JPH07282798A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH07282798A
JPH07282798A JP6105869A JP10586994A JPH07282798A JP H07282798 A JPH07282798 A JP H07282798A JP 6105869 A JP6105869 A JP 6105869A JP 10586994 A JP10586994 A JP 10586994A JP H07282798 A JPH07282798 A JP H07282798A
Authority
JP
Japan
Prior art keywords
lithium
active material
positive electrode
battery
manganese oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6105869A
Other languages
Japanese (ja)
Inventor
Toru Nagaura
亨 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAIBARU KK
Original Assignee
HAIBARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAIBARU KK filed Critical HAIBARU KK
Priority to JP6105869A priority Critical patent/JPH07282798A/en
Publication of JPH07282798A publication Critical patent/JPH07282798A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To improve cycle characteristic of a nonaqueous electrolyte secondary battery having positive electrode active material of spinel system lithium manganese oxide. CONSTITUTION:Spinel system lithium manganese oxide, shown in a general formula Li [Mn2-XLi]XO4 (0.020<=x<=0.081), is used for the active material of a positive electrode 2. It becomes Li3X [Mn2-x]O4 when charged, and at the point of the time, all manganese in a crystal is Mn<4+> to cause no Mn<3+> in the crystal to make the crystallization structure change of the active material of the positive electrode 2 difficult to be caused. Even at the point of time when all manganese in the active material becomes Mn<4+>, a lithium ion located in a 8a site remains 0.06 or more, and ion conductivity induced by the movement of the lithium ion in an active material crystal is kept in well to effectively charge/discharge all active material, providing a battery less in capacity deterioration following a cycle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、スピネル系リチウム
マンガン酸化物を正極活物質とする非水電解液二次電池
のサイクル特性を改善しようととするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is intended to improve the cycle characteristics of a non-aqueous electrolyte secondary battery using a spinel type lithium manganese oxide as a positive electrode active material.

【0002】[0002]

【従来の技術】電子機器の小型化、軽量化が進められる
中、その電源として高エネルギー密度の二次電池の要望
が強まっている。高エネルギー密度の二次電池としては
高電圧が期待できる非水電解液二次電池にこれまで期待
され続けてきたが、負極のサイクル性能に問題があり、
なかなか実現しなかった。しかし最近になってようや
く、カーボンへのリチウムイオンの出入りを利用するカ
ーボン電極を負極とする非水電解液二次電池が開発さ
れ、一挙に非水電解液二次電池が実用化の段階に入っ
た。この電池は本発明者等によって、リチウムイオン二
次電池と名付けて1990年に初めて世の中に紹介した
もので(雑誌Progress In Batteri
es & Solar Cells,Vol.9,19
90,p209参照)、現在では電池業界、学会におい
ても次世代の二次電池“リチウムイオン二次電池”と呼
ばれるほどに認識され、その開発、企業化競争が活発化
している。代表的には正極材料にリチウムコバルト含有
複合酸化物(LiCoO)を用い、負極にはコークス
やグラファイト等の炭素質材料が用いられる。実際、2
40Wh/l程のエネルギー密度を持つリチウムイオン
二次電池は既にビデオカメラや携帯電話等の電源として
少量実用され始めている。既存のニッケルカドミウム電
池のエネルギー密度は100〜150Wh/lであり、
リチウムイオン二次電池のエネルギー密度は既存の電池
のそれをはるかに上回るものである。しかし正極材料に
LiCoOを用いたリチウムイオン二次電池のおおき
な欠点は、高価なコバルトを使用するため既存の電池に
比べ原材料費が非常に高いことである。カーボン負極と
組み合わせて、リチウムイオン二次電池を構成できる材
料はリチウムコバルト酸化物(LiCoO)の他には
リチウムニッケル酸化物(LiNiO)およびリチウ
ムマンガン酸化物(LiMn)が知られている。
安価な材料という点でLiMnが注目され、Li
Mnを正極活物質とするリチウムイオン二次電池
の開発が近年盛んに行われるようになってきた。LiC
oOを正極材料とするリチウムイオン二次電池のもう
一つの欠点は、過充電により発火したり発煙したりする
ので、安全性能に問題を残していることである。このた
め、例えば現在ビデオカメラ用の電源として実用されて
いるリチウムイオン二次電池の電池パックには過充電防
止回路を組み込み、その対策が採られている。従って電
池価格に加えて、過充電防止回路の価格が上乗せされ、
リチウムイオン電池を使用した電池パックは非常に値段
的に高くなり、リチウムイオン電池が広い用途に採用さ
れるための大きな障害となっている。本発明者は正極に
リチウムマンガン酸化物(LiMn)を使用した
リチウムイオン二次電池は、過充電によって発火に至る
ことがなく、過充電による電池内部の温度上昇で正極と
負極の間の多孔質膜セパレーターが軟化もしくは溶融し
て多孔性を失い、通電不能となり電池は安全に壊れるこ
とを見いだした。しかし、残念ながら価格面、安全性の
面では大きな特長を持ちながら、リチウムマンガン酸化
物(LiMn)を正極材料とするリチウムイオン
二次電池はサイクル特性が悪いため、つまりサイクルに
伴う容量劣化が大きいためまだ実用化出来ていない。こ
のサイクル特性改善のための手法として、これまでリチ
ウムを過剰にしてi1+XMnとしたり、マンガ
ンの一部をCo等の他の金属で置き換えてLiMn
2−XCoとしたりして、リチウムマンガン酸化
物の改質を図り、サイクル特性を改良することが提案さ
れているが、高温下(35℃以上)での充放電サイクル
に伴う容量の劣化は依然大きく、いまだリチウムマンガ
ン酸化物を正極材料とするリチウムイオン二次電池は実
用化されていない。
2. Description of the Related Art As electronic devices are becoming smaller and lighter, there is an increasing demand for high energy density secondary batteries as their power sources. As a high energy density secondary battery, it has been expected to be a non-aqueous electrolyte secondary battery that can be expected to have a high voltage, but there is a problem in the cycle performance of the negative electrode.
It just didn't happen. However, only recently has a non-aqueous electrolyte secondary battery with a carbon electrode as a negative electrode, which utilizes the movement of lithium ions into and out of carbon, developed, and the non-aqueous electrolyte secondary battery has entered the stage of commercialization all at once. It was This battery was first introduced to the world in 1990 by the present inventors under the name of lithium-ion secondary battery (the magazine Progress In Batteri).
es & Solar Cells, Vol. 9, 19
90, p209), and nowadays it is recognized in the battery industry and academic societies as to be called the next-generation secondary battery "lithium-ion secondary battery", and its development and commercialization competition is intensifying. Typically, a lithium cobalt-containing composite oxide (LiCoO 2 ) is used for the positive electrode material, and a carbonaceous material such as coke or graphite is used for the negative electrode. In fact 2
Lithium ion secondary batteries having an energy density of about 40 Wh / l have already been put into practical use in small quantities as power sources for video cameras, mobile phones, and the like. The energy density of existing nickel-cadmium batteries is 100-150 Wh / l,
The energy density of lithium-ion secondary batteries is much higher than that of existing batteries. However, a major drawback of the lithium-ion secondary battery using LiCoO 2 as the positive electrode material is that the cost of raw materials is much higher than that of existing batteries because expensive cobalt is used. In addition to lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ) and lithium manganese oxide (LiMn 2 O 4 ) are known as materials that can be combined with a carbon negative electrode to form a lithium ion secondary battery. ing.
LiMn 2 O 4 attracts attention because it is an inexpensive material.
In recent years, lithium ion secondary batteries using Mn 2 O 4 as a positive electrode active material have been actively developed. LiC
Another drawback of the lithium-ion secondary battery using oO 2 as a positive electrode material is that it causes a fire or smoke due to overcharging, which leaves a problem in safety performance. For this reason, for example, a battery pack of a lithium-ion secondary battery that is currently in practical use as a power source for a video camera incorporates an overcharge prevention circuit and measures against it are taken. Therefore, in addition to the battery price, the price of the overcharge prevention circuit is added,
Battery packs using lithium-ion batteries are very expensive, which is a major obstacle to the widespread use of lithium-ion batteries. The present inventor has found that a lithium-ion secondary battery using lithium manganese oxide (LiMn 2 O 4 ) for the positive electrode does not cause ignition due to overcharging, and the temperature inside the battery rises due to overcharging, and It was found that the porous membrane separator of No. 1 softens or melts, loses its porosity, becomes inoperable, and the battery is safely broken. However, unfortunately, lithium ion secondary batteries that use lithium manganese oxide (LiMn 2 O 4 ) as a positive electrode material have poor cycle characteristics, which means that they have great features in terms of price and safety. It has not been put to practical use yet because of its large deterioration. As a method for improving this cycle characteristic, lithium is excessively used to obtain i 1 + X Mn 2 O 4 , or a part of manganese is replaced with another metal such as Co to obtain LiMn.
It has been proposed that the lithium manganese oxide be modified by using 2-X Co X O 4 or the like to improve the cycle characteristics, but the capacity associated with the charge / discharge cycle at high temperature (35 ° C. or higher) is proposed. However, the lithium-ion secondary battery using lithium manganese oxide as a positive electrode material has not yet been put to practical use.

