JP6193661B2 - Insulation deterioration diagnosis device for insulation material and diagnosis method thereof - Google Patents

Insulation deterioration diagnosis device for insulation material and diagnosis method thereof Download PDF

Info

Publication number
JP6193661B2
JP6193661B2 JP2013152288A JP2013152288A JP6193661B2 JP 6193661 B2 JP6193661 B2 JP 6193661B2 JP 2013152288 A JP2013152288 A JP 2013152288A JP 2013152288 A JP2013152288 A JP 2013152288A JP 6193661 B2 JP6193661 B2 JP 6193661B2
Authority
JP
Japan
Prior art keywords
insulation
insulation resistance
resistance value
deteriorated
barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013152288A
Other languages
Japanese (ja)
Other versions
JP2015021916A (en
Inventor
聖子 村山
聖子 村山
洋子 藤堂
洋子 藤堂
隆 水出
隆 水出
木下 晋
晋 木下
俊明 小川
俊明 小川
中島 渉
渉 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013152288A priority Critical patent/JP6193661B2/en
Publication of JP2015021916A publication Critical patent/JP2015021916A/en
Application granted granted Critical
Publication of JP6193661B2 publication Critical patent/JP6193661B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明の実施形態は、電力設備に使用される絶縁材料の絶縁劣化診断装置、およびその診断方法に関する。   Embodiments described herein relate generally to an insulation deterioration diagnosis device for an insulation material used for electric power equipment, and a diagnosis method thereof.

従来、電力設備には、エポキシ樹脂、ポリエステル樹脂などの絶縁材料で成形された絶縁物が多用されており、高機能化、縮小化などが図られている。このような電力設備は、長期間に亘り安定した運転を継続するため、主回路部材を支持固定する絶縁物の絶縁劣化診断が行われている。   2. Description of the Related Art Conventionally, in power facilities, an insulator formed of an insulating material such as an epoxy resin or a polyester resin has been widely used, and high functionality and downsizing are achieved. Since such power equipment continues stable operation for a long period of time, an insulation deterioration diagnosis of an insulator that supports and fixes the main circuit member is performed.

この種の絶縁劣化診断は、推定手段と診断手段で構成されているものがある。推定手段は、実測された絶縁抵抗値を悪環境下での絶縁抵抗値に推定するものであり、多変量解析のT法(タグチ法)により、絶縁抵抗値が推定されている。診断手段は、推定された絶縁抵抗値から、絶縁物が使用できる有効期間を求め、未然に絶縁事故を防ぐものとなっている(例えば、特許文献1参照。)。   This type of insulation deterioration diagnosis includes an estimation means and a diagnosis means. The estimation means estimates the actually measured insulation resistance value to the insulation resistance value under a bad environment, and the insulation resistance value is estimated by the T method (Taguchi method) of multivariate analysis. The diagnosis means obtains an effective period during which the insulator can be used from the estimated insulation resistance value, and prevents an insulation accident in advance (for example, see Patent Document 1).

ここで、絶縁抵抗の測定は、絶縁物の任意個所であり、一般的には、測定がし易く、塵埃が堆積し易い、絶縁物上面が選ばれている。また、複数個所で測定を行い、信頼性の向上が図られているものがあるものの、その場所などが定まっていないのが現状である。絶縁物には、使用状態により機械的、電気的などの各種のストレスが加わり、劣化状況も相違することが想定される。このため、各種のストレスが加わる絶縁物の劣化状況を確実に把握することのできるものが望まれていた。   Here, the measurement of the insulation resistance is an arbitrary portion of the insulator, and in general, the top surface of the insulator is selected so that the measurement is easy and dust is easily deposited. In addition, there are some cases where reliability is improved by measuring at a plurality of locations, but the location is not yet determined. It is assumed that the insulator is subjected to various stresses such as mechanical and electrical depending on the state of use, and the deterioration state is also different. For this reason, the thing which can grasp | ascertain the degradation condition of the insulator to which various stresses are added was desired.

