JPH0437090B2 - - Google Patents

Info

Publication number
JPH0437090B2
JPH0437090B2 JP62165287A JP16528787A JPH0437090B2 JP H0437090 B2 JPH0437090 B2 JP H0437090B2 JP 62165287 A JP62165287 A JP 62165287A JP 16528787 A JP16528787 A JP 16528787A JP H0437090 B2 JPH0437090 B2 JP H0437090B2
Authority
JP
Japan
Prior art keywords
mol
polymer film
dialkoxythiophene
film
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62165287A
Other languages
Japanese (ja)
Other versions
JPS6411128A (en
Inventor
Tsuneo Hagiwara
Toshio Demura
Michio Yamaura
Kaoru Iwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP16528787A priority Critical patent/JPS6411128A/en
Publication of JPS6411128A publication Critical patent/JPS6411128A/en
Publication of JPH0437090B2 publication Critical patent/JPH0437090B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 1977年にペンシルバニア大学のMacDiarmid、
白川らが、ポリアセチレンにヨウ素やAsF5等の
電子受容性化合物を作用させると、金属にも匹敵
する高い導電性が発現することを見いだしてから
導電性高分子が世界中の注目を浴びている。 これら重合体は電気化学的にドーパントを出し
入れし、その量をコントロールすることが可能で
あり、広い範囲で導電性をコントロールすること
が出来る。従つてこれらの性質を利用して、各種
センサ、電池、エレクトクロミツク材料、電子デ
バイスなどに種々な用途が考えられる。 チオフエンは、ピロールと同様に主として2,
5−位が結合することにより重合体が形成すると
されているが、3−位または4−位での反応の可
能性も指摘されている。しかも、一般にチオフエ
ンはピロール等に比べ酸化ポテンシヤルが高いた
め苛酷な条件で重合が行われる。そのため、副反
応の介入は避けられないと考えられる。本発明者
らは重合における反応位置選択性に優れ、規則性
が良く、機械的物性、電導度に優れたチオフエン
重合体を得るために鋭意検討した。 その結果、チオフエンの3−および4−位の両
方に電子供与性のアルコキシ基を導入した3,4
−ジアルコキシチオフエンは、アルコキシ基を導
入することにより酸化ポテンシヤルが下がり、副
反応が抑制され、結合部位が2,5−位に限定さ
れ、従つて分子の対称性による規制性の乱れが生
じないために得られたフイルムは高い導電度と機
械的物性の優れたものとなり、更に延伸配向処理
により電導度のより一層の向上が可能となること
を見出し本発明を完成するに至つた。 <発明の構成> 本発明は下記一般式()で示される繰り返し
単位からなり、酸化された状態において双極性非
プロトン系溶剤中に25℃で完全に溶解するもので
ない、3,4−ジアルコキシチオフエン重合体フ
イルム (但し、R1・R2は互いに独立に炭素数1〜4
のアルキル基を表わす。) である。 以下、本発明の具体的な内容について詳細に説
明する。 本発明の3,4−ジアルコキシ重合体は、3,
4−ジアルコキシチオフエンを有機溶剤を溶媒と
して電解質存在下に電解酸化重合することにより
陽極板上にフイルム状に析出させることにより得
られる。しかも、この方法によると反応系に共存
する陰イオンがドーパントとして取り込まれるた
め、新たに電子受容化合物をドーピングしなくて
も高い導電性を発現する。 本発明において用いられる該3,4−ジアルコ
キシチオフエンは下記の一般式()で表わされ
る化合物が用いられる。 (但し、R1・R2は互いに独立に炭素数1〜4
のアルキル基を表わす。) 本発明で用いる3,4−ジアルコキシチオフエ
ンはフアーガーらの方法(アメリカ化学会誌67巻
2217頁、1945年)に従つて下記のルートにより合
成することができる(但し、Rは前記R1,R2
ある)。 チオジグリコール酸ジエチルエステルは、チオ
ジグリコール酸を硫酸触媒の存在したでエチルエ
ステル化して合成できる。これをヒンスベルグ
(Hinsberg)反応により蓚酸ジエチルと縮合し、
3,4−ジヒドロキシチオフエン−2,5−ジカ
ルボン酸テトラナトリウム塩に誘導し、得られる
3,4−ジヒドロキシチオフエン−2,5−ジカ
ルボン酸テトラナトリウム塩を再結晶、精製する
ことなくジアルキル硫酸でo−アルキル化し、苛
性ソーダで加水分解後、酸析することにより、
3,4−ジアルコキシチオフエン−2,5−ジカ
ルボン酸に変換する。そして、このジカルボン酸
をCu−Crオキシドを触媒に用いてキノリン中で
脱炭酸することにより目的とする3,4−ジアル
コキシチオフエンを得ることができる。Cu−Cr
オキシドはコナーらの方法(アメリカ化学会誌54
巻1132頁、1932年)に従つて調製することができ
る。 この3,4−ジアルコキシチオフエンとしては
具体的には、3,4−ジメトキシチオフエン、
3,4−ジエトキシチオフエン、3,4−ジプロ
ピルチオフエン、3,4−ジブトキシチオフエン
などが挙げられる。 また、前記電解質としては、無機、有機酸のテ
トラアルキルアンモニウム塩、無機、有機酸のア
ルカリ金属塩などが挙げられる。具体的には、過
塩素酸テトラエチルアンモニウム、ホウフツソ化
テトラエチルアンモニウム、テトラメチルアンモ
ニウムヘキサフルオロホスフエート、テトラメチ
ルアンモニウムヘキサフルオロアルセテート、テ
トラブチルアンモニウムスルホネート、テトラエ
チルアンモニウムトリフルオロメチルスルホネー
ト、テトラエチルアンモニウムp−トルエンスル
