JPH0728512B2 - Method for obtaining residual rate of dielectric breakdown voltage of rotating electric machine winding, and method for estimating remaining life of rotating electric machine - Google Patents

Method for obtaining residual rate of dielectric breakdown voltage of rotating electric machine winding, and method for estimating remaining life of rotating electric machine

Info

Publication number
JPH0728512B2
JPH0728512B2 JP6617689A JP6617689A JPH0728512B2 JP H0728512 B2 JPH0728512 B2 JP H0728512B2 JP 6617689 A JP6617689 A JP 6617689A JP 6617689 A JP6617689 A JP 6617689A JP H0728512 B2 JPH0728512 B2 JP H0728512B2
Authority
JP
Japan
Prior art keywords
winding
electric machine
rotating electric
insulator
converted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6617689A
Other languages
Japanese (ja)
Other versions
JPH02246753A (en
Inventor
啓司 鈴木
宏之 神谷
東村  豊
博 宮尾
良三 武内
正俊 谷口
正己 助田
崇 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6617689A priority Critical patent/JPH0728512B2/en
Publication of JPH02246753A publication Critical patent/JPH02246753A/en
Publication of JPH0728512B2 publication Critical patent/JPH0728512B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、回転電機巻線の余寿命を診断する際に用いら
れる巻線絶縁破壊耐電圧の残存率を求める方法、及びそ
の求められた巻線絶縁破壊耐電圧の残存率を利用した余
寿命推定方法に係り、特に頻繁な起動停止,負荷変動、
及び無効電力変動(以下VAR変動という)等が生じる回
転電機巻線の絶縁余寿命を推定する手法に関する新たな
提案である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention is a method for obtaining a residual ratio of a winding breakdown voltage used in diagnosing a remaining life of a rotating electric machine winding, and the method thereof. The present invention relates to a remaining life estimation method that uses the residual rate of winding insulation breakdown withstand voltage.
It is a new proposal for a method of estimating the remaining insulation life of the rotating electric machine winding that causes fluctuations in reactive power (hereinafter referred to as VAR fluctuations).

〔従来の技術〕[Conventional technology]

一般に回転電機に限らず、電気機器において電気絶縁物
の劣化は、最終的には絶縁破壊耐電圧の低下に表われ、
それらの電気機器が問題なく運転されるためには、それ
ぞれ機器に必要とされる運転条件に合つた絶縁破壊耐電
圧を保有している必要がある。
Generally, not only for rotating electrical machines, but for electrical equipment, deterioration of electrical insulators eventually appears as a decrease in dielectric breakdown withstand voltage,
In order for these electric devices to operate without problems, it is necessary to have a dielectric breakdown withstand voltage that meets the operating conditions required for each device.

従来、回転電機巻線に施された絶縁の上記した絶縁破壊
耐電圧の残存率(以下BDV(BREAK DOWN VOLTAGE)残存
率という)の推定法として、文献「大形回転機コイルの
寿命診断技術」(日立評論,VOL67,No.2,1985−2)があ
る。
Conventionally, as a method for estimating the remaining rate of the above-mentioned dielectric breakdown withstand voltage (hereinafter referred to as BDV (BREAK DOWN VOLTAGE) remaining rate) of the insulation applied to the windings of rotating electric machines, the document "Life diagnosing technology for large rotating machine coils" (Hitachi Review, VOL67, No.2, 1985-2).

この文献では、6.6KVを超える高電圧が印加される巻線
絶縁の劣化要因として次の4点を挙げている。
In this document, the following four points are cited as the causes of deterioration of the winding insulation to which a high voltage exceeding 6.6 KV is applied.

(1)電気的な劣化(課電劣化) 一般的には、V−t特性に代表される巻線絶縁層内のボ
イド放電、更に電界強度の高い領域ではトリーニングな
どによる劣化。
(1) Electrical deterioration (voltage degradation) Generally, void discharge in the winding insulating layer represented by the Vt characteristic, and deterioration due to training in a region where the electric field strength is high.