特開2012−141146号公報JP 2012-141146 A

本発明が解決しようとする課題は、機械的、電気的などの各種のストレスが加わり、劣化状況も相違することが想定される絶縁物の絶縁劣化を確実に診断することのできる絶縁材料の絶縁劣化診断装置、およびその診断方法を提供することにある。   The problem to be solved by the present invention is that insulation of an insulating material that can reliably diagnose insulation deterioration of an insulator that is assumed to be subjected to various stresses such as mechanical and electrical and that the deterioration situation is also different. It is an object of the present invention to provide a deterioration diagnosis apparatus and a diagnosis method thereof.

上記課題を解決するために、実施形態の絶縁材料の絶縁劣化診断装置は、真空遮断器に用いられる絶縁バリアの機械的劣化部位、電気的劣化部位、熱的劣化部位、環境的劣化部位から測定した実測絶縁抵抗値を入力する入力部と、前記実測絶縁抵抗値を所定環境下での推定絶縁抵抗値に推定する推定部と、前記推定絶縁抵抗値の複数を比較して最低絶縁抵抗値を抽出する比較抽出部と、前記最低絶縁抵抗値を予め求めておいた劣化特性曲線と対比し、閾値を下回るまでの時間を算出して絶縁診断を行う診断部とを備え、前記機械的劣化部位は、上部導体を固定する前記絶縁バリア上面であり、前記電気的劣化部位は、上部導体または下部導体を固定する前記絶縁バリアの相間部分であり、前記熱的劣化部位は、真空バルブの可動軸が接続される下部導体を固定する前記絶縁バリア部分であり、前記環境的劣化部位は、前記絶縁バリアの上面、および側面であることを特徴とする。 In order to solve the above-described problems, the insulation deterioration diagnosis device for an insulating material according to the embodiment measures from a mechanically deteriorated part, an electrically deteriorated part, a thermally deteriorated part, and an environmentally deteriorated part of an insulating barrier used for a vacuum circuit breaker. An input unit for inputting the measured insulation resistance value, an estimation unit for estimating the measured insulation resistance value to an estimated insulation resistance value under a predetermined environment, and comparing a plurality of the estimated insulation resistance values to obtain a minimum insulation resistance value. comprising a comparison extracting unit that extracts, in comparison with the minimum insulation resistance deterioration characteristic curve that has been previously obtained, and a diagnosis unit for performing insulation diagnosis by calculating the time to below the threshold, the mechanical degradation sites Is an upper surface of the insulation barrier that fixes the upper conductor, the electrical deterioration portion is an interphase portion of the insulation barrier that fixes the upper conductor or the lower conductor, and the thermal deterioration portion is a movable shaft of the vacuum valve. Is connected Is said isolation barrier portion for fixing the lower conductor, the environmental degradation sites, wherein said insulating barrier top, and a side.

