JPH07283483A - Manufacture of semiconductor laser element - Google Patents

Manufacture of semiconductor laser element

Info

Publication number
JPH07283483A
JPH07283483A JP7686794A JP7686794A JPH07283483A JP H07283483 A JPH07283483 A JP H07283483A JP 7686794 A JP7686794 A JP 7686794A JP 7686794 A JP7686794 A JP 7686794A JP H07283483 A JPH07283483 A JP H07283483A
Authority
JP
Japan
Prior art keywords
face
type
layer
resonator
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7686794A
Other languages
Japanese (ja)
Inventor
Toshiaki Tanaka
俊明 田中
Takeshi Kikawa
健 紀川
Hironori Yanagisawa
浩徳 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7686794A priority Critical patent/JPH07283483A/en
Publication of JPH07283483A publication Critical patent/JPH07283483A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce the threshold current of a semiconductor laser element and moreover, to make it possible to obtain the high output of the element by a method wherein before a coating film is applied on the resonator end face of the semiconductor laser element, a hydrogen radical beam is emitted on the resonator end face. CONSTITUTION:A buffer layer 2, an optical waveguide layer 3, a multiple quantum well structure active layer 4 consisting of two layers of quantum well layers, one layer of a quantum barrier layer and optical separation confinement layers provided on both sides of the quantum well layers, an optical waveguide layer 5 and a buffer layer 6 are epitaxially grown on a substrate 1. After this, an SiO2 mask is formed and the layers 6 and 5 are removed by etching to form a ridge stripe. Then, a photoabsorption layer 7, which is also used in combination as a current constricting layer, is selectively grown as the SiO2 growth, a P side electrode 9 and an N side electrode 10 are deposited and the laminated material is cleaved to cut out in the form of bar-shaped element. After this, the sample of the bar-shaped element is set on an RF sputtering device, a hydrogen radical beam is emitted on a resonator end face and after an end face protective film is continuously formed, an element is scribed and is cut out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光情報端末及び光応用
計測用又は光通信の光源に適する高出力半導体レーザ素
子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high power semiconductor laser device suitable for an optical information terminal and a light source for optical application measurement or optical communication.

【0002】[0002]

【従来の技術】従来の技術では、例えば、AlGaInP 半導
体レーザの共振器端面近傍に対して、電流狭窄層を設け
ることにより端面非励起構造を作製し、端面近傍の温度
上昇を抑えることにより高出力特性を得たことが、例え
ば、エレクトロニクス・レタース1991年27巻66
1頁(Electron.Lett.,27,661(1991))にお
いて述べられている。
2. Description of the Related Art In the prior art, for example, an end face non-excited structure is manufactured by providing a current confinement layer near the end face of the cavity of an AlGaInP semiconductor laser, and high output is achieved by suppressing the temperature rise near the end face. For example, Electronics Letters 1991, 27, 66
1 (Electron. Lett., 27, 661 (1991)).

【0003】[0003]

【発明が解決しようとする課題】従来技術は、半導体レ
ーザの素子構造として共振器端面近傍において、電流狭
窄層を設けた形状として端面非励起構造を作り付けるこ
とにより高出力化を図っている。しかし、端面に対して
表面処理を行うことにより、電流非注入領域を形成した
端面非励起構造やその作製技術を用いて達成される高出
力特性については詳細が述べられていない。
In the prior art, as an element structure of a semiconductor laser, an end face non-excited structure is formed as a shape in which a current confinement layer is provided in the vicinity of the end face of a resonator to achieve high output. However, no details have been given on the high output characteristics achieved by using the end face non-excited structure in which the current non-injection region is formed by performing the surface treatment on the end face and the fabrication technique thereof.

【0004】また従来技術による電流非注入領域を形成
しても、電流曲線の周り込みにより共振器端面近傍にお
ける漏れ電流は大きくなる。この漏れ電流によって、端
面近傍における活性層の温度上昇が大きく生じるので、
禁制帯幅が縮小して透明領域とならず光導波損失が増大
する。
Even if the current non-injection region is formed by the conventional technique, the leakage current in the vicinity of the end face of the resonator becomes large due to the surrounding of the current curve. This leakage current causes a large temperature rise in the active layer near the end surface.
The forbidden band width is reduced and the optical waveguide loss is increased without forming a transparent region.

【0005】この理由のため、従来技術によって端面電
流非注入領域を設けても、素子の閾値電流が上昇してし
まうという問題があった。このことは、高温時にはより
顕著になる。さらに、高出力時にはより高い動作電流を
必要とするために、光出力が飽和しやすい傾向にあっ
た。
For this reason, there has been a problem that the threshold current of the element increases even if the end face current non-injection region is provided by the conventional technique. This becomes more noticeable at high temperatures. Furthermore, since a higher operating current is required at high output, the optical output tends to be saturated.

【0006】本発明の目的は、共振器端面近傍で従来技
術とは異なる電流非注入領域を形成する表面処理技術に
よって端面非励起構造を作製し、作り付けの形状に左右
されることなく再現性の良い素子特性を確保しながら、
従来に比べて閾値電流を低減しさらに高出力を得ること
のできる半導体レーザ素子の製造方法を提供することに
ある。
An object of the present invention is to fabricate an end face non-excited structure by a surface treatment technique for forming a current non-injection region in the vicinity of a cavity end face, which is different from the conventional technique, and reproducibility is not affected by a built-in shape. While ensuring good device characteristics,
It is an object of the present invention to provide a method for manufacturing a semiconductor laser device capable of reducing the threshold current and obtaining a higher output than ever before.

【0007】[0007]

【課題を解決するための手段】これまで示されてきた、
電流狭窄層を設けることにより作製していた端面非励起
構造では漏れ電流が大きく不完全であるのに対して、本
発明では、共振器端面に対してプロセス整合度の高い製
造方法を用いて、より完全な非励起構造を設けた半導体
レーザ素子を提供する。
[Means for Solving the Problems]
In the end face non-excited structure produced by providing the current confinement layer, the leakage current is large and incomplete, whereas in the present invention, a manufacturing method having a high process matching degree to the resonator end face is used. Provided is a semiconductor laser device having a more complete non-excitation structure.

【0008】本発明で用いた手法は、半導体レーザ素子
の共振器端面に対して、コーティング膜を施す前に同一
高真空装置内で水素ラジカルビームを照射する。この工
程により、原子状水素を半導体端面及び近傍に精度良く
拡散させ吸着固定することができる。原子状水素は、共
振器端面における酸素を還元して表面から脱離させ、表
面原子のダングリングボンドに吸着して酸化に対する活
性化を防ぐ。その結果、表面原子に特有な深い準位を取
り除くことができ、本来半導体内部の有する禁制帯幅を
示すようになる。また原子状水素は、半導体表面から拡
散してp型及びn型の不純物に吸着することにより、そ
れまで生じていたキャリアを不活性化したパッシベーシ
ョンを引き起こす。水素パッシベーションが生じた共振
器端面近傍は非常に高い抵抗を示す領域となり、共振器
端面近傍のpn接合領域における漏れ電流は著しく減少
する。
According to the method used in the present invention, the end faces of the resonator of the semiconductor laser device are irradiated with a hydrogen radical beam in the same high vacuum apparatus before the coating film is formed. By this step, atomic hydrogen can be accurately diffused and adsorbed and fixed to the semiconductor end face and the vicinity thereof. Atomic hydrogen reduces oxygen at the cavity facets and desorbs it from the surface, and adsorbs to dangling bonds of surface atoms to prevent activation against oxidation. As a result, the deep level peculiar to the surface atoms can be removed, and the forbidden band width originally possessed by the semiconductor is exhibited. Further, atomic hydrogen diffuses from the semiconductor surface and is adsorbed by p-type and n-type impurities, thereby causing passivation in which carriers that have been generated up to that point are inactivated. The vicinity of the resonator end face where hydrogen passivation occurs is a region showing extremely high resistance, and the leakage current in the pn junction region near the resonator end face is significantly reduced.

