JPH07283525A - Migration preventing method - Google Patents

Migration preventing method

Info

Publication number
JPH07283525A
JPH07283525A JP6730594A JP6730594A JPH07283525A JP H07283525 A JPH07283525 A JP H07283525A JP 6730594 A JP6730594 A JP 6730594A JP 6730594 A JP6730594 A JP 6730594A JP H07283525 A JPH07283525 A JP H07283525A
Authority
JP
Japan
Prior art keywords
solder
flux
circuit board
water
electronic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6730594A
Other languages
Japanese (ja)
Inventor
Satoshi Uda
敏 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6730594A priority Critical patent/JPH07283525A/en
Publication of JPH07283525A publication Critical patent/JPH07283525A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To restrain migration which is to be generated on an electronic circuit board. CONSTITUTION:All of the soldering parts 2 on an electronic circuit board 1 are electrically connected, and a voltage of 12V is so applied that the soldering parts 2 on the electronic circuit board 1 are made a positive pole and a platinum board 3 is made a negative pole. After that, both of the poles are dipped in 10% nitric acid aqueous solution 4. A non-conductor coating film is formed on the surface of solder, as the result of electrochemical reaction of solder composition. Since the non-conductor coating film is formed on the whole surface of the solder, generation of migration can be restrained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子回路を組み立てる
ハンダ付けに関し、特にハンダ付け後の表面処理により
マイグレーションを防止する方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to soldering for assembling electronic circuits, and more particularly to a method for preventing migration by surface treatment after soldering.

【0002】[0002]

【従来の技術】電子回路基板製造工程は、一般に、電子
回路基板のプリント配線上に電子部品を実装する工程、
電子部品をハンダ付けする工程、基板表面を洗浄する工
程、基板表面をコーティングする工程の順序で行われ
る。電子部品をハンダ付けする工程の際、電子回路基板
上のプリント配線とハンダとを濡れやすくして接合し易
いようにするために、フラックスが使用される。その使
用方法として、プリント配線のハンダ接合面にフラック
スを塗布した後、ハンダ付けする方法と、ハンダとフラ
ックスとを混合してクリーム状としたものをプリント配
線のハンダ接合面に塗布し、加熱してハンダを溶融させ
てハンダ付けする方法とがある。フラックスを使用する
ことにより、プリント配線のハンダ接合面に介在し、濡
れ性を悪くしてハンダ付けする際に妨害となる汚れや酸
化物等を溶解・除去すると共に、その後、再び酸化する
ことを防止することができる。このフラックスの種類と
しては、大別して、有機溶媒に溶けやすい油溶性フラッ
クスと、水に溶けやすい水溶性フラックスとがある。
2. Description of the Related Art Generally, an electronic circuit board manufacturing process is a process of mounting electronic parts on a printed wiring of an electronic circuit board,
The steps of soldering electronic components, cleaning the surface of the substrate, and coating the surface of the substrate are performed in this order. During the process of soldering electronic components, flux is used to facilitate the wetting and joining of the printed wiring on the electronic circuit board and the solder. As its usage, after applying flux to the solder joint surface of the printed wiring, soldering is used, or a mixture of solder and flux to form a cream is applied to the solder joint surface of the printed wiring and heated. There is a method of melting and soldering the solder. By using flux, it is possible to dissolve and remove the dirt and oxides that intervene on the solder joint surface of the printed wiring and deteriorate the wettability and interfere with soldering, and then oxidize again. Can be prevented. The types of the flux are roughly classified into an oil-soluble flux easily soluble in an organic solvent and a water-soluble flux easily soluble in water.