本発明の実施例に係る絶縁材料の絶縁劣化診断装置の構成を示すブロック図。The block diagram which shows the structure of the insulation deterioration diagnostic apparatus of the insulating material which concerns on the Example of this invention. 本発明の実施例に係る絶縁材料の絶縁劣化診断装置の動作を説明するフロー図。The flowchart explaining operation | movement of the insulation deterioration diagnostic apparatus of the insulating material which concerns on the Example of this invention. 本発明の実施例に係る絶縁材料の絶縁劣化診断装置の測定部位を示す斜視図。The perspective view which shows the measurement site | part of the insulation deterioration diagnostic apparatus of the insulating material which concerns on the Example of this invention. 本発明の実施例に係る絶縁材料の絶縁劣化診断装置の絶縁診断を説明する特性図。The characteristic view explaining the insulation diagnosis of the insulation deterioration diagnosis apparatus of the insulating material which concerns on the Example of this invention.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の実施例に係る絶縁材料の絶縁劣化診断装置を図1〜図3を参照して説明する。図1は、本発明の実施例1に係る本発明の実施例に係る絶縁材料の絶縁劣化診断装置の構成を示すブロック図、図2は、本発明の実施例に係る絶縁材料の絶縁劣化診断装置の動作を説明するフロー図、図3は、本発明の実施例に係る絶縁材料の絶縁劣化診断装置の測定部位を示す斜視図、図4は、本発明の実施例に係る絶縁材料の絶縁劣化診断装置の絶縁診断を説明する特性図である。   An insulation deterioration diagnosis apparatus for an insulation material according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram showing a configuration of an insulation deterioration diagnosis apparatus for an insulating material according to an embodiment of the present invention according to Embodiment 1 of the present invention, and FIG. 2 is an insulation deterioration diagnosis for an insulation material according to an embodiment of the present invention. FIG. 3 is a perspective view showing a measurement site of an insulation material insulation deterioration diagnosis apparatus according to an embodiment of the present invention, and FIG. 4 is an insulation material insulation according to an embodiment of the present invention. It is a characteristic view explaining the insulation diagnosis of a deterioration diagnostic apparatus.

図1に示すように、絶縁材料の絶縁劣化診断装置は、絶縁物表面の複数個所から測定した絶縁抵抗値(実測絶縁抵抗値)を入力する入力部1、所定環境下での絶縁抵抗値(推定絶縁抵抗値)に推定する推定部2、複数個所の推定した絶縁抵抗値を比較し、最大変化し最も低下した絶縁抵抗値(最低絶縁抵抗値)と測定個所を抽出する比較抽出部3、抽出された最も低下した絶縁抵抗値から余寿命を算出する診断部4で構成されている。   As shown in FIG. 1, the insulation deterioration diagnosis device for an insulating material has an input unit 1 for inputting an insulation resistance value (measured insulation resistance value) measured from a plurality of locations on the surface of the insulator, an insulation resistance value under a predetermined environment ( (Estimated insulation resistance value) estimation unit 2 for comparing, estimated insulation resistance values at a plurality of locations are compared, comparison extraction unit 3 for extracting the measurement point and the insulation resistance value (minimum insulation resistance value) that has changed most and decreased most, The diagnosis unit 4 is configured to calculate the remaining life from the extracted insulation resistance value that has been reduced most.

次に、絶縁劣化診断について、図2〜図4を参照して説明する。   Next, the insulation deterioration diagnosis will be described with reference to FIGS.

図2に示すように、測定個所は、過大な機械的ストレスが加わる機械的劣化部位(s1)、過大な電気的ストレスが加わる電気的劣化部位(s2)、温度上昇が大きく熱的ストレスが加わる熱的劣化部位(s3)、有害ガスに曝され易く、また、塵埃が堆積し易い環境的劣化部位(s4)である。   As shown in FIG. 2, the measurement location includes a mechanically deteriorated part (s1) to which excessive mechanical stress is applied, an electrically deteriorated part (s2) to which excessive electrical stress is applied, and a thermal stress is greatly applied. It is a thermal degradation site (s3), an environmental degradation site (s4) that is easily exposed to harmful gases and that dust is likely to accumulate.

これらの具体的な測定個所を、真空遮断器を例にとり説明する。図3に示すように、真空遮断器には、三相分がコ字状に成形された不飽和ポリエステル樹脂からなる絶縁バリア5に、それぞれ点線で示すような真空バルブ6が設けられている。真空バルブ6の上下には、上部導体7と下部導体8が固定されている。下部導体8の下部には、真空バルブ6を開閉操作する図示しない操作機構が設けられる。   These specific measurement points will be described by taking a vacuum circuit breaker as an example. As shown in FIG. 3, the vacuum circuit breaker is provided with a vacuum valve 6 as indicated by a dotted line on an insulating barrier 5 made of an unsaturated polyester resin in which three phases are formed in a U shape. An upper conductor 7 and a lower conductor 8 are fixed above and below the vacuum valve 6. An operating mechanism (not shown) for opening and closing the vacuum valve 6 is provided below the lower conductor 8.