(2)ヒートサイクルによる劣化 発電機の起動停止、もしくは負荷変動によるもので、導
線と絶縁層の線膨張係数が異なるため、それらの境界部
に剪断力が発生し、導線と絶縁層とのはく離、もしくは
絶縁層内のボイドの拡大などに影響を及ぼす。また巻線
自体が熱延びすることにより、巻線端部に曲げモーメン
トが発生し、スロツト出口部及び巻線曲り部(スロツト
出口すぐの巻線端部の曲がつた部分)の絶縁層に低サイ
クル領域での曲げ疲労を生じさせる。
(2) Deterioration due to heat cycle Since the linear expansion coefficient of the conductor and the insulating layer is different due to the start / stop of the generator or load fluctuation, shear force is generated at the boundary between them and the conductor and the insulating layer are separated. Or, it affects the expansion of voids in the insulating layer. In addition, the winding itself heat-extends, which causes a bending moment at the winding end, which causes a decrease in the insulating layer at the slot outlet and winding bend (the bent portion of the winding end immediately at the slot outlet). Causes bending fatigue in the cycle region.

(3)機械的な劣化 定常運転時及び突発短絡などの異常運転時の、電磁力,
コア振動などによる高サイクル疲労による劣化。
(3) Mechanical deterioration Electromagnetic force during steady operation and abnormal operation such as sudden short circuit,
Deterioration due to high cycle fatigue due to core vibration.

(4)熱的な劣化 絶縁レンジ収縮,熱分解などによるボイド発生、及びは
く離などによる劣化。
(4) Thermal deterioration Degradation due to insulation range shrinkage, voiding due to thermal decomposition, and peeling.

上記(1)〜(4)に述べた要因から、BDV残存率(V
/V)は次式(1)で表わされている。
From the factors described in (1) to (4) above, the BDV residual rate (V
R / V O ) is expressed by the following equation (1).

/V=(V/V×V/V×V/V)…(1) V;残存破壊耐電圧、 V;初期破壊耐電圧 V/V;課電劣化によるBDV残存率 V/V;ヒートサイクル劣化によるBDV残存率 V/V;熱劣化によるBDV残存率 従つて(1)式より回転電機の運転時間Yと、起動停止
回数Nが決まれば、巻線絶縁のBDV残存率は多数の実験
データを基にして、BDV残存率をパラメータとするNと
Yとの関係マスターカーブから、ある起動停止回数N1
運転年数Y1よりBDV残存率V/Vを容易に推定するこ
とができる。以下本方法をN−Yマツプ法という。
V R / V O = (V E / V O × V H / V O × V T / V O) ... (1) V R; residual breakdown voltage resistance, V O; initial breakdown withstand voltage V E / V O; BDV residual rate due to voltage deterioration V H / V O ; BDV residual rate due to heat cycle deterioration V T / V O ; BDV residual rate due to thermal deterioration Therefore, according to equation (1), the operating time Y of the rotating electric machine and the number of start / stop Once N is determined, the BDV residual rate of winding insulation is based on a large number of experimental data, and the relationship between N and Y with BDV residual rate as a parameter. From a master curve, a certain number of start / stop times N 1 and years of operation Y 1 Therefore, the BDV residual rate V R / V O can be easily estimated. Hereinafter, this method is referred to as an NY map method.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記従来技術は、各種変動の少ない定常状態で使用され
ている回転電機については、そのBDV残存率は非常に高
い精度で推定出来ることが確認されているが、頻繁な負
荷変動、及びVAR変動(製鉄所負荷等に多く見られる)
等、電機巻線に対して大きなストレスを与える因子の多
発している回転電機では、精度が低下する欠点があつ
た。
It has been confirmed that the above-mentioned conventional technology can estimate the BDV residual rate of a rotating electric machine used in a steady state with various fluctuations with extremely high accuracy, but frequent load fluctuations and VAR fluctuations ( It is often seen in steel mill loads, etc.)
However, there is a drawback in that the accuracy is lowered in the rotating electric machine in which many factors that give great stress to the electric machine winding occur.