【0003】フラックスは一般に腐食性を有するため、
ハンダ付け後は、基板上に残ったフラックスを除去する
必要がある。油溶性フラックスの場合、有機性溶媒に溶
けやすいため、有機性溶媒で電子回路基板を洗浄すれ
ば、油溶性フラックスは洗い落とすことができる。これ
まで有機性溶媒のうち、特に洗浄性に優れたクロロフル
オロカーボンが用いられることが多かったが、クロロフ
ルオロカーボンを用いた洗浄から、水を用いた洗浄に変
換されつつある。
Since flux is generally corrosive,
After soldering, it is necessary to remove the flux remaining on the substrate. Since the oil-soluble flux is easily dissolved in the organic solvent, the oil-soluble flux can be washed off by washing the electronic circuit board with the organic solvent. Among organic solvents, chlorofluorocarbon, which is particularly excellent in detergency, has been often used so far, but cleaning with chlorofluorocarbon is being changed to cleaning with water.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、水は洗
浄性が弱いため、水溶性フラックスを用いても、電子回
路基板と電子部品との間に入り込んだ水溶性フラックス
等は十分に洗浄できず、多少の水溶性フラックスが電子
回路基板上に残ってしまうおそれがある。水溶性フラッ
クスは吸湿して膨潤しやすく、水分を含むことより電解
質となるので、ハンダ付けの工程後、水溶性フラックス
が電子回路基板上に残った状態であると、吸湿・膨潤し
た水溶性フラックスにより、ハンダ付けした電極間が繋
がることがある。また、フラックス残渣が十分洗浄され
たとしても、水は洗浄力が弱いので、汚れまでは十分洗
浄されず、空気中の水分が付着し、その水分に各種の汚
れの成分が溶け込んで電解質となることがある。このよ
うに、ハンダ付けした電極間を短絡した電解質9が存在
したとき、図3に示すように、電極間に電荷を加える
と、正極7となる回路の表面の金属元素Mがイオン化し
て金属イオン5となり、負極8側に移行する現象である
マイグレーションを起こす(a)。そして、移動した金
属イオン5の一部は、負極表面で結晶化して結晶6とな
る(b)。さらに結晶化が進むと、正極まで到達して、
遂には電極同士が金属元素Mにより短絡し、大きな電流
が流れてしまう(c)おそれがある。
However, since water has a weak detergency property, even if a water-soluble flux is used, the water-soluble flux and the like that have entered between the electronic circuit board and the electronic component cannot be sufficiently washed, Some water-soluble flux may remain on the electronic circuit board. Since the water-soluble flux easily absorbs moisture and swells and becomes an electrolyte by containing water, if the water-soluble flux remains on the electronic circuit board after the soldering process, the Therefore, the soldered electrodes may be connected to each other. In addition, even if the flux residue is thoroughly washed, water has a weak detergency, so it is not sufficiently washed up to dirt and moisture in the air adheres, and various dirt components dissolve in it and become an electrolyte. Sometimes. In this way, when the electrolyte 9 in which the soldered electrodes are short-circuited is present, as shown in FIG. 3, when a charge is applied between the electrodes, the metal element M on the surface of the circuit that becomes the positive electrode 7 is ionized and metal The ions become 5 to cause migration, which is a phenomenon of migration to the negative electrode 8 side (a). Then, a part of the moved metal ions 5 is crystallized on the surface of the negative electrode to become crystals 6 (b). When the crystallization further progresses, it reaches the positive electrode,
Finally, the electrodes may be short-circuited by the metal element M and a large current may flow (c).

【0005】本発明は上記の問題に着目して、電子回路
基板上のハンダ表面に、絶縁体で水に難溶な不動態皮膜
を形成することにより、マイグレーションの発生を防ぐ
ことを目的とする。
In view of the above problems, it is an object of the present invention to prevent migration from occurring by forming a passivation film, which is an insulating material and hardly soluble in water, on the solder surface on an electronic circuit board. .

【0006】[0006]

【課題を解決するための手段】本発明におけるマイグレ
ーション防止方法は、フラックスを用いてハンダ付けを
した後、フラックス残渣を洗浄するための洗浄後もしく
は洗浄と同時に、ハンダ表面に不動態皮膜を形成するこ
とを特徴とする。
The migration prevention method of the present invention forms a passivation film on the surface of solder after or at the same time as cleaning for cleaning flux residue after soldering with flux. It is characterized by

【0007】[0007]

【作用】ハンダ付けをする前に、ハンダ接合面にフラッ
クスを塗布し、またはハンダとフラックスとを混合させ
てハンダ付けをする。その後、フラックス残渣を洗浄す
るための洗浄後もしくは洗浄と同時に、ハンダ表面に絶
縁体であり水に難溶な不動態皮膜を形成する。このよう
に不動態皮膜でハンダ全体を覆うためにハンダの成分で
ある金属元素が表面に露出せず、電解質に触れることが
ないので、金属元素が金属イオンになることがほとんど
ない。このため、ハンダ表面からの金属イオンの発生が
抑えられ、マイグレーションの発生が抑制される。
[Function] Before soldering, flux is applied to the solder joint surface, or solder and flux are mixed to perform soldering. Then, after or at the same time as the cleaning for cleaning the flux residue, a passive film that is an insulator and hardly soluble in water is formed on the solder surface. In this way, since the entire solder is covered with the passivation film, the metal element that is a component of the solder is not exposed on the surface and does not come into contact with the electrolyte, so that the metal element hardly becomes a metal ion. Therefore, the generation of metal ions from the solder surface is suppressed, and the migration is suppressed.

【0008】[0008]

【実施例】本発明の実施例を図1に基づいて説明する。
基板上のハンダ表面に電気化学反応により、ハンダ表面
に不動態である二酸化鉛(PbO2 )と二酸化スズ(S
nO2 )との皮膜を形成する。これをさらに詳しく説明
する。電気回路基板のプリント配線上に水溶性フラック
スを塗布し、電子部品を実装して、ハンダ付けを行い、
その後、水でプリント配線上の水溶性フラックスを洗浄
する。次に、電気回路基板1上のハンダ部2(PbとS
nとの合金)をすべて配線により電気的に接続する。こ
れは、後述する電気化学反応でハンダ部2をすべて正極
にするためであり、後述する電気化学反応の後、配線を
切り放す。電気回路基板1上のハンダ部2が正極、白金
板3が負極となる様に12Vの電圧を加える。別に電解
質として10%硝酸水溶液(pH値<1)を用意する。
そして、電圧を加えた状態で10%硝酸水溶液中に正
極、負極をともに浸して電気化学反応を行った。この
際、正極と負極とを接触しない様に配置する。印加電圧
12V、印加電流2.4mAで反応を開始して5分間反
応させた。上記の条件で行うに従い、銀白色のハンダが
次第に光沢を失い、表面が濃い灰色に変化した。また当
初、正極から泡が発生していたが、濃い灰色に変化する
に従い、泡の発生は減少していき、遂には泡の発生が止
まった。泡は主に水素ガスである。正極での主たる化学
反応式を次に示す。
EXAMPLE An example of the present invention will be described with reference to FIG.
Due to the electrochemical reaction on the solder surface on the substrate, lead dioxide (PbO 2 ) and tin dioxide (S
form a film with nO 2 ). This will be described in more detail. Applying water-soluble flux on the printed wiring of the electric circuit board, mounting electronic parts, soldering,
After that, the water-soluble flux on the printed wiring is washed with water. Next, the solder portion 2 (Pb and S
All alloys with n) are electrically connected by wiring. This is for making all the solder parts 2 into a positive electrode by the electrochemical reaction described later, and the wiring is cut off after the electrochemical reaction described later. A voltage of 12 V is applied so that the solder portion 2 on the electric circuit board 1 becomes the positive electrode and the platinum plate 3 becomes the negative electrode. Separately, a 10% aqueous nitric acid solution (pH value <1) is prepared as an electrolyte.
Then, both the positive electrode and the negative electrode were immersed in a 10% aqueous solution of nitric acid with a voltage applied to carry out an electrochemical reaction. At this time, the positive electrode and the negative electrode are arranged so as not to come into contact with each other. The reaction was started at an applied voltage of 12 V and an applied current of 2.4 mA and allowed to react for 5 minutes. As the above conditions were followed, the silver-white solder gradually lost its luster and the surface turned dark gray. Initially, bubbles were generated from the positive electrode, but as the color changed to dark gray, the generation of bubbles decreased, and finally the generation of bubbles stopped. Bubbles are mainly hydrogen gas. The main chemical reaction formulas for the positive electrode are shown below.

【化1】 上記の反応によって正極のハンダ表面に、絶縁体で水に
難溶の不動態である二酸化鉛と二酸化スズとを形成し
た。
[Chemical 1] Through the above reaction, lead dioxide and tin dioxide, which are insulative and hardly soluble in water, were formed on the solder surface of the positive electrode.

【0009】〔比較試験例〕上記の様にして、ハンダ表
面に絶縁体で水に難溶である不動態皮膜を形成したもの
と、従来のハンダ表面に不動態皮膜を形成しないものと
で、マイグレーションにより電極間が短絡するまでの時
間を比較した。テストピースとして、正極側、負極側と
も同じ形状で、電気回路基板上に長さ18mm、幅30
0μm、厚さ数10μmのハンダを盛りつけた電極を、
長さ方向と平行に900μmの間隔で並べたものを用意
する。基板は水溶性フラックスを用いてハンダを盛りつ
けられた後、水洗浄されている。さらに前記テストピー
スに上記実施例と同様な方法で、ハンダ表面に不動態皮
膜を形成させる。一方、比較用テストピースとして不動
態皮膜を形成させないものを準備する。それぞれのテス
トピースを、60℃の純水が入っている容器上に固定
し、蒸気を当てて電極面が結露している状態で12Vの
電圧を加える。このようにしてマイグレーションの発生
を促進させるテストを行った。それぞれのマイグレーシ
ョンによる短絡までの時間を表1に示す。
[Comparative Test Example] [0009] As described above, a solder film on which a passivation film that is poorly soluble in water is formed on the solder surface and a conventional solder film on which a passivation film is not formed, The time until short-circuiting between the electrodes due to migration was compared. The test piece has the same shape on the positive electrode side and the negative electrode side, and has a length of 18 mm and a width of 30 on the electric circuit board.
An electrode with solder of 0 μm and thickness of several 10 μm
Those arranged in parallel with the length direction at intervals of 900 μm are prepared. The substrate is soldered with a water-soluble flux and then washed with water. Further, a passivation film is formed on the surface of the solder on the test piece by the same method as in the above embodiment. On the other hand, a test piece for comparison on which a passive film is not formed is prepared. Each test piece is fixed on a container containing pure water at 60 ° C., and steam is applied to apply a voltage of 12 V in a state where the electrode surface is condensed. In this way, a test for promoting the occurrence of migration was conducted. Table 1 shows the time to short circuit due to each migration.

【表1】 表1より、ハンダ表面に絶縁体で水に難溶である不動態
皮膜を形成したテストピースは、従来のハンダ表面に不
動態皮膜を形成しない比較用テストピースに比べて、3
倍以上の時間、電極間が短絡せず、寿命が伸びているこ
とがわかる。
[Table 1] From Table 1, it can be seen that the test piece having a passivation film, which is an insulator and hardly soluble in water, formed on the solder surface is 3 times larger than the comparative test piece having no passivation film formed on the solder surface.
It can be seen that there is no short circuit between the electrodes for more than twice the time, and the life is extended.

【0010】上記の実施例は、水溶性フラックス洗浄
後、表面処理工程を別に設けて、ハンダ表面の鉛とスズ
とが、水溶液中でそれぞれ化学変化して不動態皮膜にな
る。ハンダ表面が露出している部分は不動態皮膜が形成
されやすいが、洗浄されずに残ったフラックス残渣があ
っても不動態皮膜は形成される。それは、水溶性フラッ
クスは吸湿性があるため、ハンダ表面に水溶性フラック
スが残ってハンダ表面を覆っていても水溶性フラックス
内に水溶液が入り込んで電解質となり、ハンダ表面に不
動態皮膜が形成されるからである。また、電子回路基板
上の水溶性フラックスの洗浄液を利用し、水溶性フラッ
クスの洗浄と同時に、ハンダ表面に不動態皮膜を形成す
る表面処理を行ってもよい。
In the above-mentioned embodiment, a surface treatment step is separately provided after the water-soluble flux cleaning, and lead and tin on the solder surface are chemically changed in the aqueous solution to form a passive film. A passivation film is easily formed on the exposed portion of the solder surface, but a passivation film is formed even if there is a flux residue left without being cleaned. Since the water-soluble flux has hygroscopicity, even if the water-soluble flux remains on the solder surface and covers the solder surface, the aqueous solution enters the water-soluble flux and becomes an electrolyte, and a passivation film is formed on the solder surface. Because. Further, by using a cleaning solution for water-soluble flux on the electronic circuit board, surface treatment for forming a passivation film on the solder surface may be performed at the same time as cleaning the water-soluble flux.

【0011】上記実施例の様に電解質中で不動態皮膜を
形成する方法に限らず、電解質を噴霧状態にすることに
よっても、不動態皮膜を形成することができる。例え
ば、電子回路基板上のハンダ部を正極とし、電解質を噴
霧させるノズルを負極として、両極に電圧を加えながら
電解質を噴霧することによって、ハンダ表面に不動態皮
膜を形成する方法がある。
The passivation film can be formed not only by the method of forming the passivation film in the electrolyte as in the above embodiment but also by spraying the electrolyte. For example, there is a method in which a solder portion on an electronic circuit board is used as a positive electrode, a nozzle for spraying an electrolyte is used as a negative electrode, and an electrolyte is sprayed while applying a voltage to both electrodes to form a passivation film on the solder surface.

【0012】ハンダ表面に形成させる不動態皮膜は、絶
縁体であり、水に難溶性を示し、また、ハンダの成分を
化学変化させたものであればよい。例えば、ハンダの成
分の1つである鉛の場合、一酸化鉛、四酸化三鉛、三酸
化二鉛、二酸化鉛等の酸化物、硫化鉛等の硫化物、ま
た、塩化鉛等の塩化物ならば不動態皮膜となる。また、
不動態皮膜を形成する条件として、図2に示す図よりP
bの電位とpHとを不動態が形成する様に調整すれば、
不動態皮膜である鉛酸化物を形成する。また、Snの場
合も同様にスズ酸化物を形成する。
The passivation film formed on the surface of the solder may be an insulator, is hardly soluble in water, and has a chemical component change of the solder. For example, in the case of lead, which is one of the components of solder, lead monoxide, trilead tetraoxide, dilead trioxide, lead dioxide and other oxides, lead sulfide and other sulfides, and lead chloride and other chlorides. Then it becomes a passive film. Also,
As a condition for forming the passivation film, P from the diagram shown in FIG.
If the potential of b and pH are adjusted so that a passive state is formed,
Form lead oxide which is a passive film. Also, in the case of Sn, tin oxide is similarly formed.

【0013】腐食性ガスをハンダに晒すとハンダ表面に
不動態皮膜を形成することができる。しかし、ハンダ表
面をフラックスが覆っている場合、腐食性ガスがフラッ
クスを通過してハンダ表面に到達するのは難しいため、
フラックスが覆っている所は不動態皮膜が形成されにく
い。しかし、ハンダを電子回路基板上に付ける位置は、
ハンダに熱を加えやすい位置であるほうがよいので、電
子回路基板の表面の見やすい位置にハンダ付けが行われ
る場合が多い。このため、洗浄工程でハンダ表面のフラ
ックスは除去されやすい。この様に、洗浄工程でハンダ
表面のフラックスが除去されれば、洗浄後の電子回路基
板を腐食性ガス雰囲気下に晒すことができ、ハンダ表面
に不動態皮膜を形成することができる。腐食性ガスとし
て亜硫酸を用いた場合、ハンダ表面には主に硫化鉛と硫
化スズとの不動態皮膜ができる。
When a corrosive gas is exposed to solder, a passivation film can be formed on the solder surface. However, when the solder surface is covered with flux, it is difficult for corrosive gas to pass through the flux and reach the solder surface.
The passivation film is hard to form where the flux is covered. However, the position to attach the solder on the electronic circuit board is
Since it is preferable that the position where the heat is applied to the solder is easy, the solder is often applied to a position where the surface of the electronic circuit board can be easily seen. Therefore, the flux on the solder surface is easily removed in the cleaning process. In this way, if the flux on the solder surface is removed in the cleaning step, the cleaned electronic circuit board can be exposed to a corrosive gas atmosphere, and a passivation film can be formed on the solder surface. When sulfurous acid is used as the corrosive gas, a passivation film of mainly lead sulfide and tin sulfide is formed on the solder surface.

【0014】油溶性フラックスを用いてハンダ付けした
後、洗浄性に優れたクロロフルオロカーボンで洗浄すれ
ば電子回路基板上の油溶性フラックスはほとんど除去さ
れてしまうため、フラックスによって電極間が繋がるお
それはほとんどない。しかし、電極面が結露している状
態では結露した水が電解質となりマイグレーションの発
生する可能性はある。このため、油溶性フラックスを用
いてハンダ付けした後、クロロフルオロカーボンで洗浄
しても不動態皮膜を形成したほうがよい。
After soldering with an oil-soluble flux and washing with chlorofluorocarbon having excellent cleaning properties, most of the oil-soluble flux on the electronic circuit board is removed, so there is almost no possibility that the flux will connect the electrodes. Absent. However, when the electrode surface is condensed, the condensed water may become an electrolyte to cause migration. For this reason, it is better to form a passivation film by washing with chlorofluorocarbon after soldering with an oil-soluble flux.

【0015】従来の不動態皮膜を形成していなかったハ
ンダ表面では、電子回路基板表面を樹脂により防湿コー
ティングする際に、コーティング材を弾きやすく乗りに
くかった。しかし、ハンダ表面に不動態皮膜を形成した
ことによって、表面に多くの凹凸が形成されるため、コ
ーティング材がハンダ表面に染み込み、コーティングが
堅固なものとなるという効果がある。
On the solder surface where the conventional passive film is not formed, when the surface of the electronic circuit board is moisture-proof coated with a resin, the coating material is easy to flip and difficult to ride. However, since the passivation film is formed on the solder surface, many irregularities are formed on the surface, so that the coating material permeates the solder surface and the coating becomes firm.

【0016】[0016]

【発明の効果】ハンダ表面に絶縁体で水に難溶な不動態
皮膜を形成することにより、ハンダの成分である金属元
素が表面に露出せず、電解質に触れることがないので、
金属元素が金属イオンになることがほとんどない。よっ
て、ハンダ表面からの金属イオンの発生を抑えることが
できるため、マイグレーションの発生を抑えることがで
きる。
EFFECTS OF THE INVENTION By forming a passivation film, which is an insulator and is hardly soluble in water, on the surface of the solder, the metal element, which is a component of the solder, is not exposed on the surface and does not touch the electrolyte.
Metal elements rarely become metal ions. Therefore, the generation of metal ions from the solder surface can be suppressed, and thus the migration can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本実施例のハンダ表面に不動態皮膜を形
成する方法を示す図。
FIG. 1 is a diagram showing a method of forming a passivation film on the solder surface of the present embodiment.

【図2】 Pb−H2 O系において、Pbの電位と
pHとの関係より生じる鉛化合物を示す図。
FIG. 2 is a diagram showing a lead compound generated in the Pb—H 2 O system from the relationship between the Pb potential and pH.

【図3】 マイグレーションによる金属元素の移動
を示す模式図である。(a)は正極表面の金属元素がイ
オン化して、負極に移動する様子を模した図であり、
(b)はイオン化した金属元素が負極表面で結晶化する
様子を模した図であり、(c)は負極表面で結晶化した
金属元素が正極まで成長して、負極と正極とが短絡する
様子を模した図である。
FIG. 3 is a schematic diagram showing movement of a metal element due to migration. (A) is a diagram simulating a state in which a metal element on the surface of a positive electrode is ionized and moves to a negative electrode,
(B) is a diagram simulating a state in which an ionized metal element is crystallized on the surface of the negative electrode, and (c) is a state in which the metal element crystallized on the surface of the negative electrode grows to the positive electrode, and the negative electrode and the positive electrode are short-circuited. It is the figure which imitated.

【符号の説明】[Explanation of symbols]

1 ・・・ 電子回路基板 2 ・・・ ハンダ 3 ・・・ 白金板 4 ・・・ 10%硝酸水溶液 5 ・・・ イオン化した金属元素 6 ・・・ 負極表面で結晶化した金属元素 7 ・・・ 正極 8 ・・・ 負極 9 ・・・ 電解質 M ・・・ 金属元素 1 ... Electronic circuit board 2 ... Solder 3 ... Platinum plate 4 ... 10% nitric acid aqueous solution 5 ... Ionized metal element 6 ... Metal element crystallized on the negative electrode surface 7 ... Positive electrode 8 ... Negative electrode 9 ... Electrolyte M ... Metal element

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 フラックスを用いてハンダ付けをした
後、フラックス残渣を洗浄するための洗浄後もしくは洗
浄と同時に、ハンダ表面に不動態皮膜を形成することを
特徴とするマイグレーション防止方法。
1. A method for preventing migration, which comprises forming a passivation film on the solder surface after soldering with flux and after or at the same time as cleaning for cleaning flux residues.
JP6730594A 1994-04-05 1994-04-05 Migration preventing method Pending JPH07283525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6730594A JPH07283525A (en) 1994-04-05 1994-04-05 Migration preventing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6730594A JPH07283525A (en) 1994-04-05 1994-04-05 Migration preventing method

Publications (1)

Publication Number Publication Date
JPH07283525A true JPH07283525A (en) 1995-10-27

Family

ID=13341176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6730594A Pending JPH07283525A (en) 1994-04-05 1994-04-05 Migration preventing method

Country Status (1)

Country Link
JP (1) JPH07283525A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173872A (en) 2007-03-26 2007-07-05 Sharp Corp Film for semiconductor carrier and semiconductor device using same, and liquid crystal module
JP2021064671A (en) * 2019-10-11 2021-04-22 京セラ株式会社 Solar cell module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173872A (en) 2007-03-26 2007-07-05 Sharp Corp Film for semiconductor carrier and semiconductor device using same, and liquid crystal module
JP2021064671A (en) * 2019-10-11 2021-04-22 京セラ株式会社 Solar cell module

Similar Documents

Publication Publication Date Title
US4605471A (en) Method of manufacturing printed circuit boards
CA1060586A (en) Printed circuit board plating process
KR100874743B1 (en) Printed wiring board, manufacturing method thereof, and semiconductor device
Yu et al. Electrochemical migration of lead free solder joints
DE2906813A1 (en) ELECTRONIC THICK FILM CIRCUIT
JPH11158660A (en) Composition for removing solder and tin from printed circuit board and method therefor
JPH02121799A (en) Treatment of solder and flux therefor
JPH07283525A (en) Migration preventing method
JP3223678B2 (en) Soldering flux and cream solder
JPH05200585A (en) Water soluble flux for soldering
JP3119385B2 (en) Surface treatment method, surface treatment device and surface treatment liquid for electronic components and their electrode terminals
JPH0554202B2 (en)
JP3049199B2 (en) Tin or tin alloy plated material excellent in solder wettability and method for producing the same
WO2000031318A1 (en) Electroless silver plating solution for electronic parts
JPH04393A (en) Method for washing flux after soldering
JPH07188942A (en) Tin and tin alloy plating material excellent in oxidation resistance and its production
JP2000144440A (en) Electroless silver plating solution for electronic parts
JP4590133B2 (en) Tin-zinc lead-free solder alloy powder and method for producing the same
JP3226298B2 (en) Soldering method of printed wiring board
JPH0254618B2 (en)
JP2000299554A (en) Surface process method for terminal of electronic component
JPH0715124A (en) Method of mounting electronic components
JPH11286798A (en) Sealing agent
JP2002178139A (en) Method for improving insulation reliability of electronic circuit board
Cavallotti et al. Reactivity of no-clean pastes and fluxes for the surface mount technology process—part I: Corrosion behavior of Cu, Sn, and Pb