測定個所10は、絶縁バリア5の上面で上部導体7を固定する部分であり、真空バルブ6開閉時の繰り返しの機械的衝撃が最も加わる機械的劣化部位s1となる。測定個所11は、絶縁バリア5の上面で相間絶縁となる上部導体7近傍部分であり、電界強度が最も高くなる電気的劣化部位s2となる。下部導体8の相間部分でもよい。測定個所12は、下部導体8に真空バルブ6の可動軸が接続される接続個所であり、温度上昇が大きく熱的劣化部位s3となる。測定個所13は、塵埃が堆積し易い絶縁バリア5の上面であり、また、測定個所14は、絶縁バリア5の側面で有害ガスや紫外線などに曝され易い部分であり、環境的劣化部位s4となる。劣化部位は、劣化を起こし易い代表的な個所を測定し、測定漏れを防ぐものとなっている。   The measurement location 10 is a portion for fixing the upper conductor 7 on the upper surface of the insulating barrier 5, and becomes a mechanical deterioration portion s 1 to which repeated mechanical shocks are most frequently applied when the vacuum valve 6 is opened and closed. The measurement location 11 is a portion in the vicinity of the upper conductor 7 that provides phase-to-phase insulation on the upper surface of the insulation barrier 5 and is an electrically deteriorated portion s2 in which the electric field strength is highest. It may be an interphase portion of the lower conductor 8. The measurement location 12 is a connection location where the movable shaft of the vacuum valve 6 is connected to the lower conductor 8, and the temperature rises greatly and becomes a thermal degradation site s3. The measurement location 13 is the upper surface of the insulating barrier 5 where dust is likely to accumulate, and the measurement location 14 is a portion that is easily exposed to harmful gases, ultraviolet rays, and the like on the side surface of the insulation barrier 5, and the environmental degradation site s4. Become. As for the deteriorated portion, a representative portion that is likely to cause deterioration is measured to prevent measurement omission.

このような複数個所から実測した絶縁抵抗(実測絶縁抵抗値)は、測定時の温度、湿度によって変化する。このため、予め求めておいた新品、劣化品での温湿度特性から、例えば温度40℃、湿度95%RHのような悪環境下での絶縁抵抗値(推定絶縁抵抗値)に推定する(s5)。新品では、温湿度の影響を受け難いが、劣化品では、劣化程度に比例して影響を大きく受ける。次に、推定した絶縁抵抗値から最も大きく変化し、最低値(最低絶縁抵抗値)になった測定個所を抽出する(s6)。これを予め求めておいた劣化特性曲線と対比させ、閾値を下回るまでの時間を求め、余寿命を算出する(s7)。余寿命とは、健全に運転することのできる残りの時間である。閾値は、例えば、温度40℃、湿度95%RHのとき10Ω.cmが選ばれる。 The insulation resistance (measured insulation resistance value) measured from such a plurality of locations varies depending on the temperature and humidity at the time of measurement. For this reason, the insulation resistance value (estimated insulation resistance value) in a bad environment such as a temperature of 40 ° C. and a humidity of 95% RH is estimated from the temperature / humidity characteristics of new and deteriorated products obtained in advance (s5). ). A new product is hardly affected by temperature and humidity, but a deteriorated product is greatly affected in proportion to the degree of deterioration. Next, a measurement location that is the largest change from the estimated insulation resistance value and has the lowest value (minimum insulation resistance value) is extracted (s6). This is compared with the deterioration characteristic curve obtained in advance, the time until it falls below the threshold is obtained, and the remaining life is calculated (s7). The remaining life is the remaining time that can be soundly operated. The threshold is, for example, 10 7 Ω. At a temperature of 40 ° C. and a humidity of 95% RH. cm is chosen.

