達成される吸気加熱手段と、吸気冷却通路13
b側に配設され、吸入空気を冷却する熱交換器8にて達
成される吸気冷却手段と、吸気加熱通路13aと吸気冷
却通路13bとを通過したのちに混合される吸気温度を
検出する吸気温センサ10と、吸気温センサ10の出力
に応じて吸気通路弁5をフィードバック制御するECU
20にて達成される吸気通路弁フィードバック制御手段
と、内燃機関1の運転状態に基づいてEGR弁4の目標
EGR弁開度SEGRを算出するECU20にて達成さ
れるEGR弁開度演算手段と、前記EGR弁開度演算手
段で算出された目標EGR弁開度SEGRに応じてEG
R弁4を制御するECU20にて達成されるEGR弁制
御手段とを具備するものであり、これを請求項3の実施
例とすることができる。
As described above, in the intake air temperature and EGR control device for the internal combustion engine of the second embodiment of the present invention, the EGR gas which is a part of the exhaust gas taken out from the exhaust system of the internal combustion engine 1 is taken into the intake air of the internal combustion engine 1. EGR valve 4 introduced into the system, and an intake air heating passage 13a formed in the intake passage of the intake system of the internal combustion engine 1.
And an intake passage valve 5 that sets the passage ratio of the intake air passing through the two passages including the intake cooling passage 13b and the heat exchanger 7 that is disposed on the intake heating passage 13a side and heats the intake air. Intake air heating means and intake air cooling passage 13
The intake air cooling means, which is arranged on the b side and is achieved by the heat exchanger 8 that cools the intake air, and the intake air temperature that is mixed after passing through the intake air heating passage 13a and the intake air cooling passage 13b are detected. An ECU for feedback controlling the air temperature sensor 10 and the intake passage valve 5 according to the output of the intake air temperature sensor 10.
Intake passage valve feedback control means achieved by 20 and EGR valve opening calculation means achieved by the ECU 20 that calculates the target EGR valve opening degree SEGR of the EGR valve 4 based on the operating state of the internal combustion engine 1, According to the target EGR valve opening degree SEGR calculated by the EGR valve opening degree calculating means,
It is provided with an EGR valve control means that is achieved by the ECU 20 that controls the R valve 4, and this can be the embodiment of claim 3.

【0055】したがって、ECU20にて達成される吸
気通路弁フィードバック制御手段で吸入空気を加熱する
熱交換器7にて達成される吸気加熱手段が配設される吸
気加熱通路13aと吸入空気を冷却する熱交換器8にて
達成される吸気冷却手段が配設される吸気冷却通路13
bとを通過したのちに混合される吸気温度を検出する吸
気温センサ10の出力に応じて吸気通路弁5がフィード
バック制御される。また、ECU20にて達成されるE
GR弁開度演算手段で内燃機関1の運転状態に基づいて
EGR弁4の目標EGR弁開度SEGRが算出され、こ
の目標EGR弁開度SEGRに応じてECU20にて達
成されるEGR弁制御手段にてEGR弁4が制御され
る。
Therefore, the intake air is cooled by the intake passage valve feedback control means achieved by the ECU 20, and the intake air heating passage 13a in which the intake heating means achieved by the heat exchanger 7 is disposed and the intake air are cooled. Intake cooling passage 13 in which intake cooling means achieved by the heat exchanger 8 is arranged
The intake passage valve 5 is feedback-controlled in accordance with the output of the intake air temperature sensor 10 that detects the intake air temperature that has been mixed after passing through b. Also, E achieved by the ECU 20
The target EGR valve opening degree SEGR of the EGR valve 4 is calculated by the GR valve opening degree calculating means based on the operating state of the internal combustion engine 1, and the EGR valve control means is achieved by the ECU 20 according to the target EGR valve opening degree SEGR. The EGR valve 4 is controlled by.

【0056】故に、本実施例装置を用いた内燃機関にお
いては、吸気温度とEGR量とが独立して適宜制御され
ることで、運転領域毎に所望の燃費向上、エミッション
低減、ノッキング回避または出力向上が達成される。
Therefore, in the internal combustion engine using the device of the present embodiment, the intake air temperature and the EGR amount are controlled independently and appropriately, so that desired fuel efficiency improvement, emission reduction, knock avoidance or output can be achieved for each operating region. Improvements are achieved.

【0057】[0057]

【発明の効果】以上説明したように、請求項1の内燃機
関の吸気温度及びEGR制御装置によれば、吸気通路弁
制御手段で吸気通路弁が制御され、吸入空気を加熱する
吸気加熱手段が配設される吸気加熱通路と吸入空気を冷
却する吸気冷却手段が配設される吸気冷却通路とを通過
したのちに混合される吸気温度が調節される。また、E
GR弁開度演算手段で内燃機関の運転状態に基づいてE
GR弁のEGR弁開度が算出され、このEGR弁開度に
応じてEGR弁制御手段にてEGR弁が制御される。こ
れにより、吸気温度とEGR量とが独立して適宜制御さ
れ、内燃機関の運転領域毎に所望の燃費向上、エミッシ
ョン低減、ノッキング回避または出力向上が達成され
る。
As described above, according to the intake air temperature and EGR control device for the internal combustion engine of claim 1, the intake passage valve control means controls the intake passage valve, and the intake air heating means for heating the intake air is provided. The intake air temperature is adjusted after passing through the intake air heating passage provided and the intake air cooling passage provided with an intake air cooling means for cooling the intake air. Also, E
Based on the operating state of the internal combustion engine, the GR valve opening calculation means E
The EGR valve opening degree of the GR valve is calculated, and the EGR valve control means controls the EGR valve according to the EGR valve opening degree. As a result, the intake air temperature and the EGR amount are appropriately controlled independently, and desired fuel consumption improvement, emission reduction, knock avoidance, or output improvement is achieved for each operating region of the internal combustion engine.

【0058】請求項2の内燃機関の吸気温度及びEGR
制御装置によれば、吸気通路弁開度演算手段で内燃機関
の運転状態に基づいて吸入空気を加熱する吸気加熱手段
が配設される吸気加熱通路と吸入空気を冷却する吸気冷
却手段が配設される吸気冷却通路とを通過して混合され
たのちの吸気温度に対応する吸気通路弁の吸気通路弁開
度が算出され、この吸気通路弁開度に応じて吸気通路弁
制御手段にて吸気通路弁が制御される。また、EGR弁
開度演算手段で内燃機関の運転状態に基づいてEGR弁
のEGR弁開度が算出され、このEGR弁開度に応じて
EGR弁制御手段にてEGR弁が制御される。これによ
り、吸気温度とEGR量とが運転状態に基づき独立して
適宜制御され、内燃機関の運転領域毎に所望の燃費向
上、エミッション低減、ノッキング回避または出力向上
が達成される。
Intake air temperature and EGR of the internal combustion engine according to claim 2
According to the control device, the intake passage valve opening calculation means is provided with an intake heating passage for heating the intake air based on the operating state of the internal combustion engine, and the intake cooling means for cooling the intake air. The intake passage valve opening degree of the intake passage valve corresponding to the intake air temperature after passing through the intake cooling passage and being mixed is calculated, and the intake passage valve control means intakes the intake air according to the intake passage valve opening degree. The passage valve is controlled. The EGR valve opening calculation means calculates the EGR valve opening of the EGR valve based on the operating state of the internal combustion engine, and the EGR valve control means controls the EGR valve according to the EGR valve opening. As a result, the intake air temperature and the EGR amount are appropriately controlled independently based on the operating state, and desired fuel consumption improvement, emission reduction, knocking avoidance, or output improvement is achieved for each operating region of the internal combustion engine.

【0059】請求項3の内燃機関の吸気温度及びEGR
制御装置によれば、吸気通路弁フィードバック制御手段
で吸入空気を加熱する吸気加熱手段が配設される吸気加
熱通路と吸入空気を冷却する吸気冷却手段が配設される
吸気冷却通路とを通過したのちに混合される吸気温度を
検出する吸気温センサの出力に応じて吸気通路弁がフィ
ードバック制御される。また、EGR弁開度演算手段で
内燃機関の運転状態に基づいてEGR弁のEGR弁開度
が算出され、このEGR弁開度に応じてEGR弁制御手
段にてEGR弁が制御される。これにより、吸気温度と
EGR量とが独立して適宜制御され、内燃機関の運転領
域毎に所望の燃費向上、エミッション低減、ノッキング
回避または出力向上が達成される。
Intake air temperature and EGR of the internal combustion engine of claim 3
According to the control device, the intake passage valve feedback control means passes through the intake heating passage in which the intake heating means for heating the intake air is arranged and the intake cooling passage in which the intake cooling means for cooling the intake air is arranged. The intake passage valve is feedback-controlled according to the output of the intake air temperature sensor that detects the intake air temperature to be mixed later. The EGR valve opening calculation means calculates the EGR valve opening of the EGR valve based on the operating state of the internal combustion engine, and the EGR valve control means controls the EGR valve according to the EGR valve opening. As a result, the intake air temperature and the EGR amount are appropriately controlled independently, and desired fuel consumption improvement, emission reduction, knock avoidance, or output improvement is achieved for each operating region of the internal combustion engine.

【0060】請求項4の内燃機関の吸気温度及びEGR
制御装置によれば、吸気通路弁で吸入空気を加熱する吸
気加熱手段が配設される吸気加熱通路及び吸入空気を冷
却する吸気冷却手段が配設される吸気冷却通路からなる
2つの通路を通過する吸入空気の通過割合が設定され
る。そして、吸気通路弁フィードバック制御手段で内燃
機関のノッキング発生を検出するノックセンサの出力に
応じてノッキング回避する方向に吸気通路弁がフィード
バック制御される。また、EGR弁フィードバック制御
手段でノックセンサの出力に応じてノッキング回避する
方向にEGR弁がフィードバック制御される。これによ
り、吸気温度とEGR量とが独立して適宜フィードバッ
ク制御され、内燃機関の運転領域毎に所望のノッキング
回避が達成される。
Intake air temperature and EGR of the internal combustion engine according to claim 4
According to the control device, the air passes through the two passages including the intake air heating passage in which the intake air heating means for heating the intake air is arranged and the intake air cooling passage in which the intake air cooling means for cooling the intake air is arranged. The intake air passage ratio is set. Then, the intake passage valve feedback control unit feedback-controls the intake passage valve in the direction in which knocking is avoided in accordance with the output of the knock sensor that detects the occurrence of knocking of the internal combustion engine. Further, the EGR valve feedback control means feedback-controls the EGR valve in the direction in which knocking is avoided according to the output of the knock sensor. As a result, the intake air temperature and the EGR amount are independently feedback-controlled as appropriate, and desired knocking avoidance is achieved for each operating region of the internal combustion engine.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の第一実施例にかかる内燃機関の
吸気温度及びEGR制御装置の機械的構成を示す概略図
である。
FIG. 1 is a schematic diagram showing a mechanical configuration of an intake air temperature and EGR control device for an internal combustion engine according to a first embodiment of the present invention.

【図2】図2は本発明の第一実施例にかかる内燃機関の
吸気温度及びEGR制御装置の電気的構成を示すブロッ
ク図である。
FIG. 2 is a block diagram showing an intake air temperature of an internal combustion engine and an electrical configuration of an EGR control device according to a first embodiment of the present invention.

【図3】図3は本発明の第一実施例にかかる内燃機関の
吸気温度及びEGR制御装置の吸気温度及びEGR制御
のベースルーチンである。
FIG. 3 is a base routine of an intake air temperature of an internal combustion engine and an intake air temperature and an EGR control of an EGR control device according to a first embodiment of the present invention.

【図4】図4は本発明の第一実施例にかかる内燃機関の
吸気温度及びEGR制御装置のEGR弁開度算出のサブ
ルーチンである。
FIG. 4 is a subroutine for calculating an intake air temperature of an internal combustion engine and an EGR valve opening degree of an EGR control device according to a first embodiment of the present invention.

【図5】図5は図4のEGR弁開度算出のサブルーチン
で用いられる基本EGR弁開度を求めるマップである。
5 is a map for obtaining a basic EGR valve opening used in a subroutine for calculating an EGR valve opening in FIG.

【図6】図6は本発明の第一実施例にかかる内燃機関の
吸気温度及びEGR制御装置で内燃機関の運転状態に対
応する領域毎の最適EGR量及び吸気温度を示す説明図
である。
FIG. 6 is an explanatory diagram showing the optimum intake air temperature and intake air temperature of the internal combustion engine according to the first embodiment of the present invention for each region corresponding to the operating state of the internal combustion engine.

【図7】図7は図6の各領域を内燃機関の運転状態に対
応させて示す説明図である。
FIG. 7 is an explanatory diagram showing each region of FIG. 6 in correspondence with the operating state of the internal combustion engine.

【図8】図8は図6及び図7のエミッション優先領域に
おけるEGR量と吸気温度との関係を示す特性図であ
る。
FIG. 8 is a characteristic diagram showing the relationship between the EGR amount and intake air temperature in the emission priority region of FIGS. 6 and 7.

【図9】図9は図6及び図7の燃費優先領域における吸
気温度と空気膨張係数との関係を示す特性図である。
9 is a characteristic diagram showing the relationship between intake air temperature and air expansion coefficient in the fuel consumption priority region of FIGS. 6 and 7. FIG.

【図10】図10は図4のEGR弁開度算出のサブルー
チンで用いられる冷却水温から水温補正値を求める特性
図である。
10 is a characteristic diagram for obtaining a water temperature correction value from the cooling water temperature used in the subroutine for calculating the EGR valve opening degree in FIG.

【図11】図11は図4のEGR弁開度算出のサブルー
チンにおける目標EGR弁開度とEGR量との関係を示
す特性図である。
11 is a characteristic diagram showing the relationship between the target EGR valve opening and the EGR amount in the EGR valve opening calculation subroutine of FIG.

【図12】図12は本発明の第一実施例にかかる内燃機
関の吸気温度及びEGR制御装置の吸気通路弁開度算出
のサブルーチンである。
FIG. 12 is a subroutine for calculating the intake air temperature of the internal combustion engine and the intake passage valve opening of the EGR control device according to the first embodiment of the present invention.

【図13】図13は図12の吸気通路弁開度算出のサブ
ルーチンで用いられる基本吸気通路弁開度を求めるマッ
プである。
13 is a map for obtaining a basic intake passage valve opening used in a subroutine for calculating the intake passage valve opening in FIG.

【図14】図14は図12の吸気通路弁開度算出のサブ
ルーチンで用いられる吸気温度から吸気温度補正値を求
める特性図である。
FIG. 14 is a characteristic diagram for obtaining an intake air temperature correction value from an intake air temperature used in a subroutine for calculating the intake passage valve opening degree in FIG.

【図15】図15は図12の吸気通路弁開度算出のサブ
ルーチンにおける目標吸気通路弁開度と吸気温度との関
係を示す特性図である。
FIG. 15 is a characteristic diagram showing the relationship between the target intake passage valve opening and the intake temperature in the subroutine for calculating the intake passage valve opening in FIG.

【図16】図16は本発明の第一実施例にかかる内燃機
関の吸気温度及びEGR制御装置の吸気通路弁駆動のサ
ブルーチンである。
FIG. 16 is a subroutine for driving the intake air temperature of the internal combustion engine and the intake passage valve of the EGR control device according to the first embodiment of the present invention.

【図17】図17は本発明の第一実施例にかかる内燃機
関の吸気温度及びEGR制御装置のEGR弁駆動のサブ
ルーチンである。
FIG. 17 is a subroutine for driving the intake air temperature of the internal combustion engine and the EGR valve of the EGR control device according to the first embodiment of the present invention.

【図18】図18は本発明の第二実施例にかかる内燃機
関の吸気温度及びEGR制御装置の機械的構成の要部を
示す概略図である。
FIG. 18 is a schematic diagram showing a main part of a mechanical configuration of an intake air temperature and EGR control device of an internal combustion engine according to a second embodiment of the present invention.

【図19】図19は本発明の第二実施例にかかる内燃機
関の吸気温度及びEGR制御装置の吸気通路弁開度算出
のサブルーチンである。
FIG. 19 is a subroutine for calculating the intake air temperature of the internal combustion engine and the intake passage valve opening of the EGR control device according to the second embodiment of the present invention.

【図20】図20は図19の吸気通路弁開度算出のサブ
ルーチンで用いられる目標吸気温度を求めるマップであ
る。
20 is a map for obtaining a target intake air temperature used in a subroutine for calculating an intake passage valve opening degree in FIG.

【図21】図21は本発明の第二実施例にかかる内燃機
関の吸気温度及びEGR制御装置の吸気通路弁駆動のサ
ブルーチンである。
FIG. 21 is a subroutine for driving an intake air temperature of an internal combustion engine and an intake passage valve of an EGR control device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 内燃機関 2 回転角センサ 3 吸気圧センサ 4 EGR弁 5 吸気通路弁 7,8 熱交換器 9 水温センサ 10 吸気温センサ 11 EGR弁開度センサ 12 吸気通路弁開度センサ 13a 吸気加熱通路 13b 吸気冷却通路 20 ECU(電子制御装置) 1 Internal Combustion Engine 2 Rotation Angle Sensor 3 Intake Pressure Sensor 4 EGR Valve 5 Intake Passage Valve 7,8 Heat Exchanger 9 Water Temperature Sensor 10 Intake Temperature Sensor 11 EGR Valve Opening Sensor 12 Intake Passage Opening Sensor 13a Intake Heating Passage 13b Intake Cooling passage 20 ECU (electronic control unit)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気系から取出した排気ガス
の一部であるEGRガスを前記内燃機関の吸気系に導入
するEGR弁と、 前記内燃機関の吸気系の吸気通路途上に形成される吸気
加熱通路及び吸気冷却通路からなる2つの通路を通過す
る吸入空気の通過割合を設定する吸気通路弁と、 前記吸気加熱通路側に配設され、吸入空気を加熱する吸
気加熱手段と、 前記吸気冷却通路側に配設され、吸入空気を冷却する吸
気冷却手段と、 前記吸気通路弁を制御し、前記吸気加熱通路と前記吸気
冷却通路とを通過したのちに混合される吸気温度を調節
する吸気通路弁制御手段と、 前記内燃機関の運転状態に基づいて前記EGR弁のEG
R弁開度を算出するEGR弁開度演算手段と、 前記EGR弁開度演算手段で算出された前記EGR弁開
度に応じて前記EGR弁を制御するEGR弁制御手段と
を具備することを特徴とする内燃機関の吸気温度及びE
GR制御装置。
1. An EGR valve for introducing an EGR gas, which is a part of exhaust gas taken out from an exhaust system of an internal combustion engine, into an intake system of the internal combustion engine, and an EGR valve formed in the intake passage of the intake system of the internal combustion engine. An intake passage valve that sets a passage ratio of intake air that passes through two passages including an intake heating passage and an intake cooling passage; an intake heating unit that is disposed on the intake heating passage side and that heats the intake air; An intake air cooling unit that is arranged on the cooling passage side and cools intake air; and an intake air that controls the intake passage valve and adjusts an intake air temperature that is mixed after passing through the intake heating passage and the intake cooling passage. The passage valve control means, and the EG of the EGR valve based on the operating state of the internal combustion engine.
EGR valve opening calculation means for calculating the R valve opening, and EGR valve control means for controlling the EGR valve according to the EGR valve opening calculated by the EGR valve opening calculation means. Intake air temperature and E of internal combustion engine
GR control device.
【請求項2】 内燃機関の排気系から取出した排気ガス
の一部であるEGRガスを前記内燃機関の吸気系に導入
するEGR弁と、 前記内燃機関の吸気系の吸気通路途上に形成される吸気
加熱通路及び吸気冷却通路からなる2つの通路を通過す
る吸入空気の通過割合を設定する吸気通路弁と、 前記吸気加熱通路側に配設され、吸入空気を加熱する吸
気加熱手段と、 前記吸気冷却通路側に配設され、吸入空気を冷却する吸
気冷却手段と、 前記内燃機関の運転状態に基づいて前記吸気加熱通路と
前記吸気冷却通路とを通過して混合されたのちの吸気温
度に対応する前記吸気通路弁の吸気通路弁開度を算出す
る吸気通路弁開度演算手段と、 前記吸気通路弁開度演算手段で算出された前記吸気通路
弁開度に応じて前記吸気通路弁を制御する吸気通路弁制
御手段と、 前記内燃機関の運転状態に基づいて前記EGR弁のEG
R弁開度を算出するEGR弁開度演算手段と、 前記EGR弁開度演算手段で算出された前記EGR弁開
度に応じて前記EGR弁を制御するEGR弁制御手段と
を具備することを特徴とする内燃機関の吸気温度及びE
GR制御装置。
2. An EGR valve for introducing an EGR gas, which is a part of exhaust gas taken out from an exhaust system of an internal combustion engine, into an intake system of the internal combustion engine, and an EGR valve formed in the intake passage of the intake system of the internal combustion engine. An intake passage valve that sets a passage ratio of intake air that passes through two passages including an intake heating passage and an intake cooling passage; an intake heating unit that is disposed on the intake heating passage side and that heats the intake air; Intake cooling means arranged on the cooling passage side for cooling intake air, and corresponding to the intake air temperature after being mixed by passing through the intake heating passage and the intake cooling passage based on the operating state of the internal combustion engine Intake passage valve opening degree calculating means for calculating the intake passage valve opening degree of the intake passage valve, and controlling the intake passage valve according to the intake passage valve opening degree calculated by the intake passage valve opening degree calculating means Intake passage valve And control means, EG of the EGR valve based on the operating state of the internal combustion engine
EGR valve opening calculation means for calculating the R valve opening, and EGR valve control means for controlling the EGR valve according to the EGR valve opening calculated by the EGR valve opening calculation means. Intake air temperature and E of internal combustion engine
GR control device.
【請求項3】 内燃機関の排気系から取出した排気ガス
の一部であるEGRガスを前記内燃機関の吸気系に導入
するEGR弁と、 前記内燃機関の吸気系の吸気通路途上に形成される吸気
加熱通路及び吸気冷却通路からなる2つの通路を通過す
る吸入空気の通過割合を設定する吸気通路弁と、 前記吸気加熱通路側に配設され、吸入空気を加熱する吸
気加熱手段と、 前記吸気冷却通路側に配設され、吸入空気を冷却する吸
気冷却手段と、 前記吸気加熱通路と前記吸気冷却通路とを通過したのち
に混合される吸気温度を検出する吸気温センサと、 前記吸気温センサの出力に応じて前記吸気通路弁をフィ
ードバック制御する吸気通路弁フィードバック制御手段
と、 前記内燃機関の運転状態に基づいて前記EGR弁のEG
R弁開度を算出するEGR弁開度演算手段と、 前記EGR弁開度演算手段で算出された前記EGR弁開
度に応じて前記EGR弁を制御するEGR弁制御手段と
を具備することを特徴とする内燃機関の吸気温度及びE
GR制御装置。
3. An EGR valve for introducing an EGR gas, which is a part of exhaust gas taken out from an exhaust system of an internal combustion engine, into an intake system of the internal combustion engine, and an EGR valve formed in the intake passage of the intake system of the internal combustion engine. An intake passage valve that sets a passage ratio of intake air that passes through two passages including an intake heating passage and an intake cooling passage; an intake heating unit that is disposed on the intake heating passage side and that heats the intake air; An intake air cooling means arranged on the cooling passage side for cooling the intake air; an intake air temperature sensor for detecting an intake air temperature mixed after passing through the intake air heating passage and the intake air cooling passage; Intake valve feedback control means for feedback controlling the intake passage valve according to the output of the EGR valve, and EG of the EGR valve based on the operating state of the internal combustion engine.
EGR valve opening calculation means for calculating the R valve opening, and EGR valve control means for controlling the EGR valve according to the EGR valve opening calculated by the EGR valve opening calculation means. Intake air temperature and E of internal combustion engine
GR control device.
【請求項4】 内燃機関の排気系から取出した排気ガス
の一部であるEGRガスを前記内燃機関の吸気系に導入
するEGR弁と、 前記内燃機関の吸気系の吸気通路途上に形成される吸気
加熱通路及び吸気冷却通路からなる2つの通路を通過す
る吸入空気の通過割合を設定する吸気通路弁と、 前記吸気加熱通路側に配設され、吸入空気を加熱する吸
気加熱手段と、 前記吸気冷却通路側に配設され、吸入空気を冷却する吸
気冷却手段と、 前記内燃機関のノッキング発生を検出するノックセンサ
と、 前記ノックセンサの出力に応じてノッキング回避する方
向に前記吸気通路弁をフィードバック制御する吸気通路
弁フィードバック制御手段と、 前記ノックセンサの出力に応じてノッキング回避する方
向に前記EGR弁をフィードバック制御するEGR弁フ
ィードバック制御手段とを具備することを特徴とする内
燃機関の吸気温度及びEGR制御装置。
4. An EGR valve for introducing EGR gas, which is a part of exhaust gas taken out from an exhaust system of an internal combustion engine, into an intake system of the internal combustion engine, and an EGR valve formed in the intake passage of the intake system of the internal combustion engine. An intake passage valve that sets a passage ratio of intake air that passes through two passages including an intake heating passage and an intake cooling passage; an intake heating unit that is disposed on the intake heating passage side and that heats the intake air; Intake air cooling means arranged on the cooling passage side for cooling the intake air, a knock sensor for detecting occurrence of knocking of the internal combustion engine, and feedback of the intake passage valve in a direction to avoid knocking according to the output of the knock sensor. Intake passage valve feedback control means for controlling, and EG for feedback controlling the EGR valve in a direction to avoid knocking according to the output of the knock sensor. An intake air temperature and EGR control apparatus for an internal combustion engine, comprising: R valve feedback control means.
JP6080049A 1994-04-19 1994-04-19 Intake air temperature and egr control device of internal combustion engine Pending JPH07286562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6080049A JPH07286562A (en) 1994-04-19 1994-04-19 Intake air temperature and egr control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6080049A JPH07286562A (en) 1994-04-19 1994-04-19 Intake air temperature and egr control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH07286562A true JPH07286562A (en) 1995-10-31

Family

ID=13707392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6080049A Pending JPH07286562A (en) 1994-04-19 1994-04-19 Intake air temperature and egr control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH07286562A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1424489A2 (en) * 2002-11-28 2004-06-02 Radiadores Ordonez, S.A. A heat exchanger for vehicles
JP2008196311A (en) * 2007-02-08 2008-08-28 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1424489A2 (en) * 2002-11-28 2004-06-02 Radiadores Ordonez, S.A. A heat exchanger for vehicles
EP1424489A3 (en) * 2002-11-28 2005-08-03 Radiadores Ordonez, S.A. A heat exchanger for vehicles
ES2238121A1 (en) * 2002-11-28 2005-08-16 Radiadores Ordoñez, S.A. A heat exchanger for vehicles
JP2008196311A (en) * 2007-02-08 2008-08-28 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine

Similar Documents

Publication Publication Date Title
US8001953B2 (en) Exhaust gas recirculation system for internal combustion engine and method for controlling the same
US7031824B2 (en) Multivariable actuator control for an internal combustion engine
US7693645B2 (en) Method and apparatus for controlling low pressure EGR valve of a turbocharged diesel engine
JP4832529B2 (en) Method and apparatus for controlling the supercharged air of an internal combustion engine
US10428726B2 (en) Control apparatus for internal combustion engine
US6390081B1 (en) Method and device for determining temperature values in a combustion engine
KR101951613B1 (en) Exhaust recirculation control method and exhaust recirculation control device
WO2008056226A2 (en) Exhaust gas recirculation system for internal combustion engine and method for controlling the same
JP2005233033A (en) Control device of diesel engine
JPH07286562A (en) Intake air temperature and egr control device of internal combustion engine
JP2002155783A (en) Fuel injection control device of diesel engine
JP2008150978A (en) Exhaust gas recirculating device of internal combustion engine
JP2005264930A (en) Diesel engine control device
CN107269404B (en) Control apparatus and control method for internal combustion engine
JPH0814110A (en) Controller for interna combustion engine
JP4061443B2 (en) Variable turbocharger control device
JP3929712B2 (en) EGR valve control method and apparatus
JP3728930B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP2001082158A (en) Control device for engine with supercharger
JPH11280566A (en) Egr device
JP3622506B2 (en) EGR control device for internal combustion engine
JP2001073786A (en) Control system for negative pressure actuator
JPH0526049A (en) Supercharging control device for mechanical supercharger
JPH09151761A (en) Fuel control device for internal combustion engine
US20030106530A1 (en) Control system for internal combustion engine