本発明は、この精度が低化する欠点を補う手法として考
えたもので、その目的とする所は、回転電機巻線に対し
て大きなストレスを与える因子、具体的には負荷変動,V
AR変動を用いて、当該変動因子の多発する運転条件下で
使用される回転電機のBDV残存率の算出精度を高め、ひ
いてはそれを利用して推定する回転電機巻線の絶縁余寿
命診断方法を提供することにある。
The present invention was considered as a method of compensating for the drawback of lowering the accuracy, and the purpose thereof is to consider a factor that gives a large stress to the rotating electric machine winding, specifically, load fluctuation, V
Using the AR variation, we improve the calculation accuracy of the BDV residual rate of the rotating electrical machine used under the operating condition where the variation factor frequently occurs, and by using it, we can estimate the residual insulation life of the rotating electrical machine by using the method. To provide.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的は、巻線絶縁に対して大きなストレスを加える
各々の因子を等価的に起動停止回数に変換し、実際の起
動停止回数をこの等価起動停止回数に補正し、その等価
起動停止回数を使用することにより達成する。すなわ
ち、従来技術であるN−Yマツプ法では、起動停止回数
は単なる機器の起動と停止の回数のみを採用しているた
め、これでは機器の起動及び停止によつて、互いに線膨
張係数の異なる巻線導体と絶縁層との境界部に剪断力が
発生し、導体と絶縁層とのはく離もしくは絶縁層のボイ
ドの拡大などに影響を及ぼす因子が欠けることになる。
The purpose of the above is to convert each factor that applies a large stress to the winding insulation to the equivalent number of start / stop times, correct the actual number of start / stop times to this equivalent number of start / stop times, and use the equivalent start / stop times. Achieve by doing. That is, in the N-Y map method, which is a conventional technique, the number of times of starting and stopping is merely the number of times of starting and stopping the device. Therefore, in this case, the coefficient of linear expansion differs between the starting and stopping of the device. A shearing force is generated at the boundary between the winding conductor and the insulating layer, and a factor that influences separation of the conductor and the insulating layer or expansion of voids in the insulating layer is lacking.

しかし、絶縁層に影響を及ぼす現象は、起動後の運転中
にも表われる例えば負荷の変動及びVAR変動等による温
度上昇の変化によつても表われる。
However, the phenomenon that affects the insulating layer also appears due to a change in temperature rise due to, for example, load fluctuations and VAR fluctuations that also appear during operation after startup.

従つて、従来用いていた単なる起動停止回数に例えば負
荷変動,VAR変動等の因子を等価的な起動停止回数に換算
した数字を加えて補正し、これを当該回転機の等価起動
停止回数として扱うことより、N−Yマツプの精度が格
段に向上するものである。
Therefore, the mere number of start-stops used in the past is corrected by adding a number obtained by converting factors such as load fluctuation and VAR fluctuation into an equivalent number of start-stops, and this is treated as the number of equivalent start-stops of the rotating machine. Therefore, the accuracy of the NY map is remarkably improved.

〔作用〕[Action]

負荷変動及びVAR変動の電気的な変動の回数を、起動停
止回数に等価的に変換するためには、それぞれの変動に
よつて生ずる巻線絶縁の歪レベルの差を比較する必要が
ある。その歪レベルを知るために、まず起動停止回数,
負荷変動回数(大きさも含む),VAR変動回数(大きさも
含む)をそれぞれ温度上昇の値に変換する。(ここで起
動停止は、無負荷から定格負荷までの変動を意味し、電
気的事象のものである。) 得られた各々の温度上昇値は、絶縁物の種類や巻線の長
さに関係して、実験的に得られる歪値を用いて歪に換算
する。そして、この歪が求められれば絶縁物の曲げ疲労
曲線にあてはめることによつて、前記歪を絶縁物の曲げ
疲労の度合に数値化できる。絶縁物の曲げ疲労曲線は、
歪と同様に絶縁物の種類に応じて、実験的に曲げ疲労を
加え、何回で破壊(もしくはクラツクの発生)に至るか
を測定することによつて求めることができる。
In order to equivalently convert the number of electrical fluctuations of load fluctuations and VAR fluctuations into the number of start and stop times, it is necessary to compare the difference in the strain level of the winding insulation caused by each fluctuation. To know the distortion level, first,
The number of load fluctuations (including magnitude) and the number of VAR fluctuations (including magnitude) are converted into temperature rise values. (Here, start-stop means the change from no load to the rated load, and is an electrical event.) Each temperature rise value obtained is related to the type of insulation and the length of the winding. Then, the strain value obtained experimentally is used to convert into strain. Then, if this strain is obtained, the strain can be quantified by the bending fatigue curve of the insulator by applying it to the bending fatigue curve of the insulator. The bending fatigue curve of an insulator is
Similar to the strain, it can be determined by experimentally applying bending fatigue depending on the type of the insulator and measuring the number of times the fracture (or the occurrence of crack) is reached.

このような変換手法で得られた曲げ疲労回数を、線形累
積疲労損傷則(以下単にマイナー則という)を用いて実
際の起動停止回数に負荷変動と、VAR変動を加えた形の
等価な等価起動停止回数を算出することが可能になる。
Using the linear cumulative fatigue damage rule (hereinafter simply referred to as the minor rule), the bending fatigue count obtained by such a conversion method is added to the actual start / stop count to account for load fluctuations and VAR fluctuations. It is possible to calculate the number of stops.