ここで、劣化特性曲線は、図4に示すように、両対数グラフに直線近似できるものの、劣化が進むと劣化部位によっては近似できないことがある。機械的劣化部位では、繰り返し疲労により微小クラックが入ると、時間t0から急激に低下するA特性となる。また、電気的劣化部位では、トラッキングが発生すると、機械的劣化部位と同様に、時間t0から急激に低下するA特性となる。熱的劣化部位と環境的劣化部位では、一律的に累積劣化するB特性となる。このため、時間t0以降での測定では、上述のように、閾値を下回る短時間側の時間t1を求める。逆に、時間t0以前での測定では、いずれの劣化部位も同様の絶縁抵抗値となるため、時間t1または時間t2を求めるものとなる。しかしながら、測定個所との照合を行い、明らかに機械的、電気的劣化部位ではA特性、また、熱的、環境的劣化部位ではB特性を用いるものとする。複合劣化では、安全サイドを考慮し、A特性を用いる。   Here, as shown in FIG. 4, the deterioration characteristic curve can be approximated by a straight line to a log-log graph, but may not be approximated depending on the deteriorated part as the deterioration progresses. In the mechanically deteriorated portion, when a micro crack is caused by repeated fatigue, the A characteristic is rapidly reduced from time t0. In addition, in the electrically deteriorated portion, when tracking occurs, the A characteristic decreases rapidly from time t0 as in the case of the mechanically deteriorated portion. In the thermally deteriorated part and the environmentally deteriorated part, the B characteristic is uniformly accumulated and deteriorated. For this reason, in the measurement after time t0, as described above, the time t1 on the short time side below the threshold is obtained. On the other hand, in the measurement before time t0, since all the deteriorated parts have the same insulation resistance value, time t1 or time t2 is obtained. However, comparison with the measurement location is performed, and clearly the A characteristic is used at the mechanical and electrical degradation sites, and the B characteristic is used at the thermal and environmental degradation sites. In the combined deterioration, the A characteristic is used in consideration of the safety side.

なお、A特性、B特性の劣化特性曲線は、現地回収品を含め、実験室で加速劣化させたデータから求めることができる。特に、現地回収品のデータは、種々の劣化様相を忠実に反映しており、信頼性を大きく向上させることができる。   In addition, the deterioration characteristic curves of the A characteristic and the B characteristic can be obtained from data accelerated and deteriorated in the laboratory, including the locally collected products. In particular, the data of locally collected products faithfully reflects various aspects of deterioration, and can greatly improve reliability.

上記では、絶縁材料に不飽和ポリエステル樹脂を用いて説明したが、エポキシ樹脂で注型した絶縁バリアや支持がいし、また、ガラス積層エポキシ板で加工された絶縁ロッドなど、電力設備に用いられる絶縁物に適用することができる。   In the above description, the unsaturated polyester resin is used as the insulating material. However, the insulating barrier and support cast with epoxy resin, and the insulator used for power equipment such as the insulating rod processed with the glass laminated epoxy plate. Can be applied to.

また、絶縁劣化が変色に起因するところが大ききので、絶縁抵抗の測定のほか、表面粗さ、光沢度、色調を測定すれば、精度よく絶縁診断を行うことができる。更に、三相の各相でそれぞれ同一個所を測定し、劣化部位の平均値を算出し、余寿命を求めるようにすれば、絶縁診断の精度を向上させることができる。   In addition, since insulation deterioration is largely caused by discoloration, insulation diagnosis can be performed with high accuracy by measuring surface roughness, glossiness, and color tone in addition to measurement of insulation resistance. Furthermore, if the same part is measured in each of the three phases, the average value of the deteriorated parts is calculated, and the remaining life is obtained, the accuracy of the insulation diagnosis can be improved.