【0009】以上のことにより、水素ラジカルビームを
用いた原子状水素の照射によって共振器端面近傍に電流
非注入領域を形成し、従来技術に比べて光吸収損失や温
度上昇が小さい遥かに完成度の高い端面非励起構造を作
製できる。
As described above, the current non-injection region is formed in the vicinity of the cavity end face by the irradiation of atomic hydrogen using the hydrogen radical beam, and the light absorption loss and the temperature rise are small as compared with the prior art, and the completeness is much higher. It is possible to fabricate an end face non-excited structure with high height.

【0010】[0010]

【作用】本発明では、半導体表面に対する処理技術を用
いて半導体レーザの共振器端面に特徴的な性質を改善す
ることにより、低閾値動作を得た上に高出力特性を向上
させた。本発明による表面処理技術の作用とそれによる
効果を下記に示す。
According to the present invention, the processing characteristic for the semiconductor surface is used to improve the characteristic properties of the end face of the cavity of the semiconductor laser, thereby obtaining the low threshold operation and improving the high output characteristic. The operation of the surface treatment technique according to the present invention and the effect thereof are shown below.

【0011】半導体レーザ素子の共振器端面には、酸素
の吸着やダングリングボンドの形成により表面原子に特
有な深い準位が生じており、共振器端面近傍の禁制帯幅
は実質的には狭くなっている。これにより、共振器内部
で発生した光は端面近傍において吸収を受ける。端面近
傍における光吸収は温度上昇を引き起こすために、端面
近傍の禁制帯幅が益々減少し、さらに光吸収を強く受け
る正帰還が生じることになる。最終的には、素子の共振
器端面が熱的に溶融する劣化に到るため、このことが高
出力化に対する制限となっていた。
At the cavity facet of the semiconductor laser device, a deep level peculiar to surface atoms is generated due to the adsorption of oxygen and the formation of dangling bonds, and the forbidden band width near the cavity facet is substantially narrow. Has become. As a result, the light generated inside the resonator is absorbed near the end face. Since light absorption near the end face causes a temperature rise, the forbidden band width near the end face is further reduced, and further positive feedback that strongly receives the light absorption occurs. Eventually, the end face of the resonator of the element is thermally melted and deteriorated, which has been a limitation for increasing the output.

【0012】そこで、本発明ではコーティング膜を共振
器端面に施す前に、プロセス上整合性がよい水素ラジカ
ルビームを同一装置内に導入し、その場で連続して下記
に示す効果のある原子状水素処理とコーティング膜の形
成を可能とした。
Therefore, in the present invention, before applying the coating film to the cavity end face, a hydrogen radical beam having good process matching is introduced into the same device, and the atomic state with the following effects is continuously produced in that place. Hydrogen treatment and coating film formation were possible.

【0013】まず原子状水素の表面処理により、共振器
端面上に付着している酸素原子を還元して脱離させ、表
面原子のダングリングボンドに水素原子の吸着が生じて
表面準位が減少する。このことは、共振器端面における
禁制帯幅の縮小を抑制し、実質的に共振器内部と同程度
にまで禁制帯幅を増大させることになる。その結果、上
に述べた端面近傍での光吸収を大幅に小さくできるの
で、光吸収損失の低減に基づいた活性層の温度上昇を抑
制できる。即ち、端面における溶融破壊という熱的な現
象を緩和することになるので、高出力特性の向上に非常
に有利に働く。
First, the surface treatment of atomic hydrogen reduces and desorbs oxygen atoms adhering to the end faces of the resonator, and the dangling bonds of the surface atoms adsorb hydrogen atoms to reduce the surface level. To do. This suppresses the reduction of the forbidden band width at the end face of the resonator, and substantially increases the forbidden band width to the same extent as inside the resonator. As a result, since the light absorption near the end face described above can be significantly reduced, it is possible to suppress the temperature rise of the active layer due to the reduction of the light absorption loss. That is, the thermal phenomenon of melt fracture at the end face is alleviated, which is extremely advantageous for improving high output characteristics.

【0014】さらに、原子状水素の処理では処理温度と
時間を適切に設定することにより、表面だけでなく所定
の深さまで原子状水素を拡散させ吸着固定させることが
できる。水素の拡散した領域では、最初に設定してあっ
た光導波層のp型及びn型の不純物に原子状水素が吸着
してキャリアを不活性化させる。また意図的に設定して
いない不純物に対しても、水素原子の吸着により余分な
キャリアの発生を抑制する。このため、キャリアのトラ
ップとなる深い準位の形成を防ぐことにもなる。これら
により、共振器端面近傍において精度良く所定の深さま
でキャリア濃度を非常に低く設定変更でき、共振器内部
の初期設定値よりも少なくとも2桁近く低い5×1015
〜5×1016cm~3の範囲に減少させることが可能であっ
た。この高抵抗層の形成によって、漏れ電流の非常に小
さい電流非注入領域を設定できた。
Further, in the treatment of atomic hydrogen, the atomic hydrogen can be diffused and adsorbed and fixed not only on the surface but also to a predetermined depth by appropriately setting the treatment temperature and time. In the region where hydrogen is diffused, atomic hydrogen is adsorbed by the p-type and n-type impurities of the optical waveguide layer that are initially set to inactivate the carriers. Further, even for impurities not intentionally set, the generation of excess carriers is suppressed by the adsorption of hydrogen atoms. Therefore, formation of a deep level that becomes a trap for carriers is also prevented. These resonator at the end face neighborhood can accurately set too low change the carrier concentration to a predetermined depth, inside the resonator default value of at least 2 orders of magnitude lower 5 × 10 15 than
It was possible to reduce the range of ~5 × 10 16 cm ~ 3. By forming this high resistance layer, a current non-injection region with a very small leakage current could be set.