以上述べたように、当該等価起動停止回数には実際の起
動停止回数は無論のこと、負荷変動,VAR変動を温度上昇
値に換算して等価な起動停止回数に換算した回数も含ま
れており、従来のBDV残存率を算定したN−Yマツプ法
を補う形で、より精度の高いBDV残存率を推定すること
が可能になる。
As described above, the equivalent number of start and stop is not limited to the actual number of start and stop, and includes the number of times when load fluctuation and VAR fluctuation are converted into temperature rise values and converted into equivalent number of start and stop. , It is possible to estimate the BDV residual rate with higher accuracy by supplementing the conventional NY map method for calculating the BDV residual rate.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図から第6図を用いて説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 6.

本発明のBDV残存率は、実際の起動停止回数の他に、巻
線絶縁物にストレスを与える因子として負荷変動と、VA
R変動を用い各々の因子を次のように温度上昇の値に換
算する。第1図は、本発明の手法によるBDV残存率を求
める流れを表わしたもので、起動停止による巻線の温度
上昇は、つまりは起動してから定格負荷状態までの温度
上昇であり、実測により求めることが可能で、これをT1
とする。
The BDV residual ratio of the present invention is, in addition to the actual number of times of starting and stopping, load fluctuation as a factor that gives stress to the winding insulation, VA
Using R fluctuation, each factor is converted into the value of temperature rise as follows. FIG. 1 shows a flow for obtaining the BDV residual rate according to the method of the present invention. The temperature increase of the winding due to start / stop is the temperature increase from the start to the rated load state. You can ask for this, T 1
And

次に、負荷変動及びVAR変動による温度上昇は電流の変
化分及びその電流が流れる巻線の電気抵抗分から算出す
る。これらをそれぞれT2,T3とする。
Next, the temperature rise due to load fluctuation and VAR fluctuation is calculated from the change in current and the electrical resistance of the winding in which the current flows. Let these be T 2 and T 3 , respectively.

この様に算出された温度上昇換算値は、第2図に示す巻
線に施された絶縁物の種類によつて実験的に求めること
のできる温度上昇と歪の関係により、起動停止による温
度上昇T1によつて発生する歪をε1,負荷変動による温度
上昇T2によつて発生する歪をε2,VAR変動による温度上
昇によつて発生する歪εを求めることができる。第2
図に示す巻線絶縁の温度上昇と、それにより発生する歪
との関係は巻線サイズにより異なるため、マスターカー
ブを設定する際は施された絶縁物の種類、及び巻線長さ
Lcにより変化するので、その各々を実際の適用状況を考
慮した形で実験して、数種類作成するとともに、本法を
適用する回転電機の仕様を事前に熟知して、最適なもの
を使用することが必要である。
The temperature rise conversion value calculated in this way is the temperature rise due to start / stop due to the relationship between the temperature rise and strain that can be experimentally determined by the type of insulation material applied to the winding shown in FIG. The strain generated by T 1 is ε 1 , the temperature rise due to load change is T 2 , the strain caused by T 2 is ε 2 , and the strain ε 3 caused by temperature rise due to VAR change can be calculated. Second
The relationship between the temperature rise of the winding insulation shown in the figure and the strain caused by it varies depending on the winding size.Therefore, when setting the master curve, the type of insulating material applied and the winding length
Since it changes depending on Lc, experiment each one in consideration of the actual application situation, create several types, and familiarize yourself in advance with the specifications of the rotating electrical machine to which this method is applied, and use the optimum one. is necessary.

以上の方法により求めた、各々の温度上昇によつて発生
する歪ε12を用い、第3図に示す絶縁物の歪と
曲げ振動疲労回数の関係グラフ(以下S−N曲線と呼
ぶ)によつて、ε12に対応する曲げ振動疲労回
数N10,N20,N30を求める。このN10,N20,N30は、ε12,
εの各々の歪を絶縁物に与えた場合に、その絶縁物が
破壊、又は亀裂を生ずるまでに至る寿命曲げ振動疲労回
数を実験的に求めたS−N曲線を用いることによつて算
出することが可能なものである。
Using the strains ε 1 , ε 2 and ε 3 generated by the respective temperature rises obtained by the above method, the relation graph between the strain of the insulator and the bending vibration fatigue number shown in FIG. (Referred to as a curve), the bending vibration fatigue counts N 10 , N 20 , N 30 corresponding to ε 1 , ε 2 , ε 3 are obtained. This N 10 , N 20 , N 30 is ε 1 , ε 2 ,
When each strain of ε 3 is applied to an insulator, the number of life bending vibration fatigue until the insulator is broken or cracked is calculated by using an SN curve obtained experimentally. It is possible to do.

以上によつて求めたデータは、負荷変動とVAR変動によ
る温度上昇分が、巻線絶縁に与えるストレスを曲げ振動
疲労回数に置換したものになる。
The data obtained as described above is the data obtained by replacing the stress applied to the winding insulation by the temperature rise due to load fluctuation and VAR fluctuation with bending vibration fatigue frequency.

そこで、これらの曲げ振動疲労回数N10,N20,N30を、現
在までの実際の起動停止回数N1,負荷変動回数N2,VAR変
動回数N3の既知のデータより、マイナー則を用いて次式
によつて、等価起動停止回数Nを求める。
Therefore, these bending vibration fatigue counts N 10 , N 20 and N 30 are calculated using the Miner's law from the known data of actual start / stop count N 1 , load change count N 2 and VAR change count N 3 to date. Then, the equivalent start / stop frequency N E is calculated by the following equation.

上式によつて求めらた等価起動停止回数Nは、負荷変
動,VAR変動が加味された形になつているので、その値を
もつて従来から知られているN−Yマツプにあてはめる
ことにより、BDV残存率を推定することができる。さら
に、実際の起動停止回数と、本手法による等価起動停止
回数の差を求めて、回転機の使用状況の軽量を判定する
ことも可能である。第4図は本手法により求めた等価起
動停止回数と、運転年数に基づいて、N−Yマツプ上で
BDV残存率を表わしたグラフである。
Since the equivalent start / stop frequency N E obtained by the above equation has a form in which load fluctuation and VAR fluctuation are taken into consideration, it is necessary to apply it to the conventionally known NY map. Thus, the BDV residual rate can be estimated. Furthermore, it is also possible to determine the lightness of the usage status of the rotating machine by obtaining the difference between the actual number of times of starting and stopping and the equivalent number of times of starting and stopping by this method. Fig. 4 shows the number of equivalent start-ups and stoppages obtained by this method and the number of years of operation on the NY map.
It is a graph showing the BDV residual rate.

本発明によれば、実際の起動停止回数の他に、巻線絶縁
にストレスを与える因子(本実施例では、負荷変動とVA
R変動)をも等価的に起動停止回数に換算して、等価起
動停止回数を求めているため、非常に精度良くBDV残存
率を推定することができる様になるとともに回転機の使
用状況を判定する指標として活用できる様になる。
According to the present invention, in addition to the actual number of times of starting and stopping, factors that give stress to the winding insulation (in this embodiment, load fluctuation and VA
(R fluctuation) is also equivalently converted to the number of times of starting and stopping, and the equivalent number of times of starting and stopping is calculated, so it is possible to estimate the BDV residual rate with high accuracy and determine the usage status of the rotating machine. It can be used as an index.

そして、上記BDV残存率を応用することで、第5図に示
す回転機の余寿命推定をおこなうグラフを作成すること
ができる。これは、過去から現在に至るまでの運転形態
から、今後の運転形態を予測し、BDV残存率の経時的変
化を見るものである。
Then, by applying the above BDV residual rate, it is possible to create a graph for estimating the remaining life of the rotating machine shown in FIG. This is to predict the future driving mode from the driving modes from the past to the present and to see the change over time in the BDV residual rate.

以下、その手法について説明する。The method will be described below.

対象とする回転機の現在に至るまでの運転経歴から、例
えば年単位の起動停止回数,負荷変動の大きさや回数、
及びVAR変動の大きさや回数を算出することができる。
さらに実際の起動停止回数と等価起動停止回数の偏差も
でる。
From the operation history of the target rotating machine up to the present, for example, the number of start-stops per year, the magnitude and number of load fluctuations,
It is also possible to calculate the magnitude and number of VAR fluctuations.
Further, the deviation between the actual number of times of starting and stopping and the number of times of equivalent starting and stopping can be obtained.

これらのデータを、将来にわたつて、年単位にとらえ
て、各々の運転年数に対するBDV残存率を第5図に示す
如きグラフ化する。この様にして求められる将来のBDV
残存率は、当然である点で限界値を示すことになり、そ
の点における運転年数が、当該回転機の巻線を更新しな
くてはならない年限として知ることができる。
From the future, these data will be grasped on a yearly basis, and the BDV residual rate for each operating years will be graphed as shown in FIG. Future BDVs required in this way
The remaining rate naturally shows a limit value, and the number of years of operation at that point can be known as the period during which the winding of the rotary machine must be updated.

なお、第5図り示すは平均値としての耐用年数を推定
するグラフである。実際は、管理上の平均値を使用す
る訳ではなく、標準偏差σと称される値を加味した下限
値に補正して見ることになろう。第6図は標準偏差σ
(%)のグラフで、この値はBDV残存率が変化する割合
の時間比から求めるものである。
In addition, FIG. 5 shows a graph for estimating the useful life as an average value. In practice, the average value for management is not used, but it will be corrected to the lower limit considering the value called standard deviation σ. Fig. 6 shows standard deviation σ
In the graph of (%), this value is obtained from the time ratio of the rate at which the BDV residual rate changes.

〔発明の効果〕〔The invention's effect〕

本発明によれば、回転機の実際の起動停止回数だけでな
く、巻線絶縁物に大きなストレスを与える他の因子であ
る負荷変動,VAR変動を等価的に起動停止回数に換算して
加味しており、単純な実起動停止回数のみの判定と違つ
たBDV残存率を等価起動停止回数と運転年数との関係よ
り、精度の高いBDV残存率を求めることができる効果が
ある。
According to the present invention, not only the actual number of starting and stopping of the rotating machine, but also load variation and VAR variation, which are other factors that give a large stress to the winding insulator, are equivalently converted into the number of starting and stopping and added. Therefore, the BDV residual rate, which is different from the simple determination of the actual start / stop frequency, has the effect of being able to obtain a highly accurate BDV residual rate from the relationship between the equivalent start / stop frequency and the number of years of operation.

さらに、本手法による等価起動停止回数から算出された
BDV残存率の値を用いて、余寿命診断をおこなう場合、
実起動停止回路によるそれよりも格段に精度が向上する
もので、特に頻繁な起動停止,負荷変動,VAR変動が生ず
る使用条件にある回転機の信頼性の向上に貢献すること
ができる。
Furthermore, it was calculated from the number of equivalent starts and stops by this method.
When performing remaining life diagnosis using the value of BDV residual rate,
The accuracy is significantly improved compared to that by the actual start / stop circuit, and it can contribute to the improvement of the reliability of the rotating machine under the operating conditions where particularly frequent start / stop, load fluctuation, and VAR fluctuation occur.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の残存率を求める方法を説明するための
流れ図、第2図は温度上昇の換算値を絶縁物の歪に換算
するための図、第3図は絶縁物の歪と曲げ振動疲労回数
を実験的に求めた図、第4図は従来から用いられている
通称N−Yマツプと称される図、第5図,第6図は本発
明による余寿命推定方法を説明するための図である。 T1,T2,T3……温度上昇換算値、ε12……絶縁物
の歪値、Lc1,Lc2,Lc3……巻絶サイズ。
FIG. 1 is a flow chart for explaining a method for obtaining a residual ratio of the present invention, FIG. 2 is a diagram for converting a conversion value of temperature rise into strain of an insulator, and FIG. 3 is strain and bending of an insulator. FIG. 4 is a diagram in which the number of vibration fatigues is experimentally obtained, FIG. 4 is a diagram commonly used as a conventionally-known N-Y map, and FIGS. 5 and 6 are diagrams for explaining a residual life estimation method according to the present invention. FIG. T 1 , T 2 , T 3 …… Temperature rise conversion value, ε 1 , ε 2 , ε 3 …… Strain value of insulator, Lc 1 , Lc 2 , Lc 3 …… Winding size.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮尾 博 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 武内 良三 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 谷口 正俊 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 助田 正己 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 臼井 崇 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroshi Miyao, 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture, Hitate Works, Ltd., Hitachi Research Laboratory (72) Ryozo Takeuchi, 4026, Kuji Town, Hitachi City, Ibaraki, Ltd. Inside Hitachi Research Laboratory (72) Inventor Masatoshi Taniguchi 3-1-1 Sachimachi, Hitachi City, Ibaraki Hitachi Ltd. Hitachi Factory (72) Inventor Masami Sukeda 3-1-1 Sachimachi, Hitachi City, Ibaraki Hitachi, Ltd. Hitachi factory (72) Inventor Takashi Usui 3-1-1, Saiwaicho, Hitachi, Ibaraki Stock company Hitachi Ltd. Hitachi factory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】回転電機の起動停止回数と、運転時間か
ら、当該回転電機の巻線絶縁物の絶縁破壊耐電圧の残存
率を求める方法において、 前記起動停止回数を、巻線絶縁物にストレスを与える因
子として、実際の起動停止回数と他の因子を選択して、
それぞれの因子を温度上昇値に換算し、当該温度上昇値
を絶縁物から実験的に求められる歪と曲げ振動疲労回数
を用いて等価な起動停止回数に換算し、それぞれの因子
から求めた等価な起動停止回数の和として求め、前記回
転電機の運転時間から回転電機巻線の絶縁破壊耐電圧の
残存率を求める方法。
1. A method of obtaining a residual ratio of dielectric breakdown withstand voltage of a winding insulator of a rotating electric machine from the number of starting and stopping of the rotating electric machine and an operating time, wherein the starting and stopping times are stressed to the winding insulator. Select the actual number of starts and stops and other factors as factors that give
Each factor is converted to a temperature rise value, and the temperature rise value is converted into an equivalent number of start-stops using the strain and bending vibration fatigue number experimentally obtained from the insulator, and the equivalent value obtained from each factor is converted. A method of obtaining the residual rate of dielectric breakdown withstand voltage of the rotating electric machine winding from the operating time of the rotating electric machine, which is obtained as the sum of the number of times of starting and stopping.
【請求項2】請求項1記載の巻線絶縁物にストレスを与
える他の因子として、負荷変動を選択したことを特徴と
する回転電機巻線の絶縁破壊耐電圧の残存率を求める方
法。
2. A method for obtaining a residual ratio of dielectric breakdown withstand voltage of a rotating electric machine winding, wherein load fluctuation is selected as another factor that gives stress to the winding insulator according to claim 1.
【請求項3】請求項1記載の巻線絶縁物にストレスを与
える他の因子として、無効電力変動を選択したことを特
徴とする回転電機巻線の絶縁破壊耐電圧の残存率を求め
る方法。
3. A method for obtaining a residual rate of dielectric breakdown withstanding voltage of a rotating electric machine winding, wherein reactive power fluctuation is selected as another factor that gives stress to the winding insulator according to claim 1.
【請求項4】請求項1記載の巻線絶縁物にストレスを与
える他の因子として、負荷変動と無効電力変動を選択し
たことを特徴とする回転電機巻線の絶縁破壊耐電圧の残
存率を求める方法。
4. A residual ratio of dielectric breakdown withstand voltage of a rotary electric machine winding, wherein load fluctuation and reactive power fluctuation are selected as other factors that give stress to the winding insulation according to claim 1. How to ask.
【請求項5】回転電機の巻線にストレスを与える因子を
選択して該因子を温度上昇値に換算し、該温度上昇値を
実験的に得られる絶縁物に生ずる歪に換算し、該歪を実
験的に得られる絶縁物の曲げ振動疲労回数に換算し、該
曲げ振動疲労回数を起動停止回数に換算することによつ
て求めた等価起動停止回数と、前記回転電機の運転時間
から巻線絶縁物の破壊耐電圧の残存率を求める方法。
5. A factor which gives a stress to a winding of a rotating electric machine is selected, the factor is converted into a temperature rise value, and the temperature rise value is converted into a strain generated in an insulator obtained experimentally, and the strain is generated. Is converted to an experimentally obtained bending vibration fatigue number of the insulator, and the bending vibration fatigue number is converted to a start / stop number, and the equivalent start / stop number obtained by converting the winding number from the operating time of the rotating electric machine. A method of obtaining the remaining rate of breakdown withstand voltage of an insulator.
【請求項6】回転電機の巻線にストレスを与える因子を
択して該因子を温度上昇値に換算し、該温度上昇値を実
験的に得られる絶縁物に生ずる歪に換算し、該歪を実験
的に得られる絶縁物の曲げ振動疲労回数に換算し、該曲
げ振動疲労回数を起動停止回数に換算することによつて
求めた等価起動停止回数を、過去から現在まで算出し、
その等価起動停止回数と回転電機の運転時間から求めた
巻線絶縁物の破壊耐電圧の残存率を使つて、将来の巻線
絶縁物の破壊耐電圧の残存率を予測する回転電機巻線の
余寿命推定方法。
6. A factor that applies stress to a winding of a rotating electric machine is selected, the factor is converted to a temperature rise value, and the temperature rise value is converted to a strain generated in an experimentally obtained insulator, and the strain is generated. Is converted into an experimentally obtained bending vibration fatigue number of the insulator, and the equivalent starting / stopping number obtained by converting the bending vibration fatigue number into the starting / stopping number is calculated from the past to the present,
The residual rate of the breakdown withstand voltage of the winding insulation obtained from the number of equivalent start-stops and the operating time of the rotating electrical machine is used to predict the residual rate of the breakdown withstand voltage of the winding insulation in the future. Remaining life estimation method.
JP6617689A 1989-03-20 1989-03-20 Method for obtaining residual rate of dielectric breakdown voltage of rotating electric machine winding, and method for estimating remaining life of rotating electric machine Expired - Lifetime JPH0728512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6617689A JPH0728512B2 (en) 1989-03-20 1989-03-20 Method for obtaining residual rate of dielectric breakdown voltage of rotating electric machine winding, and method for estimating remaining life of rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6617689A JPH0728512B2 (en) 1989-03-20 1989-03-20 Method for obtaining residual rate of dielectric breakdown voltage of rotating electric machine winding, and method for estimating remaining life of rotating electric machine

Publications (2)

Publication Number Publication Date
JPH02246753A JPH02246753A (en) 1990-10-02
JPH0728512B2 true JPH0728512B2 (en) 1995-03-29

Family

ID=13308273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6617689A Expired - Lifetime JPH0728512B2 (en) 1989-03-20 1989-03-20 Method for obtaining residual rate of dielectric breakdown voltage of rotating electric machine winding, and method for estimating remaining life of rotating electric machine

Country Status (1)

Country Link
JP (1) JPH0728512B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3835444B2 (en) * 2003-10-02 2006-10-18 株式会社安川電機 Control device life diagnosis device
JP4675837B2 (en) * 2006-06-21 2011-04-27 中部電力株式会社 Evaluation method of remaining life of turbine generator stator coil
JP6193661B2 (en) * 2013-07-23 2017-09-06 株式会社東芝 Insulation deterioration diagnosis device for insulation material and diagnosis method thereof
US11885848B2 (en) * 2018-11-20 2024-01-30 Mitsubishi Electric Corporation Method for assessing remaining life of rotating electrical machine and device for assessing remaining life of rotating electrical machine
CN110824309B (en) * 2019-11-20 2022-03-01 国家电网有限公司 Device and method for detecting fatigue degree of insulator steel foot of overhead transmission line
CN113033882B (en) * 2021-03-09 2022-05-17 浙江零跑科技股份有限公司 Method for predicting residual life of vehicle-mounted electronic system

Also Published As

Publication number Publication date
JPH02246753A (en) 1990-10-02

Similar Documents

Publication Publication Date Title
Tavner Condition monitoring of rotating electrical machines
Harvey Effect of elevated temperature operation on the strength of aluminum conductors
Kulan et al. Design and analysis of compressed windings for a permanent magnet integrated starter generator
US6737767B2 (en) Synchronous compensation
Stone et al. A thermal cycling type test for generator stator winding insulation
JPH0728512B2 (en) Method for obtaining residual rate of dielectric breakdown voltage of rotating electric machine winding, and method for estimating remaining life of rotating electric machine
Tran et al. Online distribution service transformer health assessment using real-time grid energy monitor
Mitsui et al. Mechanical degradation of high voltage rotating machine insulation
JP4675837B2 (en) Evaluation method of remaining life of turbine generator stator coil
McNutt et al. The combined effects of thermal aging and short-circuit stresses on transformer life
Montgomery The motor rewind issue-a new look
Maughan et al. Mechanical testing of high voltage stator insulation systems
Schlegel et al. Investigations on material structural changes on electrical joints at high contact temperature
Kadotani et al. A proposal for insulation diagnosis of 3 kV motor stator windings
Wichmann AC and DC Methods ror the Evaluation and Maintenance Testing or High-Voltage Insulation in Electric Machines
JP3864063B2 (en) Degradation evaluation method for coil insulation paper
DE102022208636B3 (en) Device and method for determining the remaining useful life of an electrical machine
Leibfried et al. Profile of water content and degree of polymerisation in the solid insulation of power transformers
Mbaye et al. Analytical approach of PD activity in low voltage motors fed by inverters [adjustable speed drives]
Korzhov et al. Variation of dissipative properties of 6 (10) kV cable insulation as a supplementary diagnostic criterion
JP5482112B2 (en) Gas cable remaining life diagnosis method
Park et al. Utilization of UCD Matrix through Hierarchy Priority Analysis of VLF tanδ
Okubo Recent activity and future trend on ageing characteristics of electrical insulation in GIS from manufacturer's view point
JP2869499B2 (en) Estimation method for insulation deterioration of electrical equipment
Johnson et al. Leakage-Voltage Characteristics of Insulation Related to DC Dielectric Strength [includes discussion]

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 14

EXPY Cancellation because of completion of term