ここで、絶縁抵抗値、表面粗さ度、光沢度、色調程度を、絶縁診断値と称する。これらも実測値から推定値を推定し、最低値が抽出される。   Here, the insulation resistance value, surface roughness, glossiness, and color tone are referred to as insulation diagnosis values. These also estimate the estimated value from the actually measured value, and the minimum value is extracted.

上記実施例の絶縁材料の絶縁劣化診断装置によれば、絶縁バリア5において、機械的劣化部位、電気的劣化部位、熱的劣化部位、環境的劣化部位の複数個所から絶縁抵抗を測定し、その中から最低値を示す劣化部位を抽出し、劣化特性曲線から余寿命を算出しているので、測定漏れを防げ、精度よく絶縁劣化診断を行うことができる。   According to the insulation deterioration diagnosis device for an insulating material of the above embodiment, the insulation resistance is measured from a plurality of locations of a mechanical deterioration portion, an electrical deterioration portion, a thermal deterioration portion, and an environmental deterioration portion in the insulation barrier 5, Since the deteriorated portion showing the lowest value is extracted from the inside and the remaining life is calculated from the deterioration characteristic curve, it is possible to prevent measurement omission and perform insulation deterioration diagnosis with high accuracy.

以上述べたような実施形態によれば、複数個所から絶縁抵抗を実測して最低値を抽出しているので、絶縁劣化診断の精度を格段に向上させることができる。   According to the embodiment as described above, since the insulation resistance is actually measured from a plurality of locations and the minimum value is extracted, the accuracy of the insulation deterioration diagnosis can be remarkably improved.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1 入力部
2 推定部
3 比較抽出部
4 診断部
5 絶縁バリア
6 真空バルブ
7 上部導体
8 下部導体
10、11、12、13、14 測定個所
DESCRIPTION OF SYMBOLS 1 Input part 2 Estimation part 3 Comparison extraction part 4 Diagnosis part 5 Insulation barrier 6 Vacuum valve 7 Upper conductor 8 Lower conductor 10, 11, 12, 13, 14 Measurement location

Claims (2)