【0003】[0003]

【発明が解決しようとする課題】本発明は、充放電サイ
クルに伴う容量劣化の少ない、スピネル系リチウムマン
ガン酸化物を正極活物質材料としたリチウムイオン二次
電池を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention is intended to provide a lithium ion secondary battery using spinel-type lithium manganese oxide as a positive electrode active material, which has a small capacity deterioration due to charge and discharge cycles.

【0004】[0004]

【課題を解決するための手段】課題解決の手段は、正極
の主たる活物質として一般式 Li[Mn2−XLi]O(但し、0.020≦x
≦0.081) で示されるスピネル系リチウムマンガン酸化物を使用す
る。
[Means for Solving the Problem] The means for solving the problem is as a main active material of a positive electrode, which is represented by the general formula: Li [Mn 2−X Li X ] O 4 (where 0.020 ≦ x
The spinel-based lithium manganese oxide represented by ≦ 0.081) is used.

【0005】[0005]

【作用】リチウムマンガン酸化物(LiMn)を
正極活物質とした電池において、理想的な正極の充電反
応は次式で示される。 LiMn →Li1−XMn+ XLi + Xe →Mn(λ−MnO)+ Li + e・・・ (1) つまり、LiMnは結晶中のリチウムイオンが引
き抜かれ、結晶中のマンガンはその酸化価数が3.5価
から4.0価へ変わる。従ってLiMnの理論容
量は148mAh/gである。しかし、実際の電池では
139mAh/g程度の容量である。この理論値と実際
の容量の差は次のように考えられる。上記(1)式が電
気化学的酸化反応として進行するためには、酸化途中の
Li1−XMnが電子伝導性とイオン伝導性を有
していることが必要である。ところが反応が進行し結晶
中のリチウムイオンが少なくなると、リチウムイオンの
結晶内移動でもたらされるイオン伝導性は大きく損なわ
れることになる。従って実際の電池では充電時間は限ら
れるので、電気化学的酸化反応は上記(1)式において
X≒0.94程度で限界に達すると考えられる。従って
LiMnを正極活物質とした電池においては、充
分に充電された正極活物質でもLi0.06Mn
と考えられる。つまり充分に充電された正極活物質は
(Li0.060.948a[Mn16d
で示されるスピネル構造と考えれ、逆にスピネル系リチ
ウムマンガン酸化物が電気化学的に酸化されるためには
8aサイトに位置するリチウムイオンが0.06以上残
存することが必要と考えられる。一方Li0.06Mn
はLi0.06Mn4+ 1.94Mn3+
0.06であり、結晶中にはまだMn3+が存在
し、徐々に次の反応が進行し、Mn2+が電解液中に解
けだすため、次第に結晶構造が変化する。 2Mn3+(個体)→ Mn4+(個体) + Mn2+(溶液)・・・ ・(2) 正極活物質の結晶構造が徐々に変化する結果、徐々に充
放電機能を失っていく。これがLiMnを正極材
料とするリチウムイオン二次電池のサイクルに伴う容量
劣化のメカニズムと考えられる。そこで本発明者は充電
された状態の活物質としては、次の条件を満たすことが
理想的と考え本発明を着想するに至った。 条件1.スピネル結晶構造における8aサイトに位置す
るリチウムイオンが0.06以上残存すること。 (活物質の良好なイオン伝導持続のため) 条件2.Mn3+が存在しないこと。 (結晶構造変化を押さえるため) 前述のごとく、従来から正極材料として検討されてきた
リチウムマンガン酸化物LiMnでは上記条件2
が満足されない。ところが、一般式Li[Mn2−X
]O(0≦X≦0.33)で示される一連のスピ
ネル系リチウムマンガン酸化物はXの範囲を適切に選べ
ば上記の条件に合致することに本発明者は着目した。
(なお、従来のLiMnも前記一般式で示される
スピネル系リチウムマンガン酸化物でX=0の場合であ
る。) つまり一般式Li[Mn2−XLi]O(0≦X≦
0.33)で示されるスピネル系リチウムマンガン酸化
物は充電されると、下記(3)式で示すように、Li
3X[Mn2−XLi]Oとなり、8aサイトに位
置するリチウムイオンは3Xが残存する。従って一般式
Li[Mn2−XLi]Oで示されるスピネル系リ
チウムマンガン酸化物は0.02≦Xとすることで、8
aサイトに位置するリチウムイオンが0.06以上残存
することになり上記の条件1が満足される。またLi
3X[Mn2−XLi]Oとなる時点で結晶中の全
てのマンガンはMn4+であり、Mn3+は存在しない
ので上記条件2も満足される。 しかし、(4)式に示すように活物質から離脱されるリ
チウムイオン(1−3X)が活物質の充電容量であるわ
けで、当然、Xの値があまり大きい組成では電池容量そ
のものが小さくなるので、0.020≦x≦0.081
が好ましい。以上の着想のもとに、一般式Li[Mn
2−XLi]Oで示されるスピネル系リチウムマン
ガン酸化物の製造方法について鋭意検討を重ねた結果、
Li[Mn2−XLi]O(但し、0.020≦x
≦0.081)は、X線回折角度(Fe−Kα)の2θ
=36.3°に表れる110面の回折ピークの半値幅が
2.0°以下に結晶が発達したβ型MnOにリチウム
化合物をリチウムとマンガンの原子比で0.515≦L
i/Mn≦0.563で混合し、熱処理温度(T)が4
50℃≦T≦850℃で熱処理をすることで製造出来る
ことを見いだし、本発明を完成したものである。なお従
来の正極材料として検討されてきたLiMnであ
れば、マンガン酸化物にリチウム化合物をLi/Mn=
0.5で混合し、600〜900℃空気中で熱処理する
ことによって製造できる。しかしこの方法ではリチウム
混合比を増して、Li/Mn>0.5で合成を試みて
も、不純物としてLiMnOが生成し、Li[Mn
2−XLi]O(但し、0.020≦x≦0.08
1)を合成することは難しい。
In a battery using lithium manganese oxide (LiMn 2 O 4 ) as a positive electrode active material, an ideal positive electrode charging reaction is represented by the following equation. LiMn 2 O 4 → Li 1-X Mn 2 O 4 + XLi + + Xe → Mn 2 O 4 (λ-MnO 2 ) + Li + + e (1) That is, LiMn 2 O 4 is a crystal. The lithium ion therein is extracted, and the oxidation valence of manganese in the crystal is changed from 3.5 to 4.0. Therefore, the theoretical capacity of LiMn 2 O 4 is 148 mAh / g. However, the actual battery has a capacity of about 139 mAh / g. The difference between this theoretical value and the actual capacity is considered as follows. In order for the above formula (1) to proceed as an electrochemical oxidation reaction, it is necessary that Li 1-X Mn 2 O 4 during oxidation has electronic conductivity and ionic conductivity. However, when the reaction proceeds and the amount of lithium ions in the crystal decreases, the ionic conductivity brought about by the movement of lithium ions in the crystal is greatly impaired. Therefore, since the charging time is limited in an actual battery, it is considered that the electrochemical oxidation reaction reaches the limit when X≈0.94 in the above formula (1). Therefore, in a battery using LiMn 2 O 4 as the positive electrode active material, Li 0.06 Mn 2 O 4 can be used even with a sufficiently charged positive electrode active material.