ホネート、リチウムトリフルオロメチルスルホネ
ート、過塩素酸リチウム、p−トルエンスルホン
酸ナトリウムなどが挙げられる。 重合触媒である有機溶媒としては、アセトニト
リル、ヘンゾニトリル、ニトロベンセン、テトラ
ヒドロフラン、ニトロメタン、プロピレンカーボ
ネート、エチレンカーボネート、スルホラン、ジ
メトキシエタン等の前記電解質を溶解し易いもの
が好ましいが、必ずしもこれに限定されない。 該3,4−ジアルコキシチオフエンは溶媒に対
して0.0001モル/リツトル〜1モル/リツトル、
好ましくは、0.001モル/リツトル〜0.5モル/リ
ツトルで用いられて重合が行なわれる。 電解質は溶媒に対して0.0001モル/リツトル〜
1モル/リツトルで用いられて重合が行なわれ
る。 電解質は溶媒に対して0.0001モル/リツトル〜
1モル/リツトル、好ましくは、0.001モル/リ
ツトル〜0.5モル/リツトルが用いられる。 反応温度は−50℃〜100℃が採用される。好適
には−50℃〜50℃が採用される。反応時間は、所
望とする膜厚のフイルムが生成するために通電量
と通電時間の関係から適宜選ばれる。 電解重合の陽極材料としては好適には白金板、
ガラス状カーボン板、パラジウム板等が用いられ
るが、この限りでない。 本発明で電解酸化重合により得られた3,4−
ジアルコキシチオフエン重合体フイルムは2,5
−位のみ選択的に反応が進行するため得られる重
合体の構造は極めて規則性が高く、機械的物性に
優れる。また本発明の重合体は、耐溶剤性も極め
て高く、酸化された状態において双極性非プロト
ン系溶剤中に25℃で完全に溶解するものでない。
溶媒例えばプロピレンカーボネート、アセトニト
リル、ジメチルスルホキシド、N,N−ジメチル
ホルムアミド、N,N−ジメチルアセトアミド、
N−メチル−2−ピロリドン、ニトロメタン、ア
セトン、トルエン、クロロホルムに不溶である。 一軸、あるいは二軸延伸機により延伸配向処理
を施すことにより、少なくとも一方方向に配向処
理を施した3,4−ジアルコキシチオフエン重合
体フイルムを得ることが出来る。 一軸延伸機は自由端−軸延伸機、一定幅−軸延
伸機が用いられ、この何れも自動、及び手動のも
のが用いられる。 二軸延伸機は自由端逐次二軸延伸機、一定幅逐
次二軸延伸機、同時二軸延伸機が用いられ、この
何れも自動、及び手動のものが用いられる。 該3,4−ジアルコキシチオフエン重合体フイ
ルムは規則性に優れ、それ自体高い引つ張り強度
を有するが、延伸配向処理によりその強度は更に
向上する。また、電導度も延伸配向処理により向
上する。本発明では延伸処理の有無にかかわらず
引つ張り強度として0.5Kg/mm2以上のものが好
適に採用される。 以下、実施例により本発明を詳述する。但し、
本発明はこれに限定されない。電導度は銀ペース
トを用いた四端子法により測定した。 実施例 1 500mlのセパラブルフラスコに陽極として白金
板、陰極として白金ホイルを用いて、蒸留したて
のプロピレンカーボネート400ml、テトラメチル
アンモニウムテトラフルオロボレート8.7g
(0.04モル)を入れ、窒素ガスを導入し脱酸素を
行なつた。その後、3,4−ジメトキシチオフエ
ン3.46g(0.024モル)を入れた。15℃に保ち窒
素気流下、電流密度0.25mA/cm2で8時間、電解
酸化重合行なつた。重合終了後生成した12μmの
フイルムを陽極板から剥離し、アセトニトリルで
洗浄し、乾燥した。このものの電導度は50S/cm
であり、機械的物性は、0.6Kg/mm2であつた。
元素分析の結果からドーパントであるBF4 -は3,
4−ジメトキシチオフエン単位1個当り、0.3個
含まれていた。 このものを手動の自由端一軸延伸機によりポロ
ピレンカーボネート中で40℃で1.4倍延伸し100℃
で5分間熱固定した。この配向フイルムの電導度
は109S/cmであつた。X線回折の結果から未処
置のフイルムではハローのみであつたのが延伸配
向処理後では配向パターンが観測された。 実施例 2 500mlのセパレルフラスコに陽極としてガラス
状カーボン板、陰極として白金ホイルを用いて、
蒸留したてのポロピレンカーボネート400ml、過
塩素酸テトラエチルアンモニウム9.18g(0.04モ
ル)を入れ、窒素ガスを導入し脱酸素を行なつ
た。その後、3,4−ジメトキシチエフエン3.46
g(0.024モル)を入れた。15℃に保ち窒素気流
下、電流密度0.125mA/cm2で24時間、電解酸化重
合を行なつた。重合終了後生成した20μmのフイ
ルムを陽極板上から剥離し、アセトニトリルで洗
浄し、乾燥した。このものの電導度は70S/cmで
あり、機械的強度は0.7Kg/mm2であつた。元素分
析結果からドーパントである過塩素酸イオン
(ClO4 -)は、3,4−ジメトキシチオフエン単
位1個当り、0.33個含まれていた。 このものを実施例1と同様に1.2倍延伸配向処
理することにより電導度110S/cmの配向フイル
ムを得た。 実施例 3 500mlセパラブルフラスコに陽極としてガラス
状カーボン板、陰極として白金ホイルを用いて、
蒸留したてのポロピレンカーボネート400ml、過
塩素酸テトラメチルアンモニウム4.09g(0.02モ
ル)を入れ、窒素ガスを導入し脱酸素を行なつ
た。その後3,4−ジエトキシチオフエン1.7g
(0.01モル)を入れた。15℃に保ち窒素気流下、
電流密度0.25mA/cm2で8時間、電解酸化重合を
行なつた。重合終了後生成した17μmのフイルム
を陽極板上から剥離し、アセトニトリルで洗浄
し、乾燥した。このものの電導度は65S/cmであ
り、機械的強度は0.55Kg/mm2であつた。 このものを実施例1と同様に1.3倍延伸配向処
理することにより電導度89S/cmの配向フイルム
を得た。 実施例 4 ポリ(3,4−ジメトキシチオフエン)の有機
溶媒に対する耐溶剤性を調べた。測定は、それぞ
れ下記構造A、Bで示すポリ(3,4−ジメトキ
シチオフエン)のCO4 -ドープ体および脱ドー
プ体フイルムを有機溶剤中に浸漬して行つた。60
℃、5時間静置後、および室温下で24時間静置後
の変化を表1に示した。いずれの有機溶剤にも何
等変化を示さず、有機溶剤に対して極めて安定で
あることが分つた。
<Industrial application field> In 1977, MacDiarmid of the University of Pennsylvania,
Conductive polymers have attracted worldwide attention since Shirakawa et al. discovered that when polyacetylene was exposed to electron-accepting compounds such as iodine and AsF 5 , it developed high conductivity comparable to that of metals. . These polymers can electrochemically introduce and remove dopants and control the amount, making it possible to control conductivity over a wide range. Therefore, by utilizing these properties, various applications can be considered for various sensors, batteries, electrochromic materials, electronic devices, etc. Thiophene, like pyrrole, is mainly 2,
Although it is said that a polymer is formed by bonding at the 5-position, the possibility of reaction at the 3- or 4-position has also been pointed out. Moreover, since thiophene generally has a higher oxidation potential than pyrrole and the like, polymerization is carried out under harsh conditions. Therefore, intervention for side effects is considered unavoidable. The present inventors have conducted extensive studies to obtain a thiophene polymer that has excellent reaction regioselectivity in polymerization, good regularity, and excellent mechanical properties and electrical conductivity. As a result, 3,4
- By introducing an alkoxy group into dialkoxythiophene, the oxidation potential is lowered, side reactions are suppressed, and the bonding site is limited to the 2,5-position, resulting in disordered regulation due to molecular symmetry. The present inventors have completed the present invention by discovering that the resulting film has high electrical conductivity and excellent mechanical properties, and that the electrical conductivity can be further improved by stretching and orientation treatment. <Structure of the Invention> The present invention is directed to a 3,4-dialkoxy group consisting of a repeating unit represented by the following general formula (), which does not completely dissolve in a dipolar aprotic solvent at 25°C in an oxidized state. Thiophene polymer film (However, R 1 and R 2 each independently have 1 to 4 carbon atoms.
represents an alkyl group. ). Hereinafter, specific contents of the present invention will be explained in detail. The 3,4-dialkoxy polymer of the present invention comprises 3,
It is obtained by electrolytically oxidizing and polymerizing 4-dialkoxythiophene using an organic solvent in the presence of an electrolyte, thereby depositing it in the form of a film on an anode plate. Furthermore, according to this method, anions coexisting in the reaction system are taken in as dopants, so high conductivity can be achieved even without doping with an electron-accepting compound. The 3,4-dialkoxythiophene used in the present invention is a compound represented by the following general formula (). (However, R 1 and R 2 each independently have 1 to 4 carbon atoms.
represents an alkyl group. ) The 3,4-dialkoxythiophene used in the present invention is prepared by the method of Fager et al. (Journal of the American Chemical Society, Vol. 67).
2217, 1945), it can be synthesized by the following route (wherein, R is the above-mentioned R 1 or R 2 ). Thiodiglycolic acid diethyl ester can be synthesized by ethyl esterifying thiodiglycolic acid in the presence of a sulfuric acid catalyst. This was condensed with diethyl oxalate by Hinsberg reaction,
The resulting tetrasodium 3,4-dihydroxythiophene-2,5-dicarboxylic acid salt is recrystallized and converted into dialkyl sulfate without purification. By o-alkylating with, hydrolyzing with caustic soda, and precipitating with acid,
Convert to 3,4-dialkoxythiophene-2,5-dicarboxylic acid. Then, the desired 3,4-dialkoxythiophene can be obtained by decarboxylating this dicarboxylic acid in quinoline using Cu-Cr oxide as a catalyst. Cu−Cr
Oxide was determined by the method of Connor et al. (Journal of the American Chemical Society 54)
Vol. 1132, 1932). Specifically, the 3,4-dialkoxythiophene includes 3,4-dimethoxythiophene,
Examples include 3,4-diethoxythiophene, 3,4-dipropylthiophene, and 3,4-dibutoxythiophene. Examples of the electrolyte include tetraalkylammonium salts of inorganic and organic acids, alkali metal salts of inorganic and organic acids, and the like. Specifically, tetraethylammonium perchlorate, tetraethylammonium borofusate, tetramethylammonium hexafluorophosphate, tetramethylammonium hexafluoroarcetate, tetrabutylammonium sulfonate, tetraethylammonium trifluoromethylsulfonate, tetraethylammonium p-toluenesulfonate. , lithium trifluoromethylsulfonate, lithium perchlorate, sodium p-toluenesulfonate, and the like. The organic solvent that is the polymerization catalyst is preferably one that easily dissolves the electrolyte, such as acetonitrile, henzonitrile, nitrobenzene, tetrahydrofuran, nitromethane, propylene carbonate, ethylene carbonate, sulfolane, dimethoxyethane, but is not necessarily limited thereto. The 3,4-dialkoxythiophene is 0.0001 mol/liter to 1 mol/liter based on the solvent,
Preferably, the polymerization is carried out using 0.001 mol/liter to 0.5 mol/liter. Electrolyte is 0.0001 mol/liter to solvent
Polymerization is carried out using 1 mol/liter. Electrolyte is 0.0001 mol/liter to solvent
1 mol/liter, preferably 0.001 mol/liter to 0.5 mol/liter is used. The reaction temperature is -50°C to 100°C. A temperature of -50°C to 50°C is preferably employed. The reaction time is appropriately selected from the relationship between the amount of current and the time of current application in order to produce a film with a desired thickness. Suitable anode materials for electrolytic polymerization include platinum plates,
Glassy carbon plates, palladium plates, etc. are used, but are not limited thereto. 3,4- obtained by electrolytic oxidation polymerization in the present invention
The dialkoxythiophene polymer film is 2,5
Since the reaction proceeds selectively only at the - position, the structure of the resulting polymer has extremely high regularity and excellent mechanical properties. The polymer of the present invention also has extremely high solvent resistance, and does not completely dissolve in dipolar aprotic solvents at 25°C in an oxidized state.
Solvents such as propylene carbonate, acetonitrile, dimethyl sulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide,
Insoluble in N-methyl-2-pyrrolidone, nitromethane, acetone, toluene, and chloroform. A 3,4-dialkoxythiophene polymer film that is oriented in at least one direction can be obtained by carrying out a stretching or orientation treatment using a uniaxial or biaxial stretching machine. As the uniaxial stretching machine, a free end-axial stretching machine and a constant width-axial stretching machine are used, both of which can be automatic or manual. As the biaxial stretching machine, a free end sequential biaxial stretching machine, a constant width sequential biaxial stretching machine, and a simultaneous biaxial stretching machine are used, and all of these machines can be automatic or manual. The 3,4-dialkoxythiophene polymer film has excellent regularity and has high tensile strength itself, but its strength is further improved by stretching and orientation treatment. Moreover, the electrical conductivity is also improved by the stretching and orientation treatment. In the present invention, a tensile strength of 0.5 Kg/mm 2 or more is preferably employed regardless of whether or not stretching is performed. Hereinafter, the present invention will be explained in detail with reference to Examples. however,
The present invention is not limited to this. Electrical conductivity was measured by a four-terminal method using silver paste. Example 1 400 ml of freshly distilled propylene carbonate and 8.7 g of tetramethylammonium tetrafluoroborate were placed in a 500 ml separable flask using a platinum plate as an anode and platinum foil as a cathode.
(0.04 mol) was added, and nitrogen gas was introduced to remove oxygen. Then, 3.46 g (0.024 mol) of 3,4-dimethoxythiophene was added. Electrolytic oxidation polymerization was carried out at a current density of 0.25 mA/cm 2 for 8 hours while maintaining the temperature at 15° C. under a nitrogen stream. After the polymerization was completed, the resulting 12 μm film was peeled off from the anode plate, washed with acetonitrile, and dried. The conductivity of this material is 50S/cm
The mechanical properties were 0.6 Kg/mm 2 .
From the results of elemental analysis, the dopant BF 4 - is 3,
Each 4-dimethoxythiophene unit contained 0.3 units. This material was stretched 1.4 times at 40°C in polypylene carbonate using a manual free end uniaxial stretching machine and then heated to 100°C.
Heat-fixed for 5 minutes. The electrical conductivity of this oriented film was 109 S/cm. As a result of X-ray diffraction, only a halo was observed in the untreated film, but an orientation pattern was observed after the stretching orientation treatment. Example 2 Using a glassy carbon plate as an anode and a platinum foil as a cathode in a 500ml separate flask,
400 ml of freshly distilled propylene carbonate and 9.18 g (0.04 mol) of tetraethylammonium perchlorate were added, and nitrogen gas was introduced to remove oxygen. Then 3,4-dimethoxythiefene 3.46
g (0.024 mol) was added. Electrolytic oxidation polymerization was carried out at a current density of 0.125 mA/cm 2 for 24 hours while maintaining the temperature at 15° C. under a nitrogen stream. After the polymerization was completed, a 20 μm film was peeled off from the anode plate, washed with acetonitrile, and dried. The electrical conductivity of this material was 70S/cm, and the mechanical strength was 0.7Kg/ mm2 . The elemental analysis results showed that 0.33 dopant perchlorate ions (ClO 4 ) were contained per 3,4-dimethoxythiophene unit. This film was stretched and oriented by 1.2 times in the same manner as in Example 1 to obtain an oriented film with an electrical conductivity of 110 S/cm. Example 3 Using a glassy carbon plate as an anode and a platinum foil as a cathode in a 500ml separable flask,
400 ml of freshly distilled propylene carbonate and 4.09 g (0.02 mol) of tetramethylammonium perchlorate were added, and nitrogen gas was introduced to remove oxygen. Then 1.7g of 3,4-diethoxythiophene
(0.01 mol) was added. Maintained at 15℃ under nitrogen flow.
Electrolytic oxidative polymerization was carried out at a current density of 0.25 mA/cm 2 for 8 hours. After the polymerization was completed, a 17 μm film was peeled off from the anode plate, washed with acetonitrile, and dried. The electrical conductivity of this material was 65S/cm, and the mechanical strength was 0.55Kg/ mm2 . This film was stretched and oriented by 1.3 times in the same manner as in Example 1 to obtain an oriented film with an electrical conductivity of 89 S/cm. Example 4 The solvent resistance of poly(3,4-dimethoxythiophene) to organic solvents was investigated. The measurements were carried out by immersing CO 4 -doped and dedoped films of poly(3,4-dimethoxythiophene) having structures A and B below in an organic solvent. 60
Table 1 shows the changes after standing for 5 hours at ℃ and after standing for 24 hours at room temperature. It was found that it showed no change in any organic solvent and was extremely stable to organic solvents.

【式】【formula】

【式】【formula】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 下記一般()で示される繰り返し単位から
なり、酸化された状態において双極性非プロトン
系溶剤中に25℃で完全に溶解するものでない、
3,4−ジアルコキシチオフエン重合体フイル
ム。 (但し、R1、R2は互いに独立に炭素数1〜4
のアルキル基を表す。) 2 少なくとも一方向に延伸配向処理を施してな
る特許請求の範囲第1項記載の重合体フイルム。 3 電導度が配向処理前のフイルムより向上した
特許請求の範囲第1項又は第2項記載の重合体フ
イルム。 4 少なくとも引つ張り強度0.5Kg/mm2を有す
る特許請求の範囲第1〜3項いずれか1項記載の
重合体フイルム。
[Scope of Claims] 1. Consisting of repeating units represented by the following general (), which do not completely dissolve in a dipolar aprotic solvent at 25°C in an oxidized state,
3,4-dialkoxythiophene polymer film. (However, R 1 and R 2 each independently have 1 to 4 carbon atoms.
represents an alkyl group. 2. The polymer film according to claim 1, which has been subjected to a stretching and orientation treatment in at least one direction. 3. The polymer film according to claim 1 or 2, which has improved conductivity compared to the film before orientation treatment. 4. The polymer film according to any one of claims 1 to 3, having a tensile strength of at least 0.5 Kg/mm 2 .
JP16528787A 1987-07-03 1987-07-03 3,4-dialkoxythiophene polymer film Granted JPS6411128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16528787A JPS6411128A (en) 1987-07-03 1987-07-03 3,4-dialkoxythiophene polymer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16528787A JPS6411128A (en) 1987-07-03 1987-07-03 3,4-dialkoxythiophene polymer film

Publications (2)

Publication Number Publication Date
JPS6411128A JPS6411128A (en) 1989-01-13
JPH0437090B2 true JPH0437090B2 (en) 1992-06-18

Family

ID=15809460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16528787A Granted JPS6411128A (en) 1987-07-03 1987-07-03 3,4-dialkoxythiophene polymer film

Country Status (1)

Country Link
JP (1) JPS6411128A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0686662B2 (en) * 1994-05-06 2006-05-24 Bayer Ag Conductive coatings
EP1224503B1 (en) * 1999-10-15 2006-06-14 Agfa-Gevaert Liquid crystal alignment layer
JP5747460B2 (en) * 2010-08-04 2015-07-15 東ソー株式会社 Process for producing dialkoxythiophene

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366221A (en) * 1986-08-26 1988-03-24 ヘキスト アクチェンゲゼルシャフト Soluble conductive polymer, and its production and use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366221A (en) * 1986-08-26 1988-03-24 ヘキスト アクチェンゲゼルシャフト Soluble conductive polymer, and its production and use

Also Published As

Publication number Publication date
JPS6411128A (en) 1989-01-13

Similar Documents

Publication Publication Date Title
TWI300419B (en) Process for the preparation of neutral polyethylenedioxythiophene, and corresponding polyethlenedioxythiophenes
DE602005003629T2 (en) Substituted thienothiophenes and conductive polymers
JP4688125B2 (en) Conductive polymer and solid electrolytic capacitor using the same
JPH0138808B2 (en)
JPH0632845A (en) Production of electrically conductive high molecular complex material
JP2007023090A (en) Oxidizing agent and dopant for synthesis of conductive polymer, its alcohol solution, conductive polymer synthesized therewith and solid electrolytic capacitor produced by using the conductive polymer as solid electrolyte
JPH0437090B2 (en)
US4892678A (en) Thiophene derivative polymer and a polymer composition thereof
JPH026767B2 (en)
JPH07286035A (en) Soluble conductive polymer and its production
JPH01500835A (en) Water-soluble self-doped conductive polymer and method for producing the same
JP3161058B2 (en) Poly (pyridine-2,5-diylvinylene) polymer and production method
JPH0574467A (en) Macromolecular solid electrolyte
JPH02218716A (en) Organic semiconductor and production thereof
JP3058735B2 (en) Polypyrrole derivative and method for producing the same
JPH06239996A (en) Conductive polymer and its preparation
JPS63199727A (en) Organic semiconductor
JPH04306230A (en) Aniline copolymer and composition thereof
JP2003040856A (en) Meta-fluorobenzenesulfonic acid derivative and dopant
JP2011099010A (en) Production method for polythiophene, production method for polythiophene dispersion, polythiophene dispersion, and conductive film
TWI306461B (en) Oxidizing agent useful for oxidative polymerization of high conductive polymers
JP2005350525A (en) Conductive polyaniline derivative and composition thereof
JP2008063585A (en) Oxidizing agent for producing electrically-conductive polymer and method for producing the same
JP3058737B2 (en) Polypyrrole derivative and method for producing the same
JPH04372623A (en) Polyaniline derivative and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term