真空遮断器に用いられる絶縁バリアの機械的劣化部位、電気的劣化部位、熱的劣化部位、環境的劣化部位から測定した実測絶縁抵抗値を入力する入力部と、
前記実測絶縁抵抗値を所定環境下での推定絶縁抵抗値に推定する推定部と、
前記推定絶縁抵抗値の複数を比較して最低絶縁抵抗値を抽出する比較抽出部と、
前記最低絶縁抵抗値を予め求めておいた劣化特性曲線と対比し、閾値を下回るまでの時間を算出して絶縁診断を行う診断部とを備え、
前記機械的劣化部位は、上部導体を固定する前記絶縁バリア上面であり、
前記電気的劣化部位は、上部導体または下部導体を固定する前記絶縁バリアの相間部分であり、
前記熱的劣化部位は、真空バルブの可動軸が接続される下部導体を固定する前記絶縁バリア部分であり、
前記環境的劣化部位は、前記絶縁バリアの上面、および側面であることを特徴とする絶縁材料の絶縁劣化診断装置。
An input unit for inputting a measured insulation resistance value measured from a mechanically deteriorated part, an electrically deteriorated part, a thermally deteriorated part, and an environmentally deteriorated part of an insulation barrier used in a vacuum circuit breaker ;
An estimation unit that estimates the measured insulation resistance value to an estimated insulation resistance value under a predetermined environment ;
A comparison extraction unit that extracts a minimum insulation resistance value by comparing a plurality of the estimated insulation resistance values ;
Comparing with the deterioration characteristic curve obtained in advance the minimum insulation resistance value, comprising a diagnostic unit for performing insulation diagnosis by calculating the time until it falls below the threshold ,
The mechanically deteriorated portion is the upper surface of the insulating barrier that fixes the upper conductor,
The electrical degradation site is an interphase portion of the insulation barrier that fixes the upper conductor or the lower conductor,
The thermally deteriorated portion is the insulating barrier portion that fixes the lower conductor to which the movable shaft of the vacuum valve is connected,
Insulating deterioration diagnosis apparatus for insulating material, wherein the environmentally deteriorated portion is an upper surface and a side surface of the insulating barrier .
真空遮断器に用いられる絶縁バリアの機械的劣化部位、電気的劣化部位、熱的劣化部位、環境的劣化部位から絶縁抵抗を測定し、
これらの絶縁抵抗を温度40℃−湿度95%での絶縁抵抗値に推定した後、
推定した絶縁抵抗値を比較して最低値を抽出し、
この最低値を予め求めておいた劣化特性曲線と対比し、閾値を下回るまでの時間を算出する絶縁材料の絶縁診断方法であって、
前記機械的劣化部位は、上部導体を固定する前記絶縁バリア上面であり、
前記電気的劣化部位は、上部導体または下部導体を固定する前記絶縁バリアの相間部分であり、
前記熱的劣化部位は、真空バルブの可動軸が接続される下部導体を固定する前記絶縁バリア部分であり、
前記環境的劣化部位は、前記絶縁バリアの上面、および側面であることを特徴とする絶縁材料の絶縁診断方法。
Measure the insulation resistance from the mechanical, electrical, thermal, and environmental degradation sites of the insulation barrier used in vacuum circuit breakers.
After estimating these insulation resistances to insulation resistance values at a temperature of 40 ° C. and a humidity of 95%,
Compare the estimated insulation resistance value and extract the lowest value,
In contrast to the deterioration characteristic curve obtained in advance, the minimum value is an insulation diagnosis method for an insulating material that calculates the time until the threshold value is exceeded,
The mechanically deteriorated portion is the upper surface of the insulating barrier that fixes the upper conductor,
The electrical degradation site is an interphase portion of the insulation barrier that fixes the upper conductor or the lower conductor,
The thermally deteriorated portion is the insulating barrier portion that fixes the lower conductor to which the movable shaft of the vacuum valve is connected,
The insulation diagnostic method for an insulating material, wherein the environmentally deteriorated portion is an upper surface and a side surface of the insulating barrier.
JP2013152288A 2013-07-23 2013-07-23 Insulation deterioration diagnosis device for insulation material and diagnosis method thereof Expired - Fee Related JP6193661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013152288A JP6193661B2 (en) 2013-07-23 2013-07-23 Insulation deterioration diagnosis device for insulation material and diagnosis method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013152288A JP6193661B2 (en) 2013-07-23 2013-07-23 Insulation deterioration diagnosis device for insulation material and diagnosis method thereof

Publications (2)

Publication Number Publication Date
JP2015021916A JP2015021916A (en) 2015-02-02
JP6193661B2 true JP6193661B2 (en) 2017-09-06

Family

ID=52486476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013152288A Expired - Fee Related JP6193661B2 (en) 2013-07-23 2013-07-23 Insulation deterioration diagnosis device for insulation material and diagnosis method thereof

Country Status (1)

Country Link
JP (1) JP6193661B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106771894B (en) * 2016-11-23 2019-06-04 南京南瑞集团公司 A kind of insulating materials voltage ageing capability evaluating device and detection method
JP7128001B2 (en) * 2018-03-19 2022-08-30 株式会社東芝 Deterioration diagnosis system, resistance value estimation method, and computer program
JP7334517B2 (en) * 2019-07-18 2023-08-29 富士電機株式会社 power converter