it is conceivable that. That is, the fully charged positive electrode active material is (Li 0.060.94 ) 8a [Mn 2 ] 16d O 4
It is considered that the spinel structure represented by the above is conversely considered, and conversely, in order for the spinel-type lithium manganese oxide to be electrochemically oxidized, it is necessary that 0.06 or more of the lithium ions located at the 8a site remain. On the other hand, Li 0.06 Mn
2 O 4 is Li 0.06 Mn 4+ 1.94 Mn 3+
It is 0.06 O 4 , Mn 3+ still exists in the crystal, the next reaction gradually progresses, and Mn 2+ is dissolved in the electrolytic solution, so that the crystal structure gradually changes. 2Mn 3+ (solid) → Mn 4+ (solid) + Mn 2+ (solution) (2) As a result of a gradual change in the crystal structure of the positive electrode active material, the charge / discharge function is gradually lost. This is considered to be the mechanism of capacity deterioration with cycles of a lithium ion secondary battery using LiMn 2 O 4 as a positive electrode material. Therefore, the inventor of the present invention has come up with the idea of the present invention, considering that the following conditions are ideal for the active material in a charged state. Condition 1. 0.06 or more of lithium ions located at the 8a site in the spinel crystal structure remain. (To maintain good ionic conduction of the active material) Condition 2. The absence of Mn 3+ . (To suppress crystal structure change) As described above, in the lithium manganese oxide LiMn 2 O 4 which has been conventionally studied as a positive electrode material, the above Condition 2 is used.
Is not satisfied. However, the general formula Li [Mn 2−X L
The present inventor has noticed that a series of spinel-type lithium manganese oxides represented by i X ] O 4 (0 ≦ X ≦ 0.33) meet the above conditions if the range of X is appropriately selected.
(Note that the conventional LiMn 2 O 4 is also a spinel-type lithium manganese oxide represented by the general formula, where X = 0.) That is, the general formula Li [Mn 2 −X Li X ] O 4 (0 ≦ X ≤
When charged, the spinel-type lithium manganese oxide represented by the formula (0.33) produces Li as shown in the following formula (3).
3X [Mn 2−X Li X ] O 4 is obtained, and 3X remains in the lithium ion located at the 8a site. Therefore, the spinel type lithium manganese oxide represented by the general formula Li [Mn 2−X Li X ] O 4 is set to 0.02 ≦ X,
At least 0.06 or more of lithium ions located at the a site will remain, so that the above condition 1 is satisfied. Also Li
3X [Mn 2-X Li X ] all manganese in the crystal at the time when the O 4 is Mn 4+, Mn 3+ is the condition 2 is also satisfied because there. However, as shown in the formula (4), the lithium ion (1-3X) desorbed from the active material is the charge capacity of the active material, and naturally the battery capacity itself becomes small when the composition of X is too large. Therefore, 0.020 ≦ x ≦ 0.081
Is preferred. Based on the above idea, the general formula Li [Mn
As a result of extensive studies on a method for producing a spinel-based lithium manganese oxide represented by 2-X Li X ] O 4 ,
Li [Mn 2−X Li X ] O 4 (however, 0.020 ≦ x
≦ 0.081) is 2θ of the X-ray diffraction angle (Fe-Kα).
= 0.33 °, the half value width of the diffraction peak on the 110 plane is β-type MnO 2 in which the crystal has developed to a value of 2.0 ° or less, and a lithium compound is used in an atomic ratio of lithium to manganese of 0.515 ≦ L.
i / Mn ≦ 0.563 is mixed, and the heat treatment temperature (T) is 4
The present invention has been completed by finding that it can be manufactured by heat treatment at 50 ° C. ≦ T ≦ 850 ° C. If LiMn 2 O 4 has been studied as a conventional positive electrode material, a lithium compound is added to manganese oxide as Li / Mn =
It can be manufactured by mixing at 0.5 and heat treating in air at 600 to 900 ° C. However, in this method, even if the lithium mixing ratio is increased and synthesis is attempted with Li / Mn> 0.5, Li 2 MnO 3 is generated as an impurity, and Li [Mn
2-X Li X ] O 4 (however, 0.020 ≦ x ≦ 0.08
It is difficult to synthesize 1).

【0006】[0006]

【実施例】以下、本発明を黒鉛質炭素材料を負極活物質
として、コイン型非水電解液二次電池に適用した実施例
について図面を参照しながら説明する。
EXAMPLES Hereinafter, examples in which the present invention is applied to a coin type non-aqueous electrolyte secondary battery using a graphite carbon material as a negative electrode active material will be described with reference to the drawings.

【0007】実施例1 図1に示すコイン型の非水電解液二次電池を次のように
して作成した。まず正極活物質とするLi[Mn2−X
Li]O(0≦X≦0.12)を合成するための出
発物質としてβ型MnO試料を次のようにして用意し
た。3モル/lの同一濃度のMnSOと(NH
COを反応容器中に150cc/hの滴下速度でパラ
レルチャージし、反応温度を5℃以下に保って、6時間
反応させ平均粒径0.008mmのMnCOを合成し
た。次に前記MnCOを600℃で20時間加熱処理
を行いMnとし、Mnの1g当たり0.6
ccの割合で13N−HNOを添加し、280℃で熱
分解する操作を3回繰り返し、0.001mm程度の極
めて微細な粒子のβ型MnO試料(A)を得た。この
β型MnO試料(A)は、X線回折結果を図2に示す
ように典型的なβ型MnO2の回折パターンを示すもの
であり、2θ=36.3°(Fe−Kα)に表れる11
0面の回折ピークの半値幅は約1.5°であり、結晶化
度の高いものである。
Example 1 A coin type non-aqueous electrolyte secondary battery shown in FIG. 1 was prepared as follows. First, Li [Mn 2-X used as the positive electrode active material
A β-type MnO 2 sample was prepared as a starting material for synthesizing Li X ] O 4 (0 ≦ X ≦ 0.12) as follows. 3 mol / l of the same concentration of MnSO 4 and (NH 4 ) 2
CO 3 was parallel charged into the reaction vessel at a dropping rate of 150 cc / h, kept at a reaction temperature of 5 ° C. or lower, and reacted for 6 hours to synthesize MnCO 3 having an average particle diameter of 0.008 mm. Next, the MnCO 3 was heat-treated at 600 ° C. for 20 hours to form Mn 2 O 3, and the amount of Mn 2 O 3 was 0.6 g / g.
The operation of adding 13N-HNO 3 at a ratio of cc and thermally decomposing at 280 ° C. was repeated 3 times to obtain a β-type MnO 2 sample (A) having extremely fine particles of about 0.001 mm. This β-type MnO 2 sample (A) shows a typical β-type MnO 2 diffraction pattern as shown in FIG. 2 as an X-ray diffraction result, and appears at 2θ = 36.3 ° (Fe-Kα). 11
The half-value width of the diffraction peak on the 0-face is about 1.5 °, and the crystallinity is high.

【0008】Li[Mn2−XLi]O(0≦X≦
0.12)の合成。 表1に従ってX=0〜0.12の範囲でXを10段階で
変化させ、上記β−MnO試料(A)に炭酸リチウム
(LiCO)を混合し、磁製容器に納めて電気炉中
に入れ450℃まで昇温し、この温度に12時間保持し
て熱処理を施した。その後さらに450〜850℃の温
度で12時間保持して最終熱処理を施した。なお予備実
験の結果、最終熱処理のための適正温度はX値により異
なり、あらかじめ未反応のβ−MnOやMn
が不純物として混じない適正温度を決定した。熱処理後
の10種類(X値0〜0.12)の生成物はX線回折で
は、広角側に現れる回折ピークはXの増加につれて極く
僅か広角側にシフトしているが、何れも立方晶スピネル
型LiMnの回折パターンに合致するものであ
り、他の不純物の存在は見られなかった。その他に化学
分析もまじえて、何れの生成物も表1に示した組成で、
立方晶スピネル型Li[Mn2−XLi]O(0≦
X≦0.12)に合致することが確認された。
Li [Mn 2−X Li X ] O 4 (0 ≦ X ≦
Synthesis of 0.12). According to Table 1, X is varied in 10 steps in the range of X = 0 to 0.12, the above β-MnO 2 sample (A) is mixed with lithium carbonate (Li 2 CO 3 ), and the mixture is placed in a porcelain container to be electrically charged. It was placed in a furnace, heated to 450 ° C., and kept at this temperature for 12 hours for heat treatment. Thereafter, a final heat treatment was performed by further holding the temperature at 450 to 850 ° C. for 12 hours. As a result of preliminary experiments, the proper temperature for the final heat treatment differs depending on the X value, and the proper temperature at which unreacted β-MnO 2 , Mn 2 O 3, etc. are not mixed as impurities was determined in advance. In X-ray diffraction, the diffraction peaks appearing on the wide-angle side of the 10 kinds of products (X value 0 to 0.12) after the heat treatment shift to the very wide-angle side as the X increases, but they are all cubic crystals. This was in agreement with the diffraction pattern of spinel type LiMn 2 O 4 , and the presence of other impurities was not seen. In addition to chemical analysis, each product has the composition shown in Table 1,
Cubic spinel type Li [Mn 2−X Li X ] O 4 (0 ≦
It was confirmed that X ≦ 0.12) was satisfied.

【0009】X値の異なる10種類の反応生成物[Li
1+XMn2−X]には、それぞれその88重量部
にアセチレンブラック3重量部、グラファイト6重量部
を加えてよく混合し、さらに結合剤としてポリフッ化ビ
ニリデン3重量部と溶剤であるN−メチル−2−ピロリ
ドンを加えて湿式混合して、正極合剤ペーストとした。
この正極合剤ペーストは厚さ0.02mmのアルミニウ
ム箔の片面に均一に塗布し、乾燥後ローラープレス機で
加圧成型してシート状にして、X値の異なる10種類の
[Li1+XMn2−X]を正極活物質とする10
種類のシート状電極を得た。10種類のそれぞれのシー
ト状電極からは円板状に打ち抜き、コイン型電池のため
の、直径17.6mmの円板状正極(2)を作り、真空
乾燥器中で、温度100℃で12時間乾燥した。
10 kinds of reaction products having different X values [Li
1 + X Mn 2-X O 4 ], 88 parts by weight of each of them was added with 3 parts by weight of acetylene black and 6 parts by weight of graphite and mixed well, and further 3 parts by weight of polyvinylidene fluoride as a binder and N- which was a solvent. Methyl-2-pyrrolidone was added and wet mixed to obtain a positive electrode mixture paste.
This positive electrode material mixture paste was uniformly applied to one side of an aluminum foil having a thickness of 0.02 mm, dried, and then pressure-molded with a roller press machine to form a sheet, and 10 kinds of [Li 1 + X Mn 2 having different X values were used. 10 to the -X O 4] as a positive electrode active material
A variety of sheet electrodes were obtained. A disk-shaped positive electrode (2) with a diameter of 17.6 mm for coin-type batteries was punched out from each of 10 types of sheet-shaped electrodes, and the temperature was 100 ° C for 12 hours in a vacuum dryer. Dried.

【0010】また負極は次のようにして用意した。28
00℃で熱処理を施したメソカーボンマイクロビーズ
(d002=3.37Å)の86重量部にカーボンブラ
ック4重量部と結着剤としてポリフッ化ビニリデン(P
VDF)10重量部を加え、溶剤であるN−メチル−2
−ピロリドンと湿式混合してスラリー(ペースト状)に
した。そしてこの負極合剤スラリーを厚さ0.02mm
の銅箔の片面に均一に塗布し、乾燥後ローラープレス機
で加圧成型して、シート状のカーボン電極を得た。この
シート状カーボン電極を直径18.5mmの円板に打ち
抜き、コイン型電池のための円板状負極(1)を作り、
真空乾燥器中で、温度100℃で12時間乾燥した。
The negative electrode was prepared as follows. 28
86 parts by weight of mesocarbon microbeads (d002 = 3.37Å) heat-treated at 00 ° C., 4 parts by weight of carbon black and polyvinylidene fluoride (P
VDF) 10 parts by weight is added, and the solvent is N-methyl-2.
Wet mixed with pyrrolidone to form a slurry (paste). Then, this negative electrode mixture slurry is made to have a thickness of 0.02 mm.
Was uniformly applied to one surface of the copper foil, dried and pressure-molded with a roller press machine to obtain a sheet-shaped carbon electrode. This sheet-shaped carbon electrode was punched into a disc having a diameter of 18.5 mm to form a disc-shaped negative electrode (1) for a coin-type battery,
It was dried in a vacuum dryer at a temperature of 100 ° C. for 12 hours.

【0011】次に図1に示すように、電池缶(4)の底
にはアルミニウム箔(10)を敷き、ガスケット(6)
を設置し、作成した負極(1)と正極(2)は、その間
に多孔質ポリプロピレン製セパレータ(3)を挟んで活
物質層を対向して重ね合わせ、電池缶(4)の中央に収
容し、電池缶の中に電解液として1モル/リットルのL
iPFを溶解したエチレンカーボネイト(EC)とジ
エチルカーボネート(DEC)の混合溶液を注入した。
その後電極押さえ板(7)を設置し、電池蓋体(5)を
重ね、電池缶と電池蓋体はガスケットを介してかしめる
ことによって、電池を封口して密閉した。こうして作成
した電池は(A)〜(J)の10種類の電池で、これら
は正極活物質のみが異なるものである。
Next, as shown in FIG. 1, an aluminum foil (10) is laid on the bottom of the battery can (4) and a gasket (6) is provided.
The prepared negative electrode (1) and positive electrode (2) were placed in the center of the battery can (4) with the active material layers facing each other with the porous polypropylene separator (3) interposed therebetween. , 1 mol / l L as electrolyte in the battery can
A mixed solution of ethylene carbonate (EC) in which iPF 6 was dissolved and diethyl carbonate (DEC) was injected.
After that, the electrode pressing plate (7) was installed, the battery lid (5) was overlaid, and the battery can and the battery lid were caulked with a gasket to seal and seal the battery. The batteries prepared in this manner are 10 types of batteries (A) to (J), which differ only in the positive electrode active material.

【0012】テスト結果 こうして実施例1において作成した電池は(A)〜
(J)は、いずれも電池内部の安定化を目的に12時間
のエージング期間を経過させた後、充電電圧を4.2V
に設定し、いずれも8時間の充電を行い、放電は全ての
電池について2mAの定電流放電にて終止電圧3.0V
まで行い、それぞれの電池の初期容量を求めた。結果は
表2に示した通りである。その後各電池は40℃の雰囲
気で充放電サイクル試験を行った。充電電流は2mA
で、充電上限電圧は4.2Vに設定して4時間の充電を
行い、放電は2mAの定電流放電にて終止電圧3.0V
まで行って充放電を繰り返した。各電池の100サイク
ル後および200サイクル後の容量を同じく表2に示し
た。
Test Results The batteries thus prepared in Example 1 were (A) to
(J) shows a charging voltage of 4.2 V after an aging period of 12 hours has passed for the purpose of stabilizing the inside of the battery.
Set to, and charge for 8 hours in each case, and discharge all batteries with a constant current of 2 mA and a final voltage of 3.0 V.
Then, the initial capacity of each battery was obtained. The results are shown in Table 2. Then, each battery was subjected to a charge / discharge cycle test in an atmosphere of 40 ° C. Charging current is 2mA
Then, the charge upper limit voltage is set to 4.2V and charging is performed for 4 hours, and the discharge is a constant current discharge of 2mA, and the final voltage is 3.0V.
And repeated charging and discharging. The capacity of each battery after 100 cycles and 200 cycles is also shown in Table 2.

【0013】各電池の初期容量は、表2に示すように正
極活物質によって異なり、正極活物質Li1+XMn
2−XにおけるX値の小さい電池が大きい容量を示
す。しかし40℃で充放電を繰り返すとX値の小さい正
極活物質では容量劣化が大きい。200サイクル後では
従来の電池に相当するX=0の電池(A)では初期容量
の半分となってしまう。これに対し0.20≦Xの電池
では何れも200サイクル後の容量は初期容量の85%
以上を維持している。しかしX値があまり大きいと、初
期容量が小さいため、200サイクル後の容量と言えど
もその絶対値で大きく勝ることはなく、X≦0.81が
実質的に有効である。結局、負極の活物質材料はリチウ
ムをインターカレート可能な炭素質材料を使用し、正極
の活物質材料には一般式 Li[Mn2−XLi]O
で示されるスピネル系リチウムマンガン酸化物を使用
し、ここで0.20≦X≦0.81とすれば、さらに好
ましくは0.20≦X≦0.65とすれば、リチウムマ
ンガン酸化物を正極活物質材料とした場合でも、充放電
サイクルに伴う容量劣化の少ないリチウムイオン二次電
池となる。
As shown in Table 2, the initial capacity of each battery depends on the positive electrode active material, and the positive electrode active material Li 1 + X Mn
A battery having a small X value in 2-X O 4 exhibits a large capacity. However, when charge and discharge are repeated at 40 ° C., the capacity deterioration is large in the positive electrode active material having a small X value. After 200 cycles, the battery (A) with X = 0, which is equivalent to the conventional battery, has half the initial capacity. On the other hand, in the batteries of 0.20 ≦ X, the capacity after 200 cycles was 85% of the initial capacity in all cases.
The above is maintained. However, when the X value is too large, the initial capacity is small, and therefore even if the capacity after 200 cycles, the absolute value does not significantly exceed, and X ≦ 0.81 is substantially effective. After all, a carbonaceous material capable of intercalating lithium is used as the negative electrode active material, and the general formula Li [Mn 2−X Li X ] O is used as the positive electrode active material.
4 is used, and 0.20 ≦ X ≦ 0.81 is more preferable, and 0.20 ≦ X ≦ 0.65 is more preferable. Even when used as the positive electrode active material, the lithium ion secondary battery has less capacity deterioration due to charge / discharge cycles.

【0014】 一般式Li1+XMn2−Xで示さ
れるスピネル系リチウムマンガン酸化物は、理論的に0
≦X≦1/3の範囲で存在する。実施例では正極活物質
としてて0≦x≦0.12で実施した。実施例の電池
(C)では正極中の活物質は次のように充電される。 充電後の活物質(Li0.060.948a[Mn
1.98Li0.0216dにおいては、Mnの
酸化価数は4であり、もはやMnはこれ以上酸化される
ことはない。したがって8aサイトに位置するリチウム
イオンが0.06残存するが、リチウムイオンの結晶外
への離脱は結晶内のMn原子の高酸化価数への上昇と平
行してのみ起こりうるものなので、リチウムイオンはも
はや結晶外へは出ない。したがって0.02≦Xでは、
充電完了時においても最初に存在したリチウムの5.9
%以上のリチウムイオンが8aサイトに残存することに
なり、リチウムイオンの活物質結晶内の移動でもたらさ
れるイオン伝導性は良好に維持され、全ての活物質が有
効に充放電されるため、本実施例の結果のごとくサイク
ルに伴う容量劣化の少ない電池となると考えられる。
The spinel-based lithium manganese oxide represented by the general formula Li 1 + X Mn 2 -X O 4 is theoretically 0
It exists in the range of ≦ X ≦ 1/3. In the example, the positive electrode active material was 0 ≦ x ≦ 0.12. In the battery (C) of the example, the active material in the positive electrode is charged as follows. Charged active material (Li 0.060.94 ) 8a [Mn
In 1.98 Li 0.02 ] 16d O 4 , the oxidation valence of Mn is 4, and Mn is no longer oxidized. Therefore, 0.06 of the lithium ion located at the 8a site remains, but the detachment of the lithium ion out of the crystal can occur only in parallel with the increase of the Mn atom in the crystal to a high oxidation valence. No longer goes out of the crystal. Therefore, for 0.02 ≦ X,
5.9 of lithium that was initially present even when charging was completed
% Of lithium ions will remain at the 8a site, the ionic conductivity brought about by the migration of lithium ions in the active material crystal will be well maintained, and all active materials will be effectively charged and discharged. As in the results of the examples, it is considered that the battery has less capacity deterioration due to cycles.

【0015】リチウム含有マンガン酸化物を正極活物質
とする二次電池においては、正極活物質の充放電反応は
リチウムイオンの活物質への出/入と活物質内のMn原
子の価数の上昇/下降が平行して起こりうるものなの
で、いかなるリチウム含有マンガン酸化物を活物質とし
ても、充放電の状態に関係なく [活物質内リチウム量]+[Mnの平均価数×活物質内
マンガン量]=一定 である。したがって活物質組成においてマンガンとリチ
ウムの原子比(Li/Mn)をa、マンガンの平均酸化
価数をmとするとき、充放電の状態に関係なく a+m=c(一定) である。本発明における正極活物質材料はLi[Mn
2−XLi]O(0.020≦x≦0.081)で
示されるスピネル系リチウムマンガン酸化物であり、 4.04≦a+m≦4.17 である。したがってm=4の場合でも、0<aであり活
物質中にリチウムイオンが存在することが特徴である。
ところが従来のLiMnであればa+m=4であ
り、Li1+XMnにおいてもm=[8−(1+
X)]/2、a=(1+X)/2であるから、a+m=
4であり、何れもm=4ではa=0となり活物質中には
リチウムイオンは存在しなくなる点で本発明の活物質材
料と根本的に異なる。
In the secondary battery using the lithium-containing manganese oxide as the positive electrode active material, the charge / discharge reaction of the positive electrode active material causes the lithium ions to enter / exit the active material and increase the valence of Mn atoms in the active material. / Since the descent can occur in parallel, no matter what lithium-containing manganese oxide is used as the active material, the amount of lithium in the active material + [average valence of Mn x amount of manganese in the active material] regardless of the state of charge and discharge. ] = It is constant. Therefore, when the atomic ratio (Li / Mn) of manganese and lithium in the active material composition is a and the average oxidation valence of manganese is m, a + m = c (constant) regardless of the charge / discharge state. The positive electrode active material in the present invention is Li [Mn
2-X Li X ] O 4 (0.020 ≦ x ≦ 0.081) is a spinel-based lithium manganese oxide, and 4.04 ≦ a + m ≦ 4.17. Therefore, even when m = 4, 0 <a and lithium ions are present in the active material.
However, in the case of conventional LiMn 2 O 4 , a + m = 4, and in Li 1 + X Mn 2 O 4 , m = [8− (1+
X)] / 2 and a = (1 + X) / 2, so a + m =
4, which is fundamentally different from the active material material of the present invention in that a = 0 when m = 4 and lithium ions do not exist in the active material.

【0016】本発明の実施例ではMnCOを熱処理し
てMnとし、さらにそのMnにHNO
添加して280℃で熱分解する方法で合成したβ型Mn
をLi[Mn2−XLi]O(0.020≦x
≦0.081)の合成出発材料としたが、市販のβ型M
nOや他の方法(例えばMn(NOの150℃
熱分解等)で合成したβ型MnOを出発材料としても
上述の実施例と同じ結果が得られた。但し何れのβ型M
nO試料もX線回折では2θ=36.3°(Fe−K
α)に表れる110面の回折ピークの半値幅が2.0°
以下に結晶の発達したものであった。しかし、γ型Mn
の450℃での熱処理で得られたβ型類似のMnO
試料では、X線回折では2θ=36.3°(Fe−K
α)に表れるピークの半値幅が約2.3°であり、結晶
化度が低いものであり、これを出発材料とした場合で
は、不純物としてLiMnOが生成し、Li[Mn
2−XLi]O(0.020≦x≦0.081)の
合成はできなかった。従って、Li[Mn2−X
]O(但し、0.020≦x≦0.081)で示
されるスピネル系リチウムマンガン酸化物の製造では、
X線回折で2θ=36.3°(Fe−Kα)に表れる1
10面の回折ピークの半値幅が2.0°以下に結晶の発
達したβ型MnOを出発材料とし、これにリチウム化
合物をリチウムとマンガンの原子比で0.515≦Li
/Mn≦0.563で混合した混合物を熱処理して合成
するのが一つの有効な製造方法である。
[0016] The heat treatment of the MnCO 3 in the embodiment of the present invention the Mn 2 O 3, further its Mn 2 O 3 in the β-type was synthesized by thermally decomposing in addition to 280 ° C. The HNO 3 Mn
O 2 is replaced by Li [Mn 2−X Li X ] O 4 (0.020 ≦ x
≦ 0.081) as a synthetic starting material, but a commercially available β-type M
nO 2 and other methods (eg Mn (NO 3 ) 2 at 150 ° C.)
Even if β-type MnO 2 synthesized by thermal decomposition) was used as a starting material, the same results as those in the above-described examples were obtained. However, which β type M
Also in the nO 2 sample, 2θ = 36.3 ° (Fe-K
The full width at half maximum of the diffraction peak on the 110 plane appearing in α) is 2.0 °.
The crystals were well developed below. However, γ-type Mn
Β-type similar MnO obtained by heat treatment of O 2 at 450 ° C.
In two samples, 2θ = 36.3 ° (Fe-K by X-ray diffraction
The half width of the peak appearing in α) is about 2.3 ° and the crystallinity is low. When this is used as a starting material, Li 2 MnO 3 is generated as an impurity, and Li [MnO 3
2-X Li X ] O 4 (0.020 ≦ x ≦ 0.081) could not be synthesized. Therefore, Li [Mn 2−X L
i X ] O 4 (however, 0.020 ≦ x ≦ 0.081) in the production of the spinel-based lithium manganese oxide,
It appears at 2θ = 36.3 ° (Fe-Kα) by X-ray diffraction 1
The starting material was β-type MnO 2 having a crystal with a half-value width of the diffraction peak on the 10 plane of 2.0 ° or less, and a lithium compound was added to this as an atomic ratio of lithium and manganese of 0.515 ≦ Li.
One effective manufacturing method is to heat-treat and synthesize a mixture mixed with /Mn≦0.563.

【0017】[0017]

【発明の効果】以上のように、正極の活物質材料に一般
式Li[Mn2−XLi]Oで示されるスピネル系
リチウムマンガン酸化物を使用すれば、正極活物質は充
電されるとLi3X[Mn2−XLi]Oとなり、
その時点で結晶中の全てのマンガンはMn4+であり、
結品中にMn3+は存在しないので、 2Mn3+(個体)→ Mn4+(個体) + Mn
2+(溶液) の反応による正極活物質の結晶構造変化が生じない。さ
らに活物質中の全てマンガンがMn4+となる時点で
も、8aサイトに位置するリチウムイオンは3Xが残存
するので、X値を0.020≦x≦0.081の範囲で
選べば、8aサイトに位置するリチウムイオンが0.0
6以上残存することになり、リチウムイオンの活物質結
晶内の移動でもたらされるイオン伝導性は良好に維持さ
れ、全ての活物質が有効に充放電されるため、サイクル
に伴う容量劣化の少ない電池となる。その結果、安価な
材料のリチウムマンガン酸化物が正極材料として使用可
能となり、高性能で、安全で、安価なリチウムイオン二
次電池が広い用途に供給できるようになりその工業的価
値は大である。
As described above, when the spinel type lithium manganese oxide represented by the general formula Li [Mn 2−X Li X ] O 4 is used as the positive electrode active material, the positive electrode active material is charged. and Li 3X [Mn 2-X Li X] O 4 , and the
At that point all the manganese in the crystals was Mn 4+ ,
Since Mn 3+ does not exist in the product, 2Mn 3+ (individual) → Mn 4+ (individual) + Mn
The crystal structure of the positive electrode active material does not change due to the reaction of 2+ (solution). Furthermore, even when all the manganese in the active material becomes Mn 4+ , 3X remains in the lithium ions located at the 8a site. Therefore, if the X value is selected in the range of 0.020 ≦ x ≦ 0.081, it becomes the 8a site. Lithium ion located is 0.0
6 or more will remain, the ionic conductivity brought about by the movement of lithium ions in the active material crystal will be well maintained, and all the active materials will be effectively charged and discharged, so that the battery will have less capacity deterioration with cycling. Becomes As a result, lithium manganese oxide, which is an inexpensive material, can be used as a positive electrode material, and a high-performance, safe, inexpensive lithium-ion secondary battery can be supplied to a wide range of applications, and its industrial value is great. .

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例におけるコイン型電池の構造を示した模
式的断面図
FIG. 1 is a schematic cross-sectional view showing the structure of a coin-type battery in an example.

【図2】β−MnOのX線回折FIG. 2 X-ray diffraction of β-MnO 2

【符号の説明】[Explanation of symbols]

1は負極、2は正極、3はセパレータ、4は電池缶、5
は電池蓋体、6はガスケット、7は電極押さえ板、8は
負極集電体、9は正極集電体、10はアルミニウム箔で
ある。
1 is a negative electrode, 2 is a positive electrode, 3 is a separator, 4 is a battery can, 5
Is a battery lid, 6 is a gasket, 7 is an electrode pressing plate, 8 is a negative electrode current collector, 9 is a positive electrode current collector, and 10 is an aluminum foil.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】負極の活物質材料はリチウムをインターカ
レート可能な材料であり、正極の活物質材料はリチウム
をデインターカレート可能なリチウム含有金属酸化物で
あり、電池組立後の充電によって初めて正規の電池電圧
を生じる非水電解液二次電池において、前記リチウム含
有金属酸化物は一般式 Li[Mn2−XLi]O(但し、0.020≦x
≦0.081) で示されるスピネル系リチウムマンガン酸化物であり、
正極中におけるリチウムマンガン酸化物はその組成にお
いて、マンガンとリチウムの原子比(Li/Mn)を
a、マンガンの平均酸化価数をmとするとき、 4.04≦a+m≦4.17 を満足していることを特徴とする非水電解液二次電池。
1. A negative electrode active material is a material capable of intercalating lithium, and a positive electrode active material is a lithium-containing metal oxide capable of deintercalating lithium. In a non-aqueous electrolyte secondary battery that produces a normal battery voltage for the first time, the lithium-containing metal oxide has the general formula Li [Mn 2−X Li X ] O 4 (where 0.020 ≦ x
≦ 0.081) which is a spinel-based lithium manganese oxide,
In the composition, the lithium manganese oxide in the positive electrode satisfies 4.04 ≦ a + m ≦ 4.17, where a is the atomic ratio of manganese to lithium (Li / Mn) and m is the average oxidation valence of manganese. A non-aqueous electrolyte secondary battery characterized in that
【請求項2】一般式Li[Mn2−XLi]O(但
し、0.020≦x≦0.081)で示されるスピネル
系リチウムマンガン酸化物の製造において、X線回折角
度(Fe−Kα)の2θ=36.3°に表れる110面
の回折ピークの半値幅が2.0°以下に結品が発達した
β型MnOにリチウム化合物をリチウムとマンガンの
原子比で0.515≦Li/Mn≦0.563で混合し
た混合物を450℃以上の温度で熱処理をして合成する
ことを特徴とするスピネル系リチウムマンガン酸化物の
製造方法。
2. An X-ray diffraction angle (Fe) in the production of spinel-based lithium manganese oxide represented by the general formula Li [Mn 2−X Li X ] O 4 (where 0.020 ≦ x ≦ 0.081). -Kα) 2θ = 36.3 °, the half-value width of the diffraction peak on the 110 plane is 2.0 ° or less, and β-type MnO 2 having a developed product has a lithium compound in an atomic ratio of lithium to manganese of 0.515. A method for producing a spinel-based lithium manganese oxide, which comprises synthesizing a mixture obtained by mixing ≦ Li / Mn ≦ 0.563 at a temperature of 450 ° C. or higher.
JP6105869A 1994-04-08 1994-04-08 Nonaqueous electrolyte secondary battery Pending JPH07282798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6105869A JPH07282798A (en) 1994-04-08 1994-04-08 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6105869A JPH07282798A (en) 1994-04-08 1994-04-08 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH07282798A true JPH07282798A (en) 1995-10-27

Family

ID=14418968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6105869A Pending JPH07282798A (en) 1994-04-08 1994-04-08 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH07282798A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399251B1 (en) 1999-04-27 2002-06-04 Hitachi, Ltd. Lithium secondary battery
US6399248B1 (en) 1998-12-02 2002-06-04 Koji Hattori Spinel type lithium manganese complex oxide and lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399248B1 (en) 1998-12-02 2002-06-04 Koji Hattori Spinel type lithium manganese complex oxide and lithium secondary battery
US6399251B1 (en) 1999-04-27 2002-06-04 Hitachi, Ltd. Lithium secondary battery

Similar Documents

Publication Publication Date Title
US7314682B2 (en) Lithium metal oxide electrodes for lithium batteries
JP5073662B2 (en) High voltage positive electrode material based on nickel and manganese for lithium cell batteries with spinel structure
JP4523807B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP2015531143A (en) Doped nickel acid compound
JP7271848B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JP3120789B2 (en) Non-aqueous electrolyte secondary battery
US6908710B2 (en) Lithiated molybdenum oxide active materials
US6071649A (en) Method for making a coated electrode material for an electrochemical cell
JP2000348722A (en) Nonaqueous electrolyte battery
JP4746846B2 (en) Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
US20030073003A1 (en) Molybdenum oxide based cathode active materials
WO2003030283A1 (en) Lithium cell based on lithiated transition metal titanates
JPH10302766A (en) Lithium ion secondary battery
JP3637690B2 (en) Non-aqueous electrolyte secondary battery
JPH10125324A (en) Manufacture of nonaqueous electrolyte secondary battery and positive active material thereof
KR100358799B1 (en) Method of preparing positive active material for lithium secondary battery
JPH07282798A (en) Nonaqueous electrolyte secondary battery
JPH06111822A (en) Lithium battery
JPH08236115A (en) Secondary battery
JP2002075361A (en) Lithium ion secondary battery
JP4244427B2 (en) Non-aqueous electrolyte battery
JP3055621B2 (en) Non-aqueous electrolyte secondary battery
JPH0822826A (en) Synthesizing method for positive active material of nonaqueous secondary battery
EP4205885A1 (en) Negative electrode active material for secondary batteries, and secondary battery