【0015】この端面非励起構造における漏れ電流は非
常に小さいために、素子の閾値電流は従来構造の素子よ
りも約半分に低減できた。さらに、利得の得られる共振
器長領域を実質的に短くすることになるので、本発明の
素子構造では端面非励起構造のない場合よりも閾値電流
をより小さくできるので、この点でも有効であった。
Since the leakage current in this end face non-excited structure is very small, the threshold current of the device can be reduced to about half that of the device of the conventional structure. Further, since the cavity length region where the gain can be obtained is substantially shortened, the threshold current can be made smaller in the device structure of the present invention than in the case where the end face non-excited structure is not provided, which is also effective in this respect. It was

【0016】このように、本発明の素子では、共振器端
面近傍の活性層における温度上昇を従来例に比べて1/
4〜1/5にまで低減できた。光出力電流特性では、端
面破壊による急速な劣化を示さず、コーティング膜を施
すことにより、最高光出力は端面非励起構造を持たない
素子に比べて2〜3倍増大し、これまでの端面非励起構
造を有した素子よりも1.6〜1.8倍の高出力動作を示
した。
As described above, in the device of the present invention, the temperature rise in the active layer in the vicinity of the end face of the resonator is 1 / th that of the conventional example.
It could be reduced to 4 to 1/5. The optical output current characteristics do not show rapid deterioration due to end face destruction, and the application of the coating film increases the maximum optical output by a factor of 2 to 3 compared to the device without the end face non-excitation structure. The device has a high output operation that is 1.6 to 1.8 times higher than that of the device having the excitation structure.

【0017】[0017]

【実施例】【Example】

(実施例1)本発明の一実施例を図1,図2により説明
する。図1において、まず(100)面から〔011〕方
向に5°オフしたn型GaAs傾角基板1を用い、その
上にn型Ga0.51In0.49Pバッファ層2(d=0.5μ
m,nD =1×1018cm~3),n型(AlyGa1-y
0.51In0.49P光導波層3(d=1.6μm,nD=5×
1017cm~3,y=0.7 ),膜厚5〜9nmの圧縮歪ア
ンドープ(Alx1Ga1-x1)zIn1-zP(x1=0,0.
30≦z≦0.45)量子井戸層2層と膜厚5〜10n
mの無歪アンドープ(Alx2Ga1-x20.51 In0.49P(x2=0.5)量子障壁層1層及び量子井戸層
両側に膜厚5〜30nmの無歪アンドープ(Alx2Ga
1-x2)0.51In0.49P(X2 =0.5)光分離閉じ込め層
を設けた圧縮歪多重量子井戸構造活性層4,p型(Al
yGa1-y0.51In0.49P光導波層5(d=1.3μ
m,nA=7〜9×1017cm~3,y=0.7),p型Ga
0.51In0.49P バッファ層6(d=0.05μm,nA
=2×1018cm~3)を成長温度750℃において有機金
属気相成長法によりエピタキシャル成長した。この後、
ホトリソグラフィーによりSiO2マスク(膜厚d=0.
2μm,ストライプ幅4〜6μm)を形成し、ケミカル
エッチングにより層5を0.15〜0.20μm 残すと
ころまで層6と層5をエッチング除去してリッジストラ
イプを形成する。次に、SiO2 マスクを残したまま、
n型GaAs電流狭窄兼光吸収層7(d=1.2μm,
D=2×1018cm~3)を選択成長する。さらに、p型
GaAsコンタクト層8(d=2〜3μm,nA =5×
1018〜1×1019cm~3)を埋め込み成長した後、p側
電極9及びn側電極10を蒸着する。さらに、劈開して
バー状素子の形に切り出す。
(Embodiment 1) An embodiment of the present invention will be described with reference to FIGS. In FIG. 1, first, an n-type GaAs tilt substrate 1 which is turned off by 5 ° in the [011] direction from the (100) plane is used, and an n-type Ga 0.51 In 0.49 P buffer layer 2 (d = 0.5 μ) is formed thereon.
m, n D = 1 × 10 18 cm ~ 3), n -type (Al y Ga 1-y)
0.51 In 0.49 P optical waveguide layer 3 (d = 1.6 μm, n D = 5 ×
Compressive strain undoped (Al x1 Ga 1 -x1) z In 1 -z P (x 1 = 0, 0.0) with a thickness of 10 17 cm to 3 , y = 0.7) and a film thickness of 5 to 9 nm.
30 ≦ z ≦ 0.45) Two quantum well layers and a film thickness of 5 to 10 n
m unstrained undoped (Al x2 Ga 1-x2 ) 0.51 In 0.49 P (x 2 = 0.5) 5 to 30 nm thick unstrained undoped (Al x2 Ga) layer on both sides of the quantum barrier layer and the quantum well layer.
1-x2 ) 0.51 In 0.49 P (X 2 = 0.5) Compressive strain multiple quantum well structure active layer 4 provided with an optical isolation confinement layer 4, p-type (Al
y Ga 1 -y ) 0.51 In 0.49 P optical waveguide layer 5 (d = 1.3 μ
m, n A = 7 to 9 × 10 17 cm to 3 , y = 0.7), p-type Ga
0.51 In 0.49 P buffer layer 6 (d = 0.05 μm, n A
= 2 × 10 18 cm 3 ) was epitaxially grown at a growth temperature of 750 ° C. by a metal organic chemical vapor deposition method. After this,
A SiO 2 mask (film thickness d = 0.
2 .mu.m, stripe width 4 to 6 .mu.m), and the layer 6 and the layer 5 are removed by chemical etching until the layer 5 is 0.15 to 0.20 .mu.m to form a ridge stripe. Next, leaving the SiO 2 mask,
n-type GaAs current constriction and light absorption layer 7 (d = 1.2 μm,
Selectively grow n D = 2 × 10 18 cm 3 ). Further, p-type GaAs contact layer 8 (d = 2 to 3 μm, n A = 5 ×
10 18 to 1 × 10 19 cm 3 ) is buried and grown, and then the p-side electrode 9 and the n-side electrode 10 are vapor-deposited. Further, it is cleaved and cut into a bar-shaped element.

【0018】この後、RFスパッタ装置にバー状素子の
試料を設定して、共振器端面に対して水素ラジカルビー
ムの照射を行う。このことにより、図2における斜線で
示した部分の共振器端面近傍に対して、原子状水素によ
るp型及びn型のキャリアを不活性化させた。この結
果、共振器端面近傍の0.5〜1.0μmにおけるキャリ
ア濃度は、最初に設定した内部の初期設定値より2桁近
く低い5×1015〜5×1016cm~3範囲のキャリア濃度
に減少しており、共振器端面近傍を流れる漏れ電流は非
常に小さく100μAから1mAの範囲に見積もられる
レベルにまで低減できた。このようにして、共振器端面
近傍において電流非注入領域を設けた端面非励起構造を
作製した後、連続して前面反射率が10%であり後面反
射率が90%である端面保護膜を形成してから素子をス
クライブして切り出した。
After that, a bar-shaped element sample is set in the RF sputtering apparatus, and the end faces of the resonator are irradiated with a hydrogen radical beam. As a result, p-type and n-type carriers were deactivated by atomic hydrogen in the vicinity of the resonator end face in the shaded area in FIG. As a result, the carrier concentration at 0.5 to 1.0 μm in the vicinity of the cavity facet is nearly 2 orders of magnitude lower than the initially set internal value, and the carrier concentration in the range of 5 × 10 15 to 5 × 10 16 cm to 3 The leakage current flowing in the vicinity of the cavity facet was very small and could be reduced to a level estimated in the range of 100 μA to 1 mA. In this way, after the end face non-excited structure in which the current non-injection region is provided in the vicinity of the end face of the resonator is manufactured, the end face protective film having the front face reflectance of 10% and the rear face reflectance of 90% is continuously formed. After that, the element was scribed and cut out.

【0019】本実施例では、共振器長700μmの素子
において室温における閾値電流が30〜40mAであ
り、従来技術の端面非励起構造を有した素子の半分以下
を示した。本素子は、端面破壊による急速な劣化を示さ
ず、最高光出力200〜250mWの高出力動作を達成し
た。この光出力は、端面非励起構造を持たない素子に比
べて2〜3倍であり、これまでの端面非励起構造を有し
た素子よりも1.6 〜1.8 倍の増大を示した。本素子
の発振波長は、光出力100mWにおいて675〜685
nmの範囲であった。
In this embodiment, the threshold current at room temperature is 30 to 40 mA in the element having the resonator length of 700 μm, which is less than half that of the element having the end face non-excitation structure of the prior art. This device did not show rapid deterioration due to end face destruction, and achieved high output operation with a maximum light output of 200 to 250 mW. This light output was 2-3 times higher than that of the device having no end face non-excited structure, and 1.6 to 1.8 times higher than that of the conventional device having the end face non-excited structure. The oscillation wavelength of this device is 675 to 685 at an optical output of 100 mW.
It was in the range of nm.

【0020】(実施例2)本発明の他実施例を図3,図
4により説明する。図3において、まず、(100)面から
〔011〕方向に15.8° オフしたn型GaAs(5
11)A傾角基板11を用いて、その上にn型Ga0.51
In0.49Pバッファ層2(d=0.5μm,nD =1×
1018cm~3),n型(AlyGa1-y)0.51In0.49P 光
導波層3(d=1.6μm,nD =5×1017cm~3,y
=0.7),膜厚8〜15nmの引張歪アンドープ(A
x1Ga1-x1)zIn1-zP(x1=0,0.55≦z≦0.
70)量子井戸層2層と膜厚5〜10nmの無歪アンド
ープ(Alx2Ga1-x2)0.51 In0.49P(x2=0.5)量子障壁層1層及び量子井戸
両側に膜厚20〜40nmの無歪アンドープ(Alx2
1-x2)0.51In0.49P(x2=0.5)光分離閉じ込め層
を設けた引張歪多重量子井戸構造活性層12,p型(A
yGa1-y)0.51In0.49P光導波層5(d=1.3μm,
A=7〜9×1017cm~3,y=0.7),p型Ga0.51
In0.49Pバッファ層6(d=0.05μm ,nA =2
×1018cm~3)を成長温度750℃において有機金属気
相成長法によりエピタキシャル成長した。
(Embodiment 2) Another embodiment of the present invention will be described with reference to FIGS. In FIG. 3, first, n-type GaAs (5
11) A tilted substrate 11 is used, on which n-type Ga 0.51 is formed.
In 0.49 P buffer layer 2 (d = 0.5 μm, n D = 1 ×
10 18 cm ~ 3), n-type (Al y Ga 1-y) 0.51 In 0.49 P optical waveguide layer 3 (d = 1.6μm, n D = 5 × 10 17 cm ~ 3, y
= 0.7), film thickness 8-15 nm tensile strain undoped (A
l x1 Ga 1-x1 ) z In 1-z P (x 1 = 0, 0.55 ≦ z ≦ 0.
70) the quantum well layer 2 layer and the thickness 5~10nm of no strain undoped (Al x2 Ga 1-x2) 0.51 In 0.49 P (x 2 = 0.5) quantum barrier layer first layer and a thickness of 20 to the quantum well both sides -40 nm unstrained undoped (Al x2 G
a 1-x 2 ) 0.51 In 0.49 P (x 2 = 0.5) tensile-strained multiple quantum well structure active layer 12 provided with an optical isolation confinement layer, p-type (A
l y Ga 1-y) 0.51 In 0.49 P optical waveguide layer 5 (d = 1.3μm,
n A = 7 to 9 × 10 17 cm to 3 , y = 0.7), p-type Ga 0.51
In 0.49 P buffer layer 6 (d = 0.05 μm, n A = 2
X10 18 cm 3 ) was epitaxially grown at a growth temperature of 750 ° C. by a metal organic chemical vapor deposition method.

【0021】この後、実施例1と全く同様にしてバー状
の素子を作製し、実施例1と同様にして共振器端面に対
して水素ラジカルビームの照射を行い、図4における斜
線で示した部分の共振器端面近傍に対して、p型及びn
型層のキャリアを不活性化させた。このようにして、共
振器端面近傍において電流非注入領域を設けた端面非励
起構造を作製した後、連続して前面反射率が10%であ
り後面反射率が90%である端面保護膜を形成してから
素子をスクライブして切り出した。
Thereafter, a bar-shaped element was manufactured in exactly the same manner as in Example 1, and a hydrogen radical beam was applied to the resonator end face in the same manner as in Example 1, indicated by the hatched lines in FIG. P-type and n
The carrier of the mold layer was deactivated. In this way, after the end face non-excited structure in which the current non-injection region is provided in the vicinity of the end face of the resonator is manufactured, the end face protective film having the front face reflectance of 10% and the rear face reflectance of 90% is continuously formed. After that, the element was scribed and cut out.

【0022】本実施例では、共振器長700μmの素子
において室温における閾値電流が40〜50mAであ
り、従来技術による端面非励起構造を有した素子の半分
以下を示した。本素子は、端面破壊による急速な劣化を
示さず、最高光出力100〜150mWの高出力動作を
達成した。この光出力は、端面非励起構造を持たない素
子に比べて2〜3倍であり、これまでの端面非励起構造
を有した素子よりも1.6〜1.8倍の増大を示した。本
素子の発振波長は、光出力100mWにおいて625〜
635nmの範囲であった。
In this embodiment, the threshold current at room temperature is 40 to 50 mA in an element having a resonator length of 700 μm, which is less than half that of an element having an end face non-excitation structure according to the prior art. This device did not show rapid deterioration due to end face destruction, and achieved high output operation with a maximum light output of 100 to 150 mW. The light output was 2-3 times higher than that of the device having no end face non-excited structure, and 1.6 to 1.8 times higher than that of the device having the end face non-excited structure. The oscillation wavelength of this device is 625 to 625 at an optical output of 100 mW.
It was in the range of 635 nm.

【0023】(実施例3)本発明の他実施例を図5,図
6により説明する。図5において、まず(100)面から
〔011〕方向に15.8° オフしたn型GaAs(5
11)A傾角基板11を用いて、その上にClドープn
型ZnSeバッファ層13(d=0.1μm,nD =1×
1018cm~3),Clドープn型MgyZn1-yzSe1-z
光導波層14(d=1.5μm,nD =5×1017cm~
3 ,y=0.10〜0.12,z=0.12〜0.15),
アンドープCdxZn1-xSe/ZnSzSe1-z歪量子井
戸構造活性層15(ZnSzSe1-z量子障壁層(d=4
nm,z=0.06〜0.08)2周期とCdxZn1-xSe圧
縮歪量子井戸層(d=6nm,x=0.1)3周期及びそ
の両側にZnSzSe1-z光分離閉じ込め層(d=30n
m,z=0.06 〜0.08)),Nドープp型Mgy
1-yzSe1-z光導波層16(d=1.2μm,nA
4〜7×1017cm~3,y=0.10〜0.12,z=0.
12〜0.15),Nドープp型ZnSzSe1-z光導波層1
7(d=0.2μm,nA =8×1017〜1×1018cm
~3,z=0.06〜0.08),Nドープp型ZnSαTe1-
α バッファ層18(d=0.05〜0.1μm,nA=1
〜3×1018cm~3,α=0.62〜0.64)を順次分子
線エピタキシ−(MBE)法により成長温度300℃に
おいてエピタキシャル成長する。その後、SiN絶縁膜
(d=0.2〜0.3μm)を蒸着した後、ホトリソグラ
フィ技術とケミカルエッチングにより、層16が0.15〜
0.20μm 残存する所まで層18と層17と層16を
除去して、リッジストライプ状メサ(幅4〜6μm)を
形成する。
(Embodiment 3) Another embodiment of the present invention will be described with reference to FIGS. In FIG. 5, first, n-type GaAs (5
11) A tilted substrate 11 is used, on which Cl-doped n
-Type ZnSe buffer layer 13 (d = 0.1 μm, n D = 1 ×
10 18 cm ~ 3 ), Cl-doped n-type Mg y Zn 1-y S z Se 1-z
Optical waveguide layer 14 (d = 1.5 μm, n D = 5 × 10 17 cm
3 , y = 0.10 to 0.12, z = 0.12 to 0.15),
Undoped Cd x Zn 1-x Se / ZnS z Se 1-z strained quantum well structure active layer 15 (ZnS z Se 1-z quantum barrier layer (d = 4
nm, z = 0.06 to 0.08) 2 periods and Cd x Zn 1-x Se compressive strain quantum well layer (d = 6 nm, x = 0.1) 3 periods and ZnS z Se 1-z optical separation on both sides thereof Confinement layer (d = 30n
m, z = 0.06 ~0.08)) , N -doped p-type Mg y Z
n 1-y S z Se 1-z optical waveguide layer 16 (d = 1.2 μm, n A =
4 to 7 × 10 17 cm to 3 , y = 0.10 to 0.12, z = 0.
12-0.15), N-doped p-type ZnS z Se 1-z optical waveguide layer 1
7 (d = 0.2 μm, n A = 8 × 10 17 to 1 × 10 18 cm
~ 3 , z = 0.06 to 0.08), N-doped p-type ZnSαTe 1-
α buffer layer 18 (d = 0.05 to 0.1 μm, n A = 1
~3 × 10 18 cm ~ 3, α = 0.62~0.64) sequentially molecular beam epitaxy - epitaxially grown at the growth temperature of 300 ° C. by (MBE) method. Then, after depositing a SiN insulating film (d = 0.2 to 0.3 μm), the layer 16 has a thickness of 0.15 to 0.15 by photolithography and chemical etching.
Layer 20, layer 17 and layer 16 are removed to a depth of 0.20 μm to form a ridge stripe mesa (width 4 to 6 μm).

【0024】次に、SiNマスクを残したまま、ガスソ
ース分子線エピタキシー(GSMBE)法又は有機金属気相
成長(MOCVD)法により,n型ZnSαTe1-α電流狭窄
兼光吸収層19(d=1.5〜3.0μm,nD=1〜3
×1018cm~3,α=0.62〜0.64)を選択成長して
ストライプ構造を平坦に埋込む。次に、SiNマスクを
エッチング除去した後、MBE法によりNドープp型Z
nSαTe1-αコンタクト層20(d=20〜50n
m,nA =3×1018〜2×1019cm~3,αは層7から
電極10に向かって0.63から0へ徐々に減少し,電
極21と接触する面はNドープp型ZnTeコンタクト
層(nA =2×1019cm~3)とする)をエピタキシャル
成長する。この後、p側電極PdPtAu21及びn側電極Au
GeNi22を蒸着し、劈開スクライブして図5の断面図に
示す素子の形状に切り出す。この後、実施例1と全く同
様にしてバー状の素子を作製し、実施例1と同様にして
共振器端面に対して水素ラジカルビームの照射を行い、
図6における斜線で示した部分の共振器端面近傍に対し
て、p型及びn型層のキャリアを不活性化させた。この
ようにして、共振器端面近傍において電流非注入領域を
設けた端面非励起構造を作製した後、連続して前面反射
率が10%であり後面反射率が90%である端面保護膜
を形成してから素子をスクライブして切り出した。
Next, with the SiN mask left, the n-type ZnSαTe 1- α current confinement and light absorption layer 19 (d = 1) is formed by the gas source molecular beam epitaxy (GSMBE) method or the metal organic chemical vapor deposition (MOCVD) method. 0.5-3.0 μm, n D = 1-3
× 10 18 cm -3 , α = 0.62-0.64) is selectively grown to bury the stripe structure flatly. Next, the SiN mask is removed by etching, and then N-doped p-type Z is formed by the MBE method.
nSαTe 1- α contact layer 20 (d = 20 to 50n
m, n A = 3 × 10 18 to 2 × 10 19 cm to 3 , α gradually decreases from 0.63 to 0 toward the electrode 10 from the layer 7, and the surface in contact with the electrode 21 is N-doped p-type A ZnTe contact layer (n A = 2 × 10 19 cm to 3 ) is epitaxially grown. After this, the p-side electrode PdPtAu21 and the n-side electrode Au
GeNi22 is vapor-deposited, and cleaved and scribed to cut out into the shape of the element shown in the sectional view of FIG. After that, a bar-shaped element was produced in exactly the same manner as in Example 1, and the end faces of the resonator were irradiated with hydrogen radical beams in the same manner as in Example 1,
Carriers in the p-type and n-type layers were inactivated in the vicinity of the resonator end face in the shaded portion in FIG. In this way, after the end face non-excited structure in which the current non-injection region is provided in the vicinity of the end face of the resonator is manufactured, the end face protective film having the front face reflectance of 10% and the rear face reflectance of 90% is continuously formed. After that, the element was scribed and cut out.

【0025】本実施例では、共振器長700μmの素子
において室温における閾値電流が40〜50mAであ
り、端面非励起構造のない素子に比べてその平均値は多
少とも低く得られた。本素子は、端面破壊による急速な
劣化を示さず、最高光出力100〜150mWの高出力
動作を達成した。この光出力は、端面非励起構造を持た
ない素子に比べて2〜3倍であり、これまでの端面非励
起構造を有した素子よりも1.6〜1.8倍の増大を示し
た。本素子の発振波長は、光出力100mWにおいて5
20〜530nmの範囲であった。
In the present example, the threshold current at room temperature was 40 to 50 mA in the device having the resonator length of 700 μm, and the average value thereof was obtained to be somewhat lower than that of the device having no end face non-excitation structure. This device did not show rapid deterioration due to end face destruction, and achieved high output operation with a maximum light output of 100 to 150 mW. The light output was 2-3 times higher than that of the device having no end face non-excited structure, and 1.6 to 1.8 times higher than that of the device having the end face non-excited structure. The oscillation wavelength of this device is 5 at an optical output of 100 mW.
It was in the range of 20 to 530 nm.

【0026】(実施例4)本発明の他実施例を図7,図
8により説明する。図7において、まず(100)面から
〔011〕方向に15.8°オフしたn型InP(51
1)A傾角基板23を用いて、Clドープn型MgSe
バッファ層24(d=0.1μm,nD=1×1018cm
~3),Clドープn型MgzZn1-zSe光導波層25
(d=1.5μm,nD =5×1017cm~3,z=0.88
〜0.92),アンドープCdxZn1-xSe/ZnSey
Te1-y歪量子井戸構造活性層26(ZnSeyTe1-y
量子障壁層(d=4nm,y=0.45〜0.50)1層
とCdxZn1-xSe引張歪量子井戸層(d=10nm,
x=0.3)2周期及びその両側にZnSeyTe1-y光分
離閉じ込め層(d=30nm,y=0.45〜0.5
0)),Nドープp型 MgzZn1-zSe光導波層27(d=1.2μm,nA
4〜5×1017cm~3,z=0.88〜0.92),Nドー
プp型ZnSeyTe1-y 光導波層28(d=0.2μm,
A=8×1017cm~3,y=0.45〜0.50),Nド
ープp型 ZnSαTe1-αバッファ層29(d=0.1μm,nA
=1〜3×1018cm~3,α=0.30〜0.32)を順次
MBE法によりエピタキシャル成長する。その後、Si
N絶縁膜(d=0.2〜0.3μm)を蒸着した後、ホト
リソグラフィ技術とケミカルエッチングにより、層27
が0.15〜0.20μm残存する所まで層29と層28
と層27を除去して、リッジストライプ状メサ(幅4〜
6μm)を形成する。
(Embodiment 4) Another embodiment of the present invention will be described with reference to FIGS. In FIG. 7, first, n-type InP (51
1) Cl-doped n-type MgSe using A-angle substrate 23
Buffer layer 24 (d = 0.1 μm, n D = 1 × 10 18 cm
~ 3 ), Cl-doped n-type Mg z Zn 1-z Se optical waveguide layer 25
(d = 1.5 μm, n D = 5 × 10 17 cm ~ 3 , z = 0.88
~ 0.92), undoped Cd x Zn 1-x Se / ZnSe y
Te 1-y strained quantum well structure active layer 26 (ZnSe y Te 1-y
One quantum barrier layer (d = 4 nm, y = 0.45 to 0.50) and Cd x Zn 1-x Se tensile strain quantum well layer (d = 10 nm,
x = 0.3) 2 periods and ZnSe y Te 1-y optical separation confinement layers (d = 30 nm, y = 0.45 to 0.5) on both sides thereof.
0)), N-doped p-type Mg z Zn 1-z Se optical waveguide layer 27 (d = 1.2 μm, n A =
4-5 × 10 17 cm- 3 , z = 0.88-0.92), N-doped p-type ZnSe y Te 1 - y optical waveguide layer 28 (d = 0.2 μm,
n A = 8 × 10 17 cm to 3 , y = 0.45 to 0.50), N-doped p-type ZnSαTe 1- α buffer layer 29 (d = 0.1 μm, n A
= 1 to 3 × 10 18 cm 3 and α = 0.30 to 0.32) are sequentially epitaxially grown by the MBE method. Then Si
After depositing an N insulating film (d = 0.2 to 0.3 μm), a layer 27 is formed by photolithography and chemical etching.
Layer 29 and layer 28 to the place where 0.15 to 0.20 μm remains.
And the layer 27 are removed, and the ridge stripe mesa (width 4 to
6 μm) is formed.

【0027】次に、SiNマスクを残したまま、GSM
BE法又はMOCVD法により、n型ZnSαTe1-α
光吸収兼電流狭窄層30(d=0.8〜1.0μm,nA
=1〜3×1018cm~3,α=0.30〜0.32)を選択
成長してストライプ構造を平坦に埋込む。次に、SiN
マスクをエッチング除去した後、MBE法でNドープp
型ZnSαTe1-αコンタクト層31(d=20〜50
nm,nA=3×1018〜2×1019cm~3,αは層29
から電極32に向かって0.30 から0へ徐々に減少,
電極32と接触する面はNドープp型ZnTeコンタク
ト層(nA =2×1019cm~3)とする)をエピタキシャ
ル成長する。この後、p側電極PdPtAu32及びn側電極
AuGeNi33を蒸着し、劈開スクライブして図7の断面図
に示す素子の形状に切り出す。
Next, with the SiN mask left, GSM
N-type ZnSαTe 1- α by BE method or MOCVD method
Light absorption and current confinement layer 30 (d = 0.8 to 1.0 μm, n A
= 1 to 3 × 10 18 cm 3 and α = 0.30 to 0.32) are selectively grown to bury the stripe structure flatly. Next, SiN
After the mask is removed by etching, N-doped p is formed by the MBE method.
Type ZnSαTe 1- α contact layer 31 (d = 20 to 50)
nm, n A = 3 × 10 18 to 2 × 10 19 cm to 3 , α is the layer 29
From 0.30 to 0 towards electrode 32,
An N-doped p-type ZnTe contact layer (n A = 2 × 10 19 cm to 3 ) is epitaxially grown on the surface in contact with the electrode 32. After this, the p-side electrode PdPtAu32 and the n-side electrode
AuGeNi33 is vapor-deposited, and cleaved and scribed to cut into the shape of the element shown in the sectional view of FIG.

【0028】この後、実施例1と全く同様にしてバー状
の素子を作製し、実施例1と同様にして共振器端面に対
して水素ラジカルビームの照射を行い、図8における斜
線で示した部分の共振器端面近傍に対して、p型及びn
型層のキャリアを不活性化させた。このようにして、共
振器端面近傍において電流非注入領域を設けた端面非励
起構造を作製した後、連続して前面反射率が10%であ
り後面反射率が90%である端面保護膜を形成してから
素子をスクライブして切り出した。
After that, a bar-shaped element was manufactured in exactly the same manner as in Example 1, and a hydrogen radical beam was applied to the end faces of the resonator in the same manner as in Example 1, indicated by the diagonal lines in FIG. P-type and n
The carrier of the mold layer was deactivated. In this way, after the end face non-excited structure in which the current non-injection region is provided in the vicinity of the end face of the resonator is manufactured, the end face protective film having the front face reflectance of 10% and the rear face reflectance of 90% is continuously formed. After that, the element was scribed and cut out.

【0029】本実施例では、共振器長700μmの素子
において室温における閾値電流が30〜40mAであ
り、端面非励起構造のない素子に比べてその平均値は多
少とも低く得られた。本素子は、端面破壊による急速な
劣化を示さず、最高光出力150〜200mWの高出力
動作を達成した。この光出力は、端面非励起構造を持た
ない素子に比べて2〜3倍であり、これまでの端面非励
起構造を有した素子よりも1.6〜1.8倍の増大を示し
た。本素子の発振波長は、光出力100mWにおいて5
20〜530nmの範囲であった。
In the present example, the threshold current at room temperature was 30 to 40 mA in the device having the resonator length of 700 μm, and the average value was obtained to be somewhat lower than that of the device having no end face non-excitation structure. This device did not show rapid deterioration due to end face destruction, and achieved high output operation with a maximum light output of 150 to 200 mW. The light output was 2-3 times higher than that of the device having no end face non-excited structure, and 1.6 to 1.8 times higher than that of the device having the end face non-excited structure. The oscillation wavelength of this device is 5 at an optical output of 100 mW.
It was in the range of 20 to 530 nm.

【0030】[0030]

【発明の効果】本発明によれば、半導体レーザの共振器
端面に対して水素ラジカルビームを照射することによ
り、端面近傍において原子状水素のキャリアパッシベー
ションを引き起こし、電流非注入領域を有する端面非励
起構造を作製できた。共振器端面近傍のp型及びn型キ
ャリア濃度は、最初に設定した内部の初期設定値5×10
17〜2×1018cm~3の範囲よりも2桁近く低い5×10
15〜5×1016cm~3の範囲に減少し、共振器端面近傍を
流れる漏れ電流を非常に小さい100μAから1mAの
範囲にまで低減できた。これにより、共振器端面近傍に
おける活性層の温度上昇を抑えることができ、その領域
における禁制帯幅を狭めることなく端面非励起構造の光
損失をほとんど無視できる値に設定できた。本発明の素
子では、端面非励起構造を持たない同じ共振器長を有す
る素子に比べて、閾値電流を低減しかつ最高光出力は2
〜3倍に向上し、従来技術による端面非励起構造を有し
た素子よりも光出力を1.6〜1.8倍増大できた。
According to the present invention, by irradiating the end facet of the cavity of the semiconductor laser with the hydrogen radical beam, carrier passivation of atomic hydrogen is caused in the vicinity of the end facet, and end face non-excitation having a current non-injection region is caused. The structure could be made. The p-type and n-type carrier concentrations in the vicinity of the cavity facet are the internal initially set value of 5 × 10
5 to 10 which is lower than the range of 17 to 2 x 10 18 cm to 3 by almost 2 digits
It was reduced to the range of 15 to 5 × 10 16 cm to 3 , and the leakage current flowing in the vicinity of the cavity facet could be reduced to a very small range of 100 μA to 1 mA. As a result, the temperature rise of the active layer in the vicinity of the end face of the cavity can be suppressed, and the optical loss of the end face non-excited structure can be set to a value that can be almost ignored without narrowing the forbidden band width in that region. In the device of the present invention, the threshold current is reduced and the maximum optical output is 2 as compared with the device having the same resonator length without the end face non-excitation structure.
.About.3 times, and the light output can be increased by 1.6 to 1.8 times as compared with the device having the end face non-excitation structure according to the prior art.

【0031】本発明の実施例については、他の材料系A
lGaAs/GaAs,InGaAs/GaAs系やInGa
AsP/InP系及びInGaN/AlGaN系に対し
ても適用できる。
For the examples of the present invention, another material system A
lGaAs / GaAs, InGaAs / GaAs, InGa
It can also be applied to AsP / InP and InGaN / AlGaN systems.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す素子の断面図。FIG. 1 is a sectional view of an element showing an embodiment of the present invention.

【図2】本発明の一実施例を示す共振器の断面図。FIG. 2 is a sectional view of a resonator showing an embodiment of the present invention.

【図3】本発明の第二実施例を示す素子の断面図。FIG. 3 is a sectional view of an element showing a second embodiment of the present invention.

【図4】本発明の第二実施例を示す共振器の断面図。FIG. 4 is a sectional view of a resonator showing a second embodiment of the present invention.

【図5】本発明の第三実施例を示す素子の断面図。FIG. 5 is a sectional view of an element showing a third embodiment of the present invention.

【図6】本発明の第三実施例を示す共振器の断面図。FIG. 6 is a sectional view of a resonator showing a third embodiment of the present invention.

【図7】本発明の第四実施例を示す素子の断面図。FIG. 7 is a sectional view of an element showing a fourth embodiment of the present invention.

【図8】本発明の第四実施例を示す共振器の断面図。FIG. 8 is a sectional view of a resonator showing a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…5°オフn型GaAs傾角基板、2…n型GaIn
Pバッファ層、3…n型AlGaInP光導波層、4…
GaInP/AlGaInP圧縮歪多重量子井戸構造活
性層、5…p型AlGaInP光導波層、6…p型Ga
InPバッファ層、7…n型GaAs電流狭窄兼光吸収
層、8…p型GaAsコンタクト層、9…p側電極。
1 ... 5 ° off n-type GaAs tilt substrate, 2 ... n-type GaIn
P buffer layer, 3 ... n-type AlGaInP optical waveguide layer, 4 ...
GaInP / AlGaInP compressive strain multiple quantum well structure active layer, 5 ... p-type AlGaInP optical waveguide layer, 6 ... p-type Ga
InP buffer layer, 7 ... N-type GaAs current constriction and light absorption layer, 8 ... P-type GaAs contact layer, 9 ... P-side electrode.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に設けられた禁制帯幅の小さ
な発光活性層が両側にそれぞれ伝導型の異なる禁制帯幅
の大きな光導波層に挟まれて形成される異種接合構造を
有した半導体レーザ素子において、レーザ光の横方向又
は垂直共振器を形成したときの共振器端面に対して、高
真空装置内で水素ラジカルビームを照射して原子状水素
を端面及び端面近傍の半導体中に拡散吸着させ、伝導型
を示すあらかじめ導入されている不純物に原子状水素を
結び付け、端面及び端面近傍におけるp型及びn型キャ
リア濃度を最初に設定してある共振器内部の値よりも低
く設定し、引き続いて水素ラジカルビームを照射する同
一装置内でその場で高熱伝導率のコーティングを施し、
所定の反射率を設定した端面保護膜を形成することを特
徴とする半導体レーザ素子の製造方法。
1. A semiconductor having a heterojunction structure in which a light emitting active layer having a small forbidden band formed on a semiconductor substrate is sandwiched between optical waveguide layers having a large forbidden band having different conductivity types on both sides. In a laser device, the resonator end face when forming a horizontal or vertical resonator of laser light is irradiated with a hydrogen radical beam in a high vacuum device to diffuse atomic hydrogen into the end face and the semiconductor near the end face. Adsorbing, binding atomic hydrogen to a pre-introduced impurity exhibiting a conductivity type, and setting the p-type and n-type carrier concentrations in the end face and in the vicinity of the end face to be lower than the value inside the resonator that is initially set, In the same device that subsequently irradiates the hydrogen radical beam, a high thermal conductivity coating is applied in-situ.
A method for manufacturing a semiconductor laser device, which comprises forming an end face protective film having a predetermined reflectance.
【請求項2】請求項1において、前記光導波層に最初か
ら設定してあるp型及びn型のキャリア濃度が5×10
17〜2×1018cm~3の範囲である共振器端面領域に対し
て、前記水素ラジカルビーム照射を行った後に、原子状
水素がp型及びn型を示すあらかじめ導入されている不
純物に結び付いて共振器端面近傍におけるキャリアを不
活性化することにより、端面及び端面近傍におけるp型
又はn型のキャリア濃度が共振器内部の光導波層よりも
2桁近く低い5×1015〜5×1016cm~3の範囲となす
半導体レーザ素子の製造方法。
2. The carrier concentration for p-type and n-type carriers set in the optical waveguide layer according to claim 1 is 5 × 10.
After irradiating the hydrogen radical beam to the cavity end face region in the range of 17 to 2 × 10 18 cm to 3 , atomic hydrogen is bound to the previously introduced impurities showing p-type and n-type. By inactivating the carriers in the vicinity of the end face of the resonator, the p-type or n-type carrier concentration in the end face and in the vicinity of the end face is 5 × 10 15 to 5 × 10 lower than that of the optical waveguide layer inside the resonator by almost two digits. A method for manufacturing a semiconductor laser device having a range of 16 cm to 3 .
【請求項3】請求項目1または2において、水素ラジカ
ルビームを照射して原子状水素を端面及び端面近傍の半
導体中に拡散吸着させたとき、伝導型を示す不純物に原
子状水素が結び付くことにより、端面近傍領域のp型及
びn型キャリア濃度が最初に設定してある共振器内部よ
りも2桁近く低い値を示す深さ方向の範囲が端面から
0.05〜2.0μmまでに生じており、望ましくは端面
から0.5μm 以上生じている半導体レーザ素子の製造
方法。
3. The method according to claim 1 or 2, wherein when atomic hydrogen is diffused and adsorbed in the semiconductor on the end face and in the vicinity of the end face by irradiation with a hydrogen radical beam, the atomic hydrogen binds to an impurity exhibiting a conductivity type. , The p-type and n-type carrier concentrations in the region near the end face are nearly two orders of magnitude lower than the inside of the resonator that is initially set, and a range in the depth direction occurs from the end face to 0.05 to 2.0 μm. However, the method for manufacturing a semiconductor laser device preferably has 0.5 μm or more from the end face.
【請求項4】請求項1,2または3において、前記水素
ラジカルビームを照射する際に試料の温度を250〜4
50℃の範囲とし、望ましくは300〜400℃の範囲
に設定してある半導体レーザ素子の製造方法。
4. The temperature of a sample as set forth in claim 1, 2, or 3 when the hydrogen radical beam is irradiated.
A method for manufacturing a semiconductor laser device, wherein the temperature is set to 50 ° C., and preferably set to 300 to 400 ° C.
【請求項5】請求項1,2,3または4において、III
−V 族半導体ではp型の伝導型を示す不純物としてB
e,Mg,Znのいずれかを用い、n型不純物にSiを
用いることとし、II−VI半導体ではp型不純物としてN
を用い、n型不純物にCl,Br,Iのいずれかを用い
る半導体レーザ素子の製造方法。
5. The method according to claim 1, 2, 3, or 4, wherein
In the group-V semiconductor, B is used as an impurity exhibiting p-type conductivity.
One of e, Mg, and Zn is used, and Si is used as the n-type impurity. In the II-VI semiconductor, N is used as the p-type impurity.
And a method of manufacturing a semiconductor laser device using any of Cl, Br, and I as an n-type impurity.
【請求項6】請求項1,2,3,4または5において、
用いる前記半導体基板は基板面方位が(100)面から
0°から54.7° の範囲、望ましくは0°より大きく
(311)面に相当する25.2°以下の傾いた基板面を
有する半導体レーザ素子の製造方法。
6. The method according to claim 1, 2, 3, 4 or 5.
The semiconductor substrate used has a substrate plane orientation in the range of 0 ° to 54.7 ° from the (100) plane, preferably larger than 0 °.
A method of manufacturing a semiconductor laser device having a substrate surface inclined by 25.2 ° or less corresponding to the (311) plane.
JP7686794A 1994-04-15 1994-04-15 Manufacture of semiconductor laser element Pending JPH07283483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7686794A JPH07283483A (en) 1994-04-15 1994-04-15 Manufacture of semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7686794A JPH07283483A (en) 1994-04-15 1994-04-15 Manufacture of semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH07283483A true JPH07283483A (en) 1995-10-27

Family

ID=13617606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7686794A Pending JPH07283483A (en) 1994-04-15 1994-04-15 Manufacture of semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH07283483A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121877A (en) * 1997-08-13 1999-04-30 Mitsubishi Chemical Corp Compd. semiconductor light emitting device
JP2001068782A (en) * 1999-08-31 2001-03-16 Matsushita Electronics Industry Corp Semiconductor light-emitting device and manufacture thereof
JP2005340625A (en) * 2004-05-28 2005-12-08 Nichia Chem Ind Ltd Nitride semiconductor laser device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121877A (en) * 1997-08-13 1999-04-30 Mitsubishi Chemical Corp Compd. semiconductor light emitting device
JP2001068782A (en) * 1999-08-31 2001-03-16 Matsushita Electronics Industry Corp Semiconductor light-emitting device and manufacture thereof
JP2005340625A (en) * 2004-05-28 2005-12-08 Nichia Chem Ind Ltd Nitride semiconductor laser device

Similar Documents

Publication Publication Date Title
US20060165143A1 (en) Nitride semiconductor laser device and manufacturing method thereof
US20070091966A1 (en) Semiconductor light-emitting device and method of manufacturing the same
JP3129779B2 (en) Semiconductor laser device
US6677618B1 (en) Compound semiconductor light emitting device
KR980012751A (en) GaN-based compound semiconductor laser and manufacturing method thereof
KR100278482B1 (en) Self-excited semiconductor laser device
JPH09139543A (en) Semiconductor laser element
US5331656A (en) Very short wavelength semiconductor laser
US5345463A (en) Semiconductor laser with improved oscillation wavelength reproducibility
JP4288030B2 (en) Semiconductor structure using group III nitride quaternary material system
JPH07283483A (en) Manufacture of semiconductor laser element
JP2002124738A (en) Semiconductor optical device and manufacturing method thereof
JP3552642B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3699842B2 (en) Compound semiconductor light emitting device
JP3033333B2 (en) Semiconductor laser device
JP2865160B2 (en) Manufacturing method of semiconductor laser
JP3699840B2 (en) Compound semiconductor light emitting device
JPH08274413A (en) Semiconductor device and its manufacture
JPH10209562A (en) Manufacture of semiconductor laser element
JP2780625B2 (en) Manufacturing method of semiconductor laser
JPH07122811A (en) Semiconductor laser element
CA2187354C (en) Semiconductor devices and methods
JPH08307005A (en) Semiconductor laser element
JP3699841B2 (en) Compound semiconductor light emitting device
JP3297756B2 (en) Semiconductor laser device and method of manufacturing the same