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0728512B2 (en) * 1989-03-20 1995-03-29 株式会社日立製作所 Method for obtaining residual rate of dielectric breakdown voltage of rotating electric machine winding, and method for estimating remaining life of rotating electric machine
JPH05264645A (en) * 1992-03-19 1993-10-12 Hitachi Ltd Method for estimating deterioration of insulating material
JPH1098806A (en) * 1997-10-24 1998-04-14 Hitachi Ltd Switchboard
JP4045776B2 (en) * 2001-04-17 2008-02-13 三菱電機株式会社 Life diagnosis method for power distribution facilities
JP4260465B2 (en) * 2002-11-29 2009-04-30 東芝エレベータ株式会社 Insulation life estimation method and insulation life estimation system for motor
JP4488797B2 (en) * 2004-06-02 2010-06-23 株式会社東芝 Insulation deterioration monitoring system for electrical equipment
US7659728B1 (en) * 2006-08-23 2010-02-09 Watkins Jr Kenneth S Method and apparatus for measuring degradation of insulation of electrical power system devices
JP4937012B2 (en) * 2007-06-26 2012-05-23 三菱電機株式会社 Remaining life diagnosis method for power distribution equipment
JP2009240095A (en) * 2008-03-27 2009-10-15 Toshiba Corp Vacuum breaker
DE112009004250T5 (en) * 2009-02-23 2012-05-03 Mitsubishi Electric Corp. Diagnostic method and diagnostic device for the remaining life of a switching device
JP2011027896A (en) * 2009-07-23 2011-02-10 Sony Corp Camera-shake correcting device, lens barrel and imaging apparatus
JP5475538B2 (en) * 2010-04-26 2014-04-16 株式会社東芝 Vacuum circuit breaker
JP5722027B2 (en) * 2010-12-28 2015-05-20 株式会社東芝 Insulation material deterioration diagnosis device, deterioration diagnosis method, and deterioration diagnosis program

Also Published As

Publication number Publication date
JP2015021916A (en) 2015-02-02

Similar Documents

Publication Publication Date Title
US10012697B2 (en) Failure prediction device and method for vacuum circuit breakers
CN106443426B (en) Vibration sensor assembly for real-time predictive and diagnostic health assessment of power transmission and distribution systems of power circuit breakers
CN106449297B (en) Electromechanical device for real-time prognosis and diagnostic health assessment of circuit breaker power transmission and distribution systems
US9704661B2 (en) Circuit breaker operating mechanism component monitoring system and associated method
JP6193661B2 (en) Insulation deterioration diagnosis device for insulation material and diagnosis method thereof
US9778318B2 (en) Component monitoring system with monitory latch assembly
EP3201640B1 (en) Method and device for monitoring circuit breaker
CN109932592B (en) Method and apparatus for fault determination of electrical devices
CN110634714B (en) Fault prediction apparatus and method for vacuum circuit breaker
CN110546881B (en) Segmented estimation of negative sequence voltage for fault detection in electrical systems
JP2005302794A (en) Transformer monitoring system
US11971442B2 (en) Gas monitoring system for gas-insulated switchgears
JP6719335B2 (en) Switch operating characteristic monitoring device, switch including the same, and switch operating characteristic monitoring method
US20130187389A1 (en) Method for predictive monitoring of switch contactors and system therefor
JP3870321B2 (en) Switch operating characteristic monitoring device
CN105157866B (en) Measuring circuit
Huger et al. On the effects of high-temperature-induced aging on electrical machine windings
JP5265245B2 (en) System, method and apparatus for measuring the capacitance of a stator component
JP5787565B2 (en) Insulation deterioration diagnosis method
Gao et al. An adaptive Kalman filtering approach to induction machine stator winding temperature estimation based on a hybrid thermal model
JP2014142996A (en) Vacuum deterioration detector of enclosed switchgear
CN109900387B (en) Method and device for determining alarm temperature rise threshold of power equipment
Budiman et al. Estimation of particle initiated PD inception voltage around spacer in GIS
JP6906349B2 (en) Failure rate calculation device and failure rate calculation method
RU2649646C1 (en) Method of monitoring the operating life of electrical isolation of a transformer

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20150218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160302

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170810

R151 Written notification of patent or utility model registration

Ref document number: 6193661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees