JPH07286035A - Soluble conductive polymer and its production - Google Patents

Soluble conductive polymer and its production

Info

Publication number
JPH07286035A
JPH07286035A JP10340494A JP10340494A JPH07286035A JP H07286035 A JPH07286035 A JP H07286035A JP 10340494 A JP10340494 A JP 10340494A JP 10340494 A JP10340494 A JP 10340494A JP H07286035 A JPH07286035 A JP H07286035A
Authority
JP
Japan
Prior art keywords
polymer
formula
general formula
conductive polymer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10340494A
Other languages
Japanese (ja)
Inventor
Buhei Kaneko
武平 金子
Akira Ariizumi
彰 有泉
Isami Hamamoto
伊佐美 浜本
Atsushi Yanagisawa
篤 柳沢
Masashi Kamiyama
昌士 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP10340494A priority Critical patent/JPH07286035A/en
Publication of JPH07286035A publication Critical patent/JPH07286035A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a soluble conductive polymer which can be obtained by a simple operation, is soluble in various solvents such as water, has self- dopability, therefore need not be doped and is excellent in processability and electrical and mechanical properties. CONSTITUTION:This polymer is one having a weight-average molecular weight of 500-1000000 and comprising structural units of the formula (wherein Ht is NH, S, O, Se or Te; R<1> is a linear or branched alkyl; X<1> is CO2, CONH, O, S or NH; R<2> is a 3-21 C pivalent (substituted) hydrocarbon group; and M is an atom which forms a positive counter ion when oxidized). This polymer is produced by chemically polymerizing the corresponding monomer in the presence of an oxidizing transition metal halide and treating the formed polymer with an acidic solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自己ドープ性を有し、可
溶性で加工が容易な導電性高分子、製造方法及び前駆体
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive polymer having self-doping property, which is soluble and easy to process, a manufacturing method and a precursor.

【0002】[0002]

【従来の技術】電子伝導性を有する有機高分子材料は、
近年、帯電防止材料、電磁波シールド材料、二次電池、
コンデンサー、エレクトロクロミック表示素子等広範囲
な応用が検討されている。電子伝導性高分子としては、
ポリアセチレン、ポリアニリン、ポリフェニレンビニレ
ン、ポリピロール、ポリチオフェン、等が知られてい
る。なかでも溶媒に可溶な材料としてはN−メチル−2
−ピロリドンに可溶なポリアニリン(M.Abe et
al.;J.Chm.Soc.,Chem.Comm
un.,1989,1736)、アルキル基などの置換
基を導入したポリピロール、ポリチオフェン(M.−
A.Sato,S.Tanaka,K.Kaeriya
ma:Synth.Met.1987,18,229)
がある。また、ポリフェニレンビニレン等の高分子はそ
の前駆体の高分子が可溶性であることが知られている。
これらの高分子はキャスティングによって製膜すること
が可能であることから、各種高分子フィルムの帯電防止
材料などへの応用が検討されている。しかしながら、導
電性高分子に導電性を付与するためには成形後に電子受
容性あるいは電子供容性の化合物で処理する(以下ドー
ピングとする)必要があり、酸性溶液に浸す、ドーパン
ト蒸気に曝す等の操作を伴うため、加工面での問題点と
なっていた。又、低分子量のドーパントをドープした場
合、溶剤への浸漬や加熱により脱ドープが起こり易いな
どの問題があった。これらの導電性ポリマーの問題点を
解決する手段として、ドーパントとなる対イオンを重合
体に共有結合させた自己ドープ性を有する導電性ポリマ
ー(A.O.Patil et al.J.Am.Ch
em.Soc.1987,109,1858−185
9)が提案されているが、それらのポリマーの製造方法
(特開平2−189333)においては、酸化性遷移金
属ハロゲン化物の存在下に化学重合し、生成物中の遷移
金属イオンを取り除くため塩基性溶液に溶解後、高分子
溶液を濾過することで、生成する遷移金属水酸化物を取
り除く必要があった。また、製膜後のドーピング処理や
高分子溶液とドーパントの混合等を行わずに高い導電性
の自己ドープ型ポリマーを得るためにはイオン交換樹脂
などによる処理を不可欠としていた。このような高分子
溶液の濾過やイオン交換処理は自己ドープ型導電性高分
子の工業的な製法面での障害となっていた。
2. Description of the Related Art Organic polymer materials having electronic conductivity are
In recent years, antistatic materials, electromagnetic wave shielding materials, secondary batteries,
A wide range of applications such as capacitors and electrochromic display devices are under consideration. As electron conductive polymer,
Polyacetylene, polyaniline, polyphenylene vinylene, polypyrrole, polythiophene, etc. are known. Among them, N-methyl-2 is a material soluble in a solvent.
-Polyaniline soluble in pyrrolidone (M. Abe et.
al. J .; Chm. Soc. Chem. Comm
un. , 1989, 1736), polypyrrole having a substituent such as an alkyl group introduced therein, and polythiophene (M.-.
A. Sato, S .; Tanaka, K .; Kaeriya
ma: Synth. Met. (1987, 18, 229)
There is. It is known that a polymer such as polyphenylene vinylene is soluble in its precursor polymer.
Since these polymers can be formed into films by casting, application of various polymer films to antistatic materials and the like is being studied. However, in order to impart conductivity to the conductive polymer, it is necessary to treat it with an electron-accepting or electron-accepting compound after molding (hereinafter referred to as doping), soaking it in an acidic solution, exposing it to a dopant vapor, etc. However, this was a problem in terms of processing. Further, when a low molecular weight dopant is doped, there is a problem that dedoping is likely to occur due to immersion in a solvent or heating. As a means for solving the problems of these conductive polymers, a conductive polymer having a self-doping property (A.O. Patil et al. J. Am. Ch) in which a counter ion serving as a dopant is covalently bonded to a polymer is used.
em. Soc. 1987, 109, 1858-185.
9) has been proposed, but in the method for producing such a polymer (Japanese Patent Laid-Open No. 2-189333), chemical polymerization is performed in the presence of an oxidizable transition metal halide to remove a transition metal ion in the product. It was necessary to remove the produced transition metal hydroxide by filtering the polymer solution after the dissolution in the acid solution. Further, in order to obtain a highly conductive self-doping polymer without performing doping treatment after film formation or mixing of a polymer solution and a dopant, treatment with an ion exchange resin or the like is indispensable. Such filtration and ion exchange treatment of the polymer solution have been obstacles to the industrial production of the self-doping type conductive polymer.

【0003】[0003]

【発明が解決しようとする課題】本発明は、水などの溶
媒に可溶で加工性に優れ、耐溶剤性、耐熱性の改質され
た電気的、機械的特性の優れたドーピング処理の不要な
可溶性導電性高分子を提供することを目的とするもので
ある。
DISCLOSURE OF THE INVENTION The present invention eliminates the need for doping treatment which is soluble in a solvent such as water and is excellent in processability, has improved solvent resistance and heat resistance, and has excellent electrical and mechanical properties. Another object of the present invention is to provide a soluble conductive polymer.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記のよう
な問題点を解決すべく検討を重ねた結果、ある種のモノ
マーを酸化性遷移金属ハロゲン化物の存在下に化学重合
し、単に遷移金属ハロゲン化物を極性溶媒による洗浄に
より重合体中から取り除き、酸性溶液で処理するだけ
で、可溶性の自己ドープ型導電性高分子として得られる
ことを見いだし、本発明を完成するに至った。
As a result of repeated studies to solve the above problems, the inventors of the present invention chemically polymerized a certain monomer in the presence of an oxidizable transition metal halide, and simply It was found that the transition metal halide was removed from the polymer by washing with a polar solvent and treated with an acidic solution to obtain a soluble self-doped conductive polymer, and the present invention was completed.

【0005】即ち本発明は、一般式〔I〕That is, the present invention has the general formula [I]

【化7】 (式中、HtはNH、S、O、Se又はTeを、R1
直鎖又は枝分れのあるアルキル基を、X1 はCO2 、C
ONH、O、S又はNHを、R2 は置換基を有していて
もよい炭素数3から21の2価の炭化水素基を、Mは酸
化により正の対イオンを生じる原子を示す。)で表わさ
れる構造単位を有する重量平均分子量が500から1,
000,000の導電性高分子、その製造方法及びモノ
マーの製造方法に関する。
[Chemical 7] (Wherein Ht is NH, S, O, Se or Te, R 1 is a linear or branched alkyl group, and X 1 is CO 2 , C
ONH, O, S, or NH, R 2 represents an optionally substituted divalent hydrocarbon group having 3 to 21 carbon atoms, and M represents an atom which produces a positive counterion upon oxidation. ) Having a structural unit represented by
The present invention relates to a, 000,000 conductive polymer, a manufacturing method thereof, and a manufacturing method of a monomer.

【0006】一般式〔I〕に属する可溶性導電性高分子
のより好ましい具体例は、HtはNH、S、及びSe;
1 はメチル基;X1 は−COO−あるいは−CONH
−;R2 は直鎖状のアルキル基〔すなわち−(CH2
v −(ここで、vは3〜12である)〕である。一般式
〔I〕で示されるモノマー単位以外のモノマー単位を含
むコポリマーをも同様に意図する。代表的な分子量発明
13〜103(重量的)であり、高い分子量が好まし
い。Mで表わされる酸化により正の対イオンを生じる原
子としては水素原子、アルカリ金属、アルカリ土類金属
及びアンモニウムイオン等が挙げられる。R2 の炭化水
素の置換基としてはハロゲン原子、ニトロ基、ヒドロキ
シル基、カルボキシル基、アルコキシ基等が挙げられ
る。
More preferred specific examples of the soluble conductive polymer belonging to the general formula [I] include Ht of NH, S, and Se;
R 1 is a methyl group; X 1 is —COO— or —CONH
-; R 2 is a linear alkyl group [that is,-(CH 2 ).
v- (where v is 3-12)]. A copolymer containing a monomer unit other than the monomer unit represented by the general formula [I] is also intended. Representative molecular weight inventions 13 to 103 (by weight), and a high molecular weight is preferable. Examples of the atom represented by M that produces a positive counterion upon oxidation include a hydrogen atom, an alkali metal, an alkaline earth metal, and an ammonium ion. Examples of the hydrocarbon substituent of R 2 include a halogen atom, a nitro group, a hydroxyl group, a carboxyl group and an alkoxy group.

【0007】導電性高分子の製造方法は一般式〔II〕The method for producing a conductive polymer is represented by the general formula [II]

【化8】 (式中、Ht、R1 、X1 、R2 及びMは前記と同じ意
味を示す。)で表わされる化合物を酸化性遷移金属ハロ
ゲン化物の存在下に化学重合し、重合体を酸性溶液処理
し、一般式〔I′〕
[Chemical 8] (In the formula, Ht, R 1 , X 1 , R 2 and M have the same meanings as described above.) The compound is chemically polymerized in the presence of an oxidizing transition metal halide, and the polymer is treated with an acidic solution. Of the general formula [I ′]

【化9】 (式中、Ht、R1 、X1 及びR2 は前記と同じ意味を
示す。)とする。
[Chemical 9] (In the formula, Ht, R 1 , X 1 and R 2 have the same meanings as described above.).

【0008】本発明に使用する遷移金属ハロゲン化物
は、例えば、酸化第二鉄、塩化モリブデン、塩化タング
ステン、塩化スズ、塩化バナジュウム、塩化ルテニュウ
ム、塩化アンチモン、五フッ化ヒ素等があげられる。重
合方法としては遷移金属ハロゲン化物の溶液と一般式
〔II〕で示されるモノマーを単に混合する方法、遷移金
属ハロゲン化物とモノマーの混合溶液を硝子板等に流
し、乾燥する方法(以下、乾燥法とする)があげられ
る。乾燥法による重合では、反応を抑制するために溶媒
を選択する必要があるが、本重合体の製造には各種アル
コールや水等、あるいはそれらの混合溶媒が使用でき
る。続いて生成物中の遷移金属ハロゲン化物を取り除く
ために極性溶媒による洗浄を行う。この時使用する溶媒
は使用した遷移金属ハロゲン化物を溶解する物であれば
特に制限はない。この時点では重合体は水などへの溶解
性を有さないので、水による洗浄も可能である。最後に
重合体を単に酸性溶液中に浸すことで酸性溶液処理す
る。使用する酸性溶液は一般式〔I〕のMを水素原子に
交換できる物であれば特に制限はない。続いて、重合体
を洗浄することで処理に使用した酸を取り除く。使用す
る溶媒は、使用した酸を溶解し、かつ重合体を溶解しな
い溶媒である。洗浄に使用する溶媒としてはアセトン、
テトラヒドロフラン、各種アルコール等を好適に用いる
ことができる。こうして得られた重合体は水、メタノー
ル、DMF、NMP、酢酸等に溶解し、いかなるドーピ
ング処理も行わずに自立性の導電性重合体膜をキャステ
ィングにより調製することが可能である。得られるフィ
ルムの導電率はドーピングを行わずに10-7〜100
/cm程度の導電性を有している。更に、ドーピングを
行うことで導電率を向上させることができる。ドーピン
グされる化合物としては、例えば、ハロゲン化物類(ヨ
ウ素、臭素、塩化ヨウ素、臭化ヨウ素など)、ルイス酸
(五フッ化ヒ素、五フッ化リン、五フッ化アンチモン、
二フッ化ホウ素、二塩化ホウ素、二臭化ホウ素、二酸化
硫黄など)、ブレンステッド酸類(フッ化水素、塩化水
素、フッ化スルホン酸、塩化スルホン酸、過塩素酸、ト
リフルオロメタスルホン酸、トルエンスルホン酸等)、
遷移金属塩化物類(塩化第二鉄、四塩化チタン等)、有
機化合物(テトラシアノエチレン、テトラフルオロテト
ラシアノキノジメタン、テトラフルオロベンゾキノン
等)等が挙げられる。これらのドーパントによるドーピ
ングの方法としては、化学的ドーピング、電気化学ドー
ピング、等の通常の方法が挙げられる。得られた重合体
溶液の一般式〔I〕のMを希望のアルカリ金属イオン、
アルカリ土類金属イオン、アンモニウムイオンに変える
ことができる。即ち、重合体溶液に水酸化ナトリウム、
水酸化カリウム等の金属水酸化物溶液を所定量加えるる
ことにより、一般式〔I〕のMを希望のアンモニウムイ
オン、カリウムイオン等のアルカリ金属イオンに変える
ことが可能である。
Examples of the transition metal halide used in the present invention include ferric oxide, molybdenum chloride, tungsten chloride, tin chloride, vanadium chloride, ruthenium chloride, antimony chloride and arsenic pentafluoride. As a polymerization method, a method of simply mixing a solution of a transition metal halide and a monomer represented by the general formula [II], a method of flowing a mixed solution of a transition metal halide and a monomer on a glass plate, and drying (hereinafter, a drying method And). In the polymerization by the drying method, it is necessary to select a solvent in order to suppress the reaction, but various alcohols, water and the like, or a mixed solvent thereof can be used for the production of the present polymer. Then, washing with a polar solvent is performed in order to remove the transition metal halide in the product. The solvent used at this time is not particularly limited as long as it can dissolve the transition metal halide used. At this point, the polymer has no solubility in water and the like, so that washing with water is also possible. Finally, the polymer is treated with an acidic solution by simply immersing it in an acidic solution. The acidic solution used is not particularly limited as long as it can exchange M of the general formula [I] for a hydrogen atom. Subsequently, the acid used for the treatment is removed by washing the polymer. The solvent used is a solvent that dissolves the acid used and does not dissolve the polymer. Acetone is used as the solvent for cleaning.
Tetrahydrofuran, various alcohols and the like can be preferably used. The polymer thus obtained is dissolved in water, methanol, DMF, NMP, acetic acid or the like, and a self-supporting conductive polymer film can be prepared by casting without any doping treatment. The conductivity of the resulting film without doping 10 -7 to 10 0 s
It has a conductivity of about / cm. Furthermore, the conductivity can be improved by performing the doping. Examples of the compound to be doped include halides (iodine, bromine, iodine chloride, iodine bromide, etc.), Lewis acids (arsenic pentafluoride, phosphorus pentafluoride, antimony pentafluoride,
Boron difluoride, boron dichloride, boron dibromide, sulfur dioxide, etc., Bronsted acids (hydrogen fluoride, hydrogen chloride, fluorosulfonic acid, chlorosulfonic acid, perchloric acid, trifluorometasulfonic acid, toluene) Sulfonic acid, etc.),
Examples thereof include transition metal chlorides (ferric chloride, titanium tetrachloride, etc.), organic compounds (tetracyanoethylene, tetrafluorotetracyanoquinodimethane, tetrafluorobenzoquinone, etc.) and the like. Examples of the method of doping with these dopants include ordinary methods such as chemical doping and electrochemical doping. M of the general formula [I] of the obtained polymer solution is a desired alkali metal ion,
It can be changed to alkaline earth metal ions and ammonium ions. That is, sodium hydroxide in the polymer solution,
By adding a predetermined amount of a metal hydroxide solution such as potassium hydroxide, it is possible to change M of the general formula [I] to a desired alkali metal ion such as ammonium ion or potassium ion.

【0009】本発明の導電性高分子の原料のモノマーは
一般式〔III 〕
The monomer of the conductive polymer raw material of the present invention has a general formula [III]

【化10】 (式中Ht及びR1 は前記と同じ意味を示し、X2 はC
2 H、CONH2 、OH、SH又はNH2 を示す。)
で表わされる化合物と一般式〔IV〕
[Chemical 10] (In the formula, Ht and R 1 have the same meanings as described above, and X 2 is C
Indicates O 2 H, CONH 2 , OH, SH or NH 2 . )
And a compound represented by the general formula [IV]

【化11】 (式中、X3 は炭素数2から20の2価の炭化水素基を
示す。但し、炭化水素の水素原子の一つ又はそれ以上が
ハロゲン原子、ニトロ基、ヒドロキシル基、カルボキシ
ル基又はアルコキシ基で置換されていてもよい。)で表
わされる環状の分子内オキシスルホン酸エステルとを塩
基の存在下反応させることにより得られる。
[Chemical 11] (In the formula, X 3 represents a divalent hydrocarbon group having 2 to 20 carbon atoms, provided that one or more hydrogen atoms of the hydrocarbon are a halogen atom, a nitro group, a hydroxyl group, a carboxyl group or an alkoxy group. Which may be substituted with) in the presence of a base.

【0010】[0010]

【実施例】次に実施例を挙げ本発明を更に詳細に説明す
る。 実施例1 3−(4−メチル−3−ピロールカルボニ
ルオキシ)プロパンスルホン酸ナトリウムの製造:
EXAMPLES Next, the present invention will be described in more detail by way of examples. Example 1 Preparation of sodium 3- (4-methyl-3-pyrrolecarbonyloxy) propane sulfonate:

【化12】 4−メチルピロール−3−カルボン酸2gをイソプロパ
ノール15mlに懸濁し、ソジウムメトキサイド28%
メタノール溶液3.09gを加え均一な溶液とした。更
に、ここに1,3−プロパンスルトン1.95gを加え
た。70℃で20分間反応を行った後、生成した白色の
結晶を濾過することにより集め、イソプロパノール50
mlにより結晶の洗浄を行った。結晶を水に溶解し、酢
酸エチルで洗浄することで、未反応の4−メチルピロー
ル−3−カルボン酸を取り除き、水層を乾固することに
より白色結晶の目的物3.86gを得た。収率89%1 H−NMR(270MHz DMSO−d6 )TMS
に対するδ(ppm):1.9−2.05(2H,
m),2.2(3H,s),2.5−2.7(2H,
t),4.1−4.25(2H,t),6.6(1H,
s),7.33(1H,s),11.1(1H,br
s) IR(KBr,ν,cm-1):1687s,1209
s,1159s,1056s, m.p.300℃Up
[Chemical 12] 2-Methylpyrrole-3-carboxylic acid 2 g was suspended in isopropanol 15 ml, and sodium methoxide 28% was added.
A uniform solution was prepared by adding 3.09 g of a methanol solution. Further, 1.95 g of 1,3-propane sultone was added here. After reacting at 70 ° C. for 20 minutes, the white crystals formed were collected by filtration to give 50% isopropanol.
The crystals were washed with ml. The crystals were dissolved in water and washed with ethyl acetate to remove unreacted 4-methylpyrrole-3-carboxylic acid, and the aqueous layer was evaporated to dryness to obtain 3.86 g of the desired product as white crystals. Yield 89% 1 H-NMR (270 MHz DMSO-d 6 ) TMS
Δ (ppm): 1.9-2.05 (2H,
m), 2.2 (3H, s), 2.5-2.7 (2H,
t), 4.1-4.25 (2H, t), 6.6 (1H,
s), 7.33 (1H, s), 11.1 (1H, br
s) IR (KBr, ν, cm −1 ): 1687s, 1209
s, 1159s, 1056s, m. p. 300 ° C Up

【0011】実施例2 導電性高分子の製造:3−
(4−メチルピロール−3−カルボニルオキシ)プロパ
ンスルホン酸ナトリウム0.19g、無水塩化第二鉄
0.29gをメタノール/水(=7ml/0.1ml)
に溶解し、撹拌した。この均一な溶液を64cm2 の硝
子板に流し、溶媒を室温下、減圧し、蒸発させた。残っ
た黒色フィルムは硝子板からはがし、洗浄液に色が付か
なくなるまでメタノールで洗浄することで無水塩化第二
鉄を取り除き、更に、重合体膜を6NHCl水溶液に1
5分間浸した。重合体膜をテトラヒドロフランで洗浄液
が中性になるまで洗浄し、20mlの水に重合体を溶解
させた。得られた重合体水溶液を濃縮し3.6%の高分
子溶液3gを得た。固形分濃度と溶液量から求めた収率
は62%であった。こうして得られた重合体水溶液のG
PC測定を行ったところ、重量平均分子量100,00
0、ポリスチレンスルホネート換算(0.1MKCl水
溶液を移動層に使用)であった。得られた重合体溶液を
ガラス板上に流し、溶媒を室温下で蒸発させた。こうし
て得た高分子膜をガラス板からはがし、更に、110℃
のオーブン中に2.5時間放置することで乾燥した。得
られた重合体膜について直流四端子法により導電率を測
定したところ、ドーピングを行うこと無しに1.13×
10-1s/cmと高い導電率を示した。また、更にヨウ
素をドーピングすることで導電率は3×10-1s/cm
と向上した。
Example 2 Production of Conducting Polymer: 3-
Sodium (4-methylpyrrole-3-carbonyloxy) propanesulfonate 0.19 g and anhydrous ferric chloride 0.29 g were added to methanol / water (= 7 ml / 0.1 ml).
And was stirred. This homogeneous solution was poured onto a 64 cm 2 glass plate, and the solvent was evaporated under reduced pressure at room temperature. Peel off the remaining black film from the glass plate, remove the anhydrous ferric chloride by washing with methanol until the washing liquid is no longer colored, and further remove the polymer film with a 6N HCl aqueous solution.
Soak for 5 minutes. The polymer film was washed with tetrahydrofuran until the washing liquid became neutral, and the polymer was dissolved in 20 ml of water. The obtained polymer aqueous solution was concentrated to obtain 3 g of a 3.6% polymer solution. The yield obtained from the solid content concentration and the solution amount was 62%. G of the polymer aqueous solution thus obtained
A PC measurement showed that the weight average molecular weight was 100,00.
0, converted to polystyrene sulfonate (0.1 M KCl aqueous solution was used for the moving layer). The resulting polymer solution was cast on a glass plate and the solvent was evaporated at room temperature. The polymer film thus obtained was peeled off from the glass plate and further heated at 110 ° C.
It was dried by leaving it in the oven for 2.5 hours. The conductivity of the obtained polymer film was measured by a DC four-terminal method, and it was 1.13 × without doping.
The conductivity was as high as 10 -1 s / cm. The conductivity is 3 × 10 -1 s / cm by further doping with iodine.
And improved.

【0012】比較例1 導電性高分子の製造(酸性溶
液処理なし):4−メチルピロール−3−カルボン酸
3−プロパンスルホン酸ナトリウム0.19g、無水塩
化第二鉄0.29gをメタノール/水(=7ml/0.
1ml)に溶解し、撹拌した。この均一な溶液を64c
2 の硝子板に流し、溶媒を室温下、減圧し、蒸発させ
た。残った黒色フィルムは硝子板からはがし、洗浄液に
色が付かなくなるまでメタノールで洗浄することで無水
塩化第二鉄を取り除き、0.1NaOH水溶液15ml
に投じ重合体を溶解させてみたが完全には溶解しなかっ
た。解け残った重合体及び生成した水酸化鉄を濾紙濾過
により取り除き、更に、重合体溶液をプロトン型イオン
交換樹脂に通した。得られた重合体溶液を濃縮し3.6
%の高分子溶液1.5gを得た。固形分濃度と溶液量か
ら求めた収率は31%であった。こうして得られた重合
体水溶液のGPC測定を行ったところ、重量平均分子量
51000、ポリスチレンスルホネート換算(0.1M
KCl水溶液を移動層に使用)であった。比較例1で得
た重合体溶液をガラス板上に流し、溶媒を室温下で蒸発
させた。こうして得た高分子膜をガラス板からはがし、
更に、110℃のオーブン中に2.5時間放置すること
で乾燥した。得られた重合体膜について直流四端子法に
より導電率を測定したところ、2.7×10-2s/cm
と実施例2より低い導電率を示した。
Comparative Example 1 Production of Conductive Polymer (without Acid Solution Treatment): 4-Methylpyrrole-3-carboxylic Acid
0.19 g of sodium 3-propanesulfonate and 0.29 g of anhydrous ferric chloride were added to methanol / water (= 7 ml / 0.
1 ml) and stirred. 64c of this uniform solution
It was poured onto a m 2 glass plate, and the solvent was evaporated under reduced pressure at room temperature. Peel off the remaining black film from the glass plate, and wash with methanol until the washing liquid is no longer colored to remove anhydrous ferric chloride, and 0.1 ml of 0.1 NaOH aqueous solution.
The polymer was thrown in and dissolved, but it was not completely dissolved. The undissolved polymer and the generated iron hydroxide were removed by filter paper filtration, and the polymer solution was passed through a proton type ion exchange resin. The resulting polymer solution was concentrated to 3.6
% Polymer solution was obtained. The yield determined from the solid content concentration and the solution amount was 31%. GPC measurement of the polymer aqueous solution thus obtained showed a weight average molecular weight of 51,000 and polystyrene sulfonate conversion (0.1M
KCl aqueous solution was used for the mobile phase). The polymer solution obtained in Comparative Example 1 was poured onto a glass plate, and the solvent was evaporated at room temperature. Peel off the polymer film thus obtained from the glass plate,
Furthermore, it was dried by leaving it in an oven at 110 ° C. for 2.5 hours. The conductivity of the obtained polymer film was measured by a DC four-terminal method to be 2.7 × 10 -2 s / cm.
And showed a lower conductivity than Example 2.

【0013】[0013]

【発明の効果】本発明の導電性高分子は簡便な操作で得
ることができ、水などの各種溶媒に可溶で、自己ドープ
性を有するためドーピング処理の必要も無く、加工性、
電気的、機械的性能の優れた導電性高分子である。
EFFECT OF THE INVENTION The conductive polymer of the present invention can be obtained by a simple operation, is soluble in various solvents such as water, and has a self-doping property.
It is a conductive polymer with excellent electrical and mechanical performance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柳沢 篤 神奈川県小田原市高田字柳町345 日本曹 達株式会社小田原研究所内 (72)発明者 神山 昌士 神奈川県小田原市高田字柳町345 日本曹 達株式会社小田原研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsushi Yanagisawa 345 Yanagicho, Takada, Odawara-shi, Kanagawa Nippon Soda Co., Ltd. Odawara Research Institute (72) Inventor Masashi Kamiyama 345, Yanagicho, Takada, Odawara, Kanagawa Nippon Soda Co., Ltd. Odawara Research Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式〔I〕 【化1】 (式中、HtはNH、S、O、Se又はTeを、R1
直鎖又は枝分れのあるアルキル基を、X1 はCO2 、C
ONH、O、S又はNHを、R2 は置換基を有していて
もよい炭素数3から21の2価の炭化水素基を、Mは酸
化により正の対イオンを生じる原子を示す。)で表わさ
れる構造単位を有する重量平均分子量が500から1,
000,000の導電性高分子。
1. A compound represented by the general formula [I]: (In the formula, Ht is NH, S, O, Se or Te, R 1 is a linear or branched alkyl group, and X 1 is CO 2 , C
ONH, O, S, or NH, R 2 represents an optionally substituted divalent hydrocarbon group having 3 to 21 carbon atoms, and M represents an atom which produces a positive counterion upon oxidation. ) Having a structural unit represented by
, 000,000 conductive polymer.
【請求項2】 一般式〔II〕 【化2】 (式中、Ht、R1 、X1 、R2 及びMは前記と同じ意
味を示す。)で表わされる化合物を酸化性遷移金属ハロ
ゲン化物の存在下に化学重合し、重合体を酸性溶液処理
することを特徴とする一般式〔I′〕 【化3】 (式中、Ht、R1 、X1 及びR2 は前記と同じ意味を
示す。)で表わされる構造単位を有する重量平均分子量
500から1,000,000の導電性高分子の製造方
法。
2. A compound represented by the general formula [II]: (In the formula, Ht, R 1 , X 1 , R 2 and M have the same meanings as described above.) The compound is chemically polymerized in the presence of an oxidative transition metal halide to treat the polymer with an acidic solution. The general formula [I '] is characterized by (In the formula, Ht, R 1 , X 1 and R 2 have the same meanings as described above.) A method for producing a conductive polymer having a weight average molecular weight of 500 to 1,000,000 and having a structural unit.
【請求項3】 一般式〔III 〕 【化4】 (式中、Ht及びR1 は前記と同じ意味を示し、X2
CO2 H、CONH2 、OH、SH又はNH2 を示
す。)で表わされる化合物と一般式〔IV〕 【化5】 (式中、X3 は炭素数2から20の2価の炭化水素基を
示す。但し、炭化水素の水素原子の一つ又はそれ以上が
ハロゲン原子、ニトロ基、ヒドロキシル基、カルボキシ
ル基又はアルコキシ基で置換されていてもよい。)で表
わされる環状の分子内オキシスルホン酸エステルとを塩
基の存在下反応させることを特徴とする一般式〔II〕 【化6】 (式中、Ht、R1 、X1 、R2 及びMは前記と同じ意
味を示す。)で表わされる化合物の製造方法。
3. A compound represented by the general formula [III]: (Wherein Ht and R 1 have the same meanings as described above, and X 2 represents CO 2 H, CONH 2 , OH, SH or NH 2 ) and a compound of the general formula [IV] (In the formula, X 3 represents a divalent hydrocarbon group having 2 to 20 carbon atoms, provided that one or more hydrogen atoms of the hydrocarbon are a halogen atom, a nitro group, a hydroxyl group, a carboxyl group or an alkoxy group. Which may be substituted with a cyclic intramolecular oxysulfonic acid ester represented by the formula [II] (In the formulae, Ht, R 1 , X 1 , R 2 and M have the same meanings as described above.)
JP10340494A 1994-04-18 1994-04-18 Soluble conductive polymer and its production Pending JPH07286035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10340494A JPH07286035A (en) 1994-04-18 1994-04-18 Soluble conductive polymer and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10340494A JPH07286035A (en) 1994-04-18 1994-04-18 Soluble conductive polymer and its production

Publications (1)

Publication Number Publication Date
JPH07286035A true JPH07286035A (en) 1995-10-31

Family

ID=14353121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10340494A Pending JPH07286035A (en) 1994-04-18 1994-04-18 Soluble conductive polymer and its production

Country Status (1)

Country Link
JP (1) JPH07286035A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140141A (en) * 1996-11-08 1998-05-26 Showa Denko Kk Production of antistatic material
JP2009235262A (en) * 2008-03-27 2009-10-15 Tokyo Institute Of Technology Polymerized organic compound comprising nitrogen-having heterocycle containing o-alkylene sulfonic acid group or o-alkylene sulfonic acid base, and nitrogen-having heterocycle derivative containing o-alkylene sulfonic acid group or o-alkylene sulfonic acid base, medicament, disinfectant or antibiotic, ion exchanger, electrolyte membrane, catalyst, membrane electrode conjugate, fuel cell using the same
JP2009235261A (en) * 2008-03-27 2009-10-15 Tokyo Institute Of Technology Polymer organic compound including nitrogen-containing heterocyclic ring having n-alkylene sulfonic acid group or n-alkylene sulfonate group, organic compound including nitrogen-containing heterocyclic ring having n-alkylene sulfonic acid group or n-alkylene sulfonate group, and pharmaceutical, disinfectant or antimicrobial, ion exchanger, electrolyte membrane, catalyst, membrane electrode conjugate, and fuel cell each using them
JP2010090307A (en) * 2008-10-09 2010-04-22 Tokyo Institute Of Technology Novel polymeric organic compound, ion exchanger using it, electrolyte membrane, catalyst, membrane electrode assembly, and fuel cell
JP2010090308A (en) * 2008-10-09 2010-04-22 Tokyo Institute Of Technology Novel polymeric organic compound, ion exchanger using it, electrolyte membrane, catalyst, membrane electrode assembly, and fuel cell
JP2010090309A (en) * 2008-10-09 2010-04-22 Tokyo Institute Of Technology Novel polymeric organic compound, ion exchanger using it, electrolyte membrane, catalyst, membrane electrode assembly, and fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140141A (en) * 1996-11-08 1998-05-26 Showa Denko Kk Production of antistatic material
JP2009235262A (en) * 2008-03-27 2009-10-15 Tokyo Institute Of Technology Polymerized organic compound comprising nitrogen-having heterocycle containing o-alkylene sulfonic acid group or o-alkylene sulfonic acid base, and nitrogen-having heterocycle derivative containing o-alkylene sulfonic acid group or o-alkylene sulfonic acid base, medicament, disinfectant or antibiotic, ion exchanger, electrolyte membrane, catalyst, membrane electrode conjugate, fuel cell using the same
JP2009235261A (en) * 2008-03-27 2009-10-15 Tokyo Institute Of Technology Polymer organic compound including nitrogen-containing heterocyclic ring having n-alkylene sulfonic acid group or n-alkylene sulfonate group, organic compound including nitrogen-containing heterocyclic ring having n-alkylene sulfonic acid group or n-alkylene sulfonate group, and pharmaceutical, disinfectant or antimicrobial, ion exchanger, electrolyte membrane, catalyst, membrane electrode conjugate, and fuel cell each using them
JP2010090307A (en) * 2008-10-09 2010-04-22 Tokyo Institute Of Technology Novel polymeric organic compound, ion exchanger using it, electrolyte membrane, catalyst, membrane electrode assembly, and fuel cell
JP2010090308A (en) * 2008-10-09 2010-04-22 Tokyo Institute Of Technology Novel polymeric organic compound, ion exchanger using it, electrolyte membrane, catalyst, membrane electrode assembly, and fuel cell
JP2010090309A (en) * 2008-10-09 2010-04-22 Tokyo Institute Of Technology Novel polymeric organic compound, ion exchanger using it, electrolyte membrane, catalyst, membrane electrode assembly, and fuel cell

Similar Documents

Publication Publication Date Title
KR100488441B1 (en) Method for manufacturing water-soluble conductive polyaniline
JPH07324132A (en) Production of soluble conductive aniline polymer
JP3066431B2 (en) Method for producing conductive polymer composite
JPH0656987A (en) Produciton of conductive polymer
JP3186328B2 (en) Conductive composite and manufacturing method thereof
JPH07286035A (en) Soluble conductive polymer and its production
JPH0574467A (en) Macromolecular solid electrolyte
JP3736275B2 (en) Conductive composition and method for producing the same
JPH06239996A (en) Conductive polymer and its preparation
JP2727040B2 (en) Method for producing polyaniline derivative
JP3043290B2 (en) Water-soluble conductive polyaniline and method for producing the same
JP3340893B2 (en) Soluble aminonaphthalene-based conductive polymer and method for producing the same
JP3058735B2 (en) Polypyrrole derivative and method for producing the same
JP4416882B2 (en) Method for producing water-soluble conductive polyaniline
JP3947434B2 (en) Conductive polyaniline composition, film thereof, and production method thereof
JPH07145232A (en) Electrically conductive polymer and its production
JP7308708B2 (en) 2-hydroxymethyl-2,3-dihydrothieno[3,4-b][1,4]dioxin-5-carboxylic acid ester
JPH0437090B2 (en)
JP2004307479A (en) 3, 4-alkylene dioxythiophene diol, method for producing the same, use of the same, electroconductive oligomer and polymer having structural unit derived from the same, use of the oligomer and polymer, and intermediate in process of diol production
JPH0757790B2 (en) Polyaniline derivative and method for producing the same
JP2607411B2 (en) Polyaniline derivative and method for producing the same
JPH08120074A (en) Conductive aniline polymer and its production
JP3058737B2 (en) Polypyrrole derivative and method for producing the same
JP3088525B2 (en) Polypyrrole derivative and method for producing the same
JP3130998B2 (en) Polyaniline derivative and method for producing the same