JPH07280503A - Device for measuring surface film thickness - Google Patents

Device for measuring surface film thickness

Info

Publication number
JPH07280503A
JPH07280503A JP6617194A JP6617194A JPH07280503A JP H07280503 A JPH07280503 A JP H07280503A JP 6617194 A JP6617194 A JP 6617194A JP 6617194 A JP6617194 A JP 6617194A JP H07280503 A JPH07280503 A JP H07280503A
Authority
JP
Japan
Prior art keywords
electrode
film
thickness
capacitance
metal strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6617194A
Other languages
Japanese (ja)
Inventor
Kazumoto Futaki
一元 二木
Nobuyuki Nakao
展行 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP6617194A priority Critical patent/JPH07280503A/en
Publication of JPH07280503A publication Critical patent/JPH07280503A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To measure surface film thickness on-line by forming an electrode into a rotatable cylindrical type and bringing it into contact with the surface film of a metal belt during running. CONSTITUTION:An collector ring 2 is mounted on each electrode 1 formed into a cylindrical type and a slider 3 which comes into contact with the collector ring 2 is connected to a measurement terminal 6. When the electrode 1 is brought into contact with the surface film 5 of a running metal belt 4, it rotates, and even during running of the metal belt 4, the geometrical position relation of them is always kept constant. The electrode 1 and the metal belt 4 constitute an electrostatic capacity C to sandwich a film 5, since the capacity C is determined by the thickness (t) of the film 5 and permittivity (specific permittivity) epsilon, the permittivity epsilon corresponds to the thickness of the film 5 by a ratio of 1 to 1 if the permittivity epsilon is constant. Accordingly, if the electrostatic capacity C is measured, the thickness (t) of the film 5 can be measured. Guide rolls are provided before and behind the electrode 1 so that the electrode 1 and the film 5 may be always Kept line contact or if the metal belt 4 is disposed to be sandwiched by the electrode 1 and a control roll, it is effective.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、走行する金属帯等の
表面に塗布された絶縁性の表面皮膜の厚さを測定するた
めの装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the thickness of an insulative surface coating applied to the surface of a running metal strip or the like.

【0002】[0002]

【従来の技術】金属帯等の導電性材料の表面に塗布され
た絶縁性の表面皮膜の厚さを測定する手法としては、各
種の手法が提案されている。それらの中でも、静電容量
の計測技術を応用した手法は、簡便なため広く用いられ
ている。これは、平板状の電極を被検体の表面皮膜に接
触させ、被検体の本体(金属帯等)をもう一方の電極と
見立て、これら2つの電極の間の静電容量を計測するも
のである。
2. Description of the Related Art Various techniques have been proposed as a technique for measuring the thickness of an insulating surface coating applied to the surface of a conductive material such as a metal band. Among them, the method to which the capacitance measuring technique is applied is widely used because it is simple. In this method, a flat plate-shaped electrode is brought into contact with the surface coating of a subject, the body of the subject (metal strip, etc.) is regarded as the other electrode, and the capacitance between these two electrodes is measured. .

【0003】図3は、従来の測定装置の構成を示す図で
ある。図中、1は電極、4は金属帯、5は表面皮膜、6
は静電容量計測端子をそれぞれ示す。ここで、被検体と
なる金属帯4(および金属帯の表面皮膜5)は、平板状
の電極1より十分大きく採取する。平板状の電極1の接
触面積をS、皮膜5の比誘電率をε、真空(空気)の誘
電率をε0 、計測された静電容量をCとすれば、皮膜5
の厚さtは、 t=ε・ε0 ・S/C と表される。皮膜5の比誘電率εが既知であれば、この
式より皮膜5の厚さtが計算できる。
FIG. 3 is a diagram showing the structure of a conventional measuring apparatus. In the figure, 1 is an electrode, 4 is a metal band, 5 is a surface film, 6
Indicates the capacitance measuring terminals, respectively. Here, the metal strip 4 (and the surface coating 5 of the metal strip) that is the subject is sampled sufficiently larger than the flat electrode 1. If the contact area of the flat plate-shaped electrode 1 is S, the relative permittivity of the film 5 is ε, the permittivity of vacuum (air) is ε 0 , and the measured capacitance is C, then the film 5
The thickness t is expressed as t = ε · ε 0 · S / C. If the relative permittivity ε of the film 5 is known, the thickness t of the film 5 can be calculated from this equation.

【0004】[0004]

【発明が解決しようとする課題】従来技術は、安価で比
較的精度の高い方法であるが、これを金属帯の製造ライ
ンのように、走行する金属帯の表面皮膜の測定に適用す
るのは困難である。
The prior art is an inexpensive and relatively highly accurate method, but it is not applicable to the measurement of the surface coating of a running metal strip, such as in a metal strip production line. Have difficulty.

【0005】まず、走行する金属帯表面に電極を接触さ
せるためには、電極を金属帯の走行に完全に追随させる
必要があり、そのための機構および駆動装置が複雑とな
る。また、仮に追随装置を作成しても、金属帯表面と電
極の間に僅かでも隙間があると静電容量が低下し、表面
皮膜厚さが過大に測定されることになる。
First, in order to bring the electrode into contact with the surface of the traveling metal strip, it is necessary to make the electrode completely follow the traveling of the metal strip, which complicates the mechanism and driving device. Even if a follow-up device is created, if there is a slight gap between the surface of the metal strip and the electrode, the capacitance will decrease and the surface coating thickness will be excessively measured.

【0006】次に、走行する金属帯と小さいギャップを
あけて対向させることも考えられるが、ギャップを一定
に保つことは困難である。それは、一般に、金属帯を走
行させる製造ラインでは、バタツキ又はライン振動と呼
ばれる金属帯の振動が避けられないことによる。また、
このライン振動は金属帯の張力や走行速度によっては、
振幅が拡大することがあり、測定はおろか検出器自体が
損傷する可能性があるので、結局のところ実用性に乏し
い。
Next, it may be considered to face the running metal strip with a small gap, but it is difficult to keep the gap constant. This is because, generally, in a production line in which a metal strip runs, vibration of the metal strip called fluttering or line vibration is unavoidable. Also,
This line vibration depends on the tension of the metal strip and the traveling speed.
In the end, it is impractical because the amplitude can increase and the measurement can damage the detector as well as the detector itself.

【0007】この発明は、従来技術を走行する金属帯に
適用する場合予想されるこれらの問題を解決し、オンラ
インで適用可能な表面皮膜の測定装置を提供する。
The present invention solves these problems that would be expected when applying the prior art to running metal strips, and provides an on-line applicable surface coating measurement device.

【0008】[0008]

【課題を解決するための手段】請求項1の発明は、金属
帯の表面皮膜に電極を接触させて静電容量を計測し表面
皮膜の厚さを測定する静電容量型の表面皮膜厚測定装置
において、少なくとも1つの電極の構造が回転可能な円
筒型であることを特徴とする表面皮膜厚測定装置であ
る。請求項2の発明は、請求項1の発明において、電極
を2つ備えていることを特徴とする表面皮膜厚測定装置
である。
According to a first aspect of the present invention, an electrostatic capacitance type surface film thickness measurement is carried out in which an electrode is brought into contact with the surface film of a metal strip to measure the electrostatic capacitance and measure the thickness of the surface film. In the apparatus, the structure of at least one electrode is a rotatable cylindrical type, which is a surface film thickness measuring apparatus. The invention of claim 2 is the surface film thickness measuring device according to the invention of claim 1, which is provided with two electrodes.

【0009】[0009]

【作用】この発明では、円筒型の電極を金属帯の表面皮
膜に接触させると、電極は回転し、金属帯の走行中でも
電極と金属帯の幾何学的な位置関係が、常に一定に保た
れる。電極と金属帯は表面皮膜を挟む静電容量を構成し
ており、その値は、表面皮膜の厚さと誘電率(比誘電
率)により決まる。この静電容量は、表面皮膜の誘電率
が一定であれば、表面皮膜の厚さと一対一に対応する。
従って、この静電容量を計測することにより、表面皮膜
の厚さが測定できる。
According to the present invention, when the cylindrical electrode is brought into contact with the surface coating of the metal strip, the electrode rotates, and the geometrical positional relationship between the electrode and the metal strip is always kept constant while the metal strip is running. Be done. The electrode and the metal strip form a capacitance that sandwiches the surface coating, and its value is determined by the thickness of the surface coating and the dielectric constant (relative permittivity). This capacitance has a one-to-one correspondence with the thickness of the surface coating if the dielectric constant of the surface coating is constant.
Therefore, the thickness of the surface film can be measured by measuring this capacitance.

【0010】請求項2の発明は、円筒型の電極を2つ備
えているので、走行する金属帯の本体の金属部を電気的
に接続せずに静電容量を計測できる。この発明では、金
属帯とこれらの2つの電極により構成される2つの静電
容量は、電気回路的には金属帯により直列に接続されて
いる。これら2つの静電容量は、表面皮膜の誘電率が一
定であれば、表面皮膜の厚さと一対一に対応するので、
これらを直列に接続した合成の静電容量も、表面皮膜の
厚さと一対一に対応する。
According to the second aspect of the present invention, since the two cylindrical electrodes are provided, the capacitance can be measured without electrically connecting the metal portion of the main body of the running metal strip. In the present invention, the two capacitances formed by the metal strip and these two electrodes are connected in series by the metal strip in terms of an electric circuit. These two capacitances have a one-to-one correspondence with the thickness of the surface film if the dielectric constant of the surface film is constant.
The combined capacitance of these connected in series also corresponds to the thickness of the surface coating on a one-to-one basis.

【0011】[0011]

【実施例】図1は、発明の測定装置の1実施例を示す図
である。図中、1は電極、2は集電子、3は慴動子、4
は金属帯、5は表面皮膜、6は計測端子、10は静電容
量計測装置、11は交流電源、12、13は第1、第2
の乗算器、14、15は第1、第2の積分器、16は除
算器、17は参照用インピーダンス、18は移相器をそ
れぞれ示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing one embodiment of the measuring apparatus of the invention. In the figure, 1 is an electrode, 2 is a current collector, 3 is a slider, and 4
Is a metal strip, 5 is a surface film, 6 is a measuring terminal, 10 is a capacitance measuring device, 11 is an AC power supply, 12 and 13 are first and second
, Multipliers 14, 15 are first and second integrators, 16 is a divider, 17 is a reference impedance, and 18 is a phase shifter.

【0012】電極1にはそれぞれ集電子2が取り付けら
れており、集電子2は慴動子3と接触している。慴動子
3は計測端子6に接続されており、このようにして電極
1と計測端子6が電気的に接続されている。電極1を金
属帯4の表面皮膜5に接触させた状態で、計測端子6の
静電容量を静電容量計測装置10で計測する。
A current collector 2 is attached to each of the electrodes 1, and the current collector 2 is in contact with the slider 3. The slider 3 is connected to the measurement terminal 6, and thus the electrode 1 and the measurement terminal 6 are electrically connected. With the electrode 1 in contact with the surface coating 5 of the metal strip 4, the capacitance of the measuring terminal 6 is measured by the capacitance measuring device 10.

【0013】このようにして求めた静電容量Cから表面
皮膜の厚さtを測定するには、両者の関係を予め実測し
て求めておくのがよいが、理論的に扱ってもよい。図2
a,bは、電極と金属帯とで構成される静電場を考える
ための模式図である。まず、図2aは、金属帯とそれぞ
れの電極の幾何学的配置を示す。一方の電極の周辺の電
場に着目すると、金属帯は導体なので電位は等しい。従
って、金属帯4と表面皮膜5の界面は、等電位面とな
る。他の電極についても同様に金属帯4と表面皮膜5の
界面が等電位面となる。
In order to measure the thickness t of the surface film from the capacitance C thus obtained, it is preferable to measure the relation between the two in advance, but it may be theoretically handled. Figure 2
a and b are schematic views for considering an electrostatic field composed of an electrode and a metal band. First, FIG. 2a shows the geometry of the metal strip and the respective electrodes. Focusing on the electric field around one of the electrodes, the metal strips are conductors, so the potentials are equal. Therefore, the interface between the metal strip 4 and the surface coating 5 becomes an equipotential surface. Similarly for other electrodes, the interface between the metal strip 4 and the surface coating 5 becomes an equipotential surface.

【0014】図2bは、これら2つの電極に関する等電
位面の位置で、背中合わせにした配置図である。図中、
45は等電位面を示す。結局、この図のように、2つの
電極の間に厚さ2tの誘電体が挟まれた配置について、
電場を考えればよいことになる。
FIG. 2b is a back-to-back layout of the equipotential surfaces for these two electrodes. In the figure,
Reference numeral 45 indicates an equipotential surface. After all, as shown in this figure, with respect to the arrangement in which the dielectric with a thickness of 2 t is sandwiched between two electrodes,
It is enough to consider the electric field.

【0015】表面皮膜の厚さをt、その比誘電率をεと
すると、厚さ2tで比誘電率εの誘電体は、静電容量と
しては厚さ2t/εの真空(空気)と等価である。従っ
て、隙間2t/εを隔てて配置された直径D、幅Lの2
つの円筒状の導体の間の静電容量を求めればよいことに
なる。
Assuming that the thickness of the surface film is t and its relative permittivity is ε, a dielectric having a thickness of 2t and a relative permittivity of ε is equivalent to a vacuum (air) having a capacitance of 2t / ε. Is. Therefore, the diameter D and the width L, which are arranged with the gap 2t / ε, are set to 2
It suffices to find the capacitance between two cylindrical conductors.

【0016】電極の幅(Lとする)が直径(Dとする)
より十分大きく、電場が2次元電場とみなせる場合即ち
長さが無限の円筒については、2つの円筒の間の静電容
量Cは理論的に求まり、X=t/(ε・D)と表すと、 C=π・ε0 ・L/ln〔1+X+(2X+X2)1/2 〕 となる。従って、静電容量CからXを求め、tを計算す
ることができる。
The width (L) of the electrode is the diameter (D)
If the electric field is sufficiently larger and the electric field can be regarded as a two-dimensional electric field, that is, for a cylinder with an infinite length, the capacitance C between the two cylinders can be theoretically obtained and expressed as X = t / (ε · D). , C = π · ε 0 · L / ln [1 + X + (2X + X 2 ) 1/2 ]. Therefore, t can be calculated by obtaining X from the electrostatic capacitance C.

【0017】また、通常、表面皮膜の厚さtは数10μ
mに対し、電極の径Dは数10mm以上であり、t<<
Dであるから、更に近似を進めて、 C=π・ε・ε0 ・L・D/t としてもよい。
Also, the thickness t of the surface coating is usually several tens of μm.
For m, the diameter D of the electrode is several tens of mm or more, and t <<
Since it is D, the approximation may be further advanced to C = π · ε · ε 0 · L · D / t.

【0018】なお、2つの電極1、1は金属帯の表面皮
膜5に確実に接触している必要がある。そのためには、
ガイドロール等で金属帯の表面皮膜を電極に接触させれ
ばよい。その際、金属帯が電極に巻き付くようになる
と、金属帯の表面皮膜と電極が面接触することになり静
電容量が変わるので、静電容量による表面皮膜厚の測定
が不可能となる。また、測定精度以外の問題として、電
極に大きな力がかかり装置が破損する危険性もある。
It should be noted that the two electrodes 1 and 1 must be surely in contact with the surface coating 5 of the metal strip. for that purpose,
The surface coating of the metal strip may be brought into contact with the electrodes using a guide roll or the like. At that time, when the metal strip comes to be wound around the electrode, the surface coating of the metal strip comes into surface contact with the electrode, and the electrostatic capacitance is changed, so that the surface coating thickness cannot be measured by the electrostatic capacitance. Further, as a problem other than the measurement accuracy, there is a risk that a large force is applied to the electrode and the device is damaged.

【0019】従って、電極は金属帯の表面皮膜と常に線
接触を保つように調整する必要がある。そのためには、
電極の前後にガイドロールを設けたり、電極と抑えロー
ルで金属帯を挟むような配置等、種々の配置が有効であ
る。また、この発明で用いる電極は導体であればよく、
金属帯の表面皮膜と接触する部分が円筒型であれば、中
空であっても中実であってもよい。
Therefore, it is necessary to adjust the electrodes so that they always maintain line contact with the surface coating of the metal strip. for that purpose,
Various arrangements are effective, such as providing guide rolls in front of and behind the electrodes, and placing a metal strip between the electrodes and a holding roll. The electrode used in the present invention may be a conductor,
It may be hollow or solid as long as the portion of the metal strip that comes into contact with the surface coating is cylindrical.

【0020】なお、このようにして得た計測端子6の静
電容量は、正確には2つの電極の間の静電容量C0 を加
えたC+C0 の値であるから、実際はC0 の値を差し引
いた値を計測端子6の静電容量Cとすればよい。
[0020] Incidentally, the capacitance of the measurement terminal 6 thus obtained, since precisely the value of C + C 0 plus the capacitance C 0 between the two electrodes, in fact the C 0 value The value obtained by subtracting may be used as the capacitance C of the measurement terminal 6.

【0021】ここで、C0 は、2つの円筒導体間の静電
容量として計算することもできるが、被検体が無い場合
の計測端子6の静電容量でもある。従って、被検体が無
い場合の計測端子6の静電容量を測定しておき、測定装
置自体の装置定数とするのが最も正確である。但し、電
極間の距離を皮膜厚さに比べてはるかに大きくとれば、
その静電容量C0 は皮膜の静電容量Cに対して無視して
もよい。
Here, C 0 can be calculated as the electrostatic capacitance between the two cylindrical conductors, but it is also the electrostatic capacitance of the measuring terminal 6 when there is no subject. Therefore, it is most accurate to measure the electrostatic capacitance of the measurement terminal 6 when there is no object, and use it as the device constant of the measuring device itself. However, if the distance between the electrodes is much larger than the film thickness,
The capacitance C 0 may be ignored with respect to the capacitance C of the film.

【0022】なお、図1の実施例は電極を2つ用いてい
るが、1つの電極と金属帯の間の静電容量を計測しても
よい。その場合、図1の計測端子6には、1つの電極と
金属帯の金属部本体4を、それぞれ電気的に接続する。
ここで、金属帯の表面皮膜が片面であれば、金属帯は搬
送ロール等でアースされているので、金属帯の電位とし
てアース電位を用いてもよい。また、直接接続しなくて
も、電気的に接続されていればよく、例えば、デフレク
タロール等広い面積で金属帯の表面皮膜と接触するロー
ルと、金属帯との容量結合を利用してもよい。
Although the embodiment of FIG. 1 uses two electrodes, the capacitance between one electrode and the metal strip may be measured. In that case, one electrode and the metal part main body 4 of the metal strip are electrically connected to the measurement terminal 6 of FIG.
Here, if the surface coating of the metal strip is one-sided, the metal strip is grounded by a transport roll or the like, so the ground potential may be used as the potential of the metal strip. In addition, it is not necessary to directly connect it, as long as it is electrically connected. For example, it is possible to use capacitive coupling between a metal roll and a roll that comes into contact with the surface coating of the metal strip over a wide area such as a deflector roll. .

【0023】静電容量計測装置については種々の計測装
置があるが、ここでは、簡便で表面皮膜厚さの変動への
応答性の良い回路を用いた。図1で、計測端子6は、参
照用インピーダンス17を経由して、交流電源11に接
続されており、計測端子間の静電容量に電流を供給す
る。
There are various measuring devices for the capacitance measuring device, but here, a simple circuit having a good responsiveness to the fluctuation of the surface film thickness was used. In FIG. 1, the measurement terminal 6 is connected to the AC power supply 11 via the reference impedance 17, and supplies a current to the capacitance between the measurement terminals.

【0024】計測端子および参照用インピーダンスに
は、それぞれの交流抵抗値(Z,Zrとする)と電流
(Iとする)の積(I・Z,I・Zr)に等しい電圧が
発生する。第1および第2の乗算器12、13により、
これら2つのの電圧の積(I2 ・Z・Zr)およびどち
らか一方の2乗(I2 ・Z2 又はI2 ・Zr2 )が出力
として得られる。
A voltage equal to the product (IZ, IZr) of the respective AC resistance values (Z and Zr) and the current (I) is generated at the measuring terminal and the reference impedance. By the first and second multipliers 12, 13,
The product of these two voltages (I 2 · Z · Zr) and the square of either one (I 2 · Z 2 or I 2 · Zr 2 ) are obtained as outputs.

【0025】ここで、乗算器12、13の出力(I2
Z・Zr、I2 ・Z2 又はI2 ・Zr2 )について比を
とれば、電流の2乗(I2 )が約分され、2つの交流抵
抗値(Z,Zr)の比が得られる。
Here, the outputs of the multipliers 12 and 13 (I 2 ·
If the ratio of Z · Zr, I 2 · Z 2 or I 2 · Zr 2 ) is taken, the square of the current (I 2 ) is reduced and the ratio of the two AC resistance values (Z, Zr) is obtained. .

【0026】移相器18および第1および第2の積分器
14、15は、交流信号の振幅を求めている。積分器1
4、15では、電流実効値の2乗(I2 )の積分と2つ
の交流抵抗値の積(Z・Zr)との積、および電流実効
値の2乗(I2 )の積分とどちらか一方の2乗(Z2
はZr2 )との積が、積分値として得られる。
The phase shifter 18 and the first and second integrators 14 and 15 determine the amplitude of the AC signal. Integrator 1
In 4, 15, integral with one of the square of the effective current value the product of the integration and two AC resistance value of the product of (I 2) (Z · Zr ), and the square of the effective current value (I 2) The product of one of the squares (Z 2 or Zr 2 ) is obtained as an integrated value.

【0027】除算器16では、これら2つの積分値の比
を出力するが、電流実効値の2乗(I2 )の積分につい
ては約分され、その結果、2つの交流抵抗値の相互の積
とどちらか一方の2乗の比(Z・Zr/Z2 又はZ・Z
r/Zr2 )が残る。これは更に約分され、結局、除算
器で出力される比は、交流抵抗値の比(Zr/Z又はZ
/Zr)に等しくなる。参照用インピーダンス17の交
流抵抗(Zr)は既知であるから、この比から計測端子
6の交流抵抗(Z)が容易にわかり、交流抵抗を静電容
量に換算すれば、表面皮膜の厚さを測定することができ
る。
The divider 16 outputs the ratio of these two integral values, but the integral of the square of the effective current value (I 2 ) is reduced, and as a result, the product of the two alternating resistance values is multiplied. And the squared ratio of either one (Z · Zr / Z 2 or Z · Z
r / Zr 2 ) remains. This is further reduced, and in the end, the ratio output by the divider is the ratio of AC resistance values (Zr / Z or Z
/ Zr). Since the AC resistance (Zr) of the reference impedance 17 is known, the AC resistance (Z) of the measurement terminal 6 can be easily understood from this ratio, and if the AC resistance is converted into capacitance, the thickness of the surface film can be calculated. Can be measured.

【0028】図1において、参照用インピーダンス17
に抵抗器を用いた場合について説明する。計測端子6に
おける電流をI、その周波数をω、抵抗器の抵抗値を
R、計測端子6の静電容量をCとする。まず、計測端子
6の電圧はI/jωCとなり、これが移相器18により
90°位相をずらされ、I/ωCとなる。次に、参照用
インピーダンス(抵抗器)17の電圧はI・Rとなる。
In FIG. 1, the reference impedance 17
A case in which a resistor is used for will be described. The current at the measuring terminal 6 is I, its frequency is ω, the resistance value of the resistor is R, and the capacitance of the measuring terminal 6 is C. First, the voltage at the measurement terminal 6 becomes I / jωC, which is phase-shifted by 90 ° by the phase shifter 18 and becomes I / ωC. Next, the voltage of the reference impedance (resistor) 17 becomes I · R.

【0029】これらの電圧が第1、第2の乗算器の入力
となるので、乗算器の出力はそれぞれ、I2 ・R/ω
C、およびI2 ・R2 となる。これより、積分後の出力
の比は1/ωC・Rとなり、Rの値は既知なので表面皮
膜の静電容量Cが求まる。
Since these voltages are input to the first and second multipliers, the outputs of the multipliers are I 2 · R / ω, respectively.
C and I 2 · R 2 . From this, the ratio of the output after integration is 1 / ωC · R, and the value of R is known, so the electrostatic capacitance C of the surface film is obtained.

【0030】また、参照用インピーダンス17に、コン
デンサを用いてもよい。その場合、移相器18の位相の
ずらし量は0°とするか、あるいは移相器自体を省略で
きる。参照用インピーダンス(コンデンサ)の容量をC
rとすると、その電圧はI/jωCrとなる。
A capacitor may be used as the reference impedance 17. In that case, the phase shift amount of the phase shifter 18 may be 0 °, or the phase shifter itself may be omitted. The reference impedance (capacitor) capacity is C
If r, the voltage is I / jωCr.

【0031】この電圧と計測端子6の電圧I/jωC
が、第1、第2の乗算器の入力となるので、乗算器の出
力はそれぞれ、位相(電流Iに対し90°のずれ)を除
き、I 2 /(ω2 C・Cr)、I2 /(ω2 Cr2 )と
なる。これより、積分後の出力の比はCr/CとなりC
rは既知なので、表面皮膜の静電容量Cが求まる。
This voltage and the voltage I / jωC of the measuring terminal 6
Becomes the input of the first and second multipliers, so the output of the multiplier
Each force is the phase (90 ° deviation from the current I)
I 2/ (Ω2C / Cr), I2/ (Ω2Cr2)When
Become. From this, the ratio of the output after integration becomes Cr / C and C
Since r is known, the capacitance C of the surface film can be obtained.

【0032】[0032]

【発明の効果】この発明は、回転可能な円筒型の電極を
用いているので、走行中の金属帯の表面皮膜に接触させ
ることにより、オンラインでの表面皮膜厚の測定が可能
となる。
According to the present invention, since the rotatable cylindrical electrode is used, it is possible to measure the surface coating thickness online by bringing it into contact with the surface coating of the running metal strip.

【図面の簡単な説明】[Brief description of drawings]

【図1】発明の測定装置の1実施例を示す図。FIG. 1 is a diagram showing an embodiment of a measuring apparatus of the invention.

【図2】電極と金属帯とで構成される静電場を考えるた
めの模式図。
FIG. 2 is a schematic diagram for considering an electrostatic field composed of an electrode and a metal band.

【図3】従来の測定装置の構成を示す図。FIG. 3 is a diagram showing a configuration of a conventional measuring device.

【符号の説明】[Explanation of symbols]

1 電極 4 金属帯 5 表面皮膜 1 electrode 4 metal band 5 surface film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属帯の表面皮膜に電極を接触させて静
電容量を計測し表面皮膜の厚さを測定する静電容量型の
表面皮膜厚測定装置において、少なくとも1つの電極の
構造が回転可能な円筒型であることを特徴とする表面皮
膜厚測定装置。
1. A capacitance type surface coating thickness measuring apparatus for measuring the capacitance by contacting an electrode with a surface coating of a metal band to measure the capacitance, wherein at least one electrode structure is rotated. A surface coating thickness measuring device characterized by being capable of being a cylindrical type.
【請求項2】 前記の電極を、2つ備えていることを特
徴とする請求項1の表面皮膜厚測定装置。
2. The surface film thickness measuring device according to claim 1, wherein the two electrodes are provided.
JP6617194A 1994-04-04 1994-04-04 Device for measuring surface film thickness Withdrawn JPH07280503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6617194A JPH07280503A (en) 1994-04-04 1994-04-04 Device for measuring surface film thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6617194A JPH07280503A (en) 1994-04-04 1994-04-04 Device for measuring surface film thickness

Publications (1)

Publication Number Publication Date
JPH07280503A true JPH07280503A (en) 1995-10-27

Family

ID=13308142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6617194A Withdrawn JPH07280503A (en) 1994-04-04 1994-04-04 Device for measuring surface film thickness

Country Status (1)

Country Link
JP (1) JPH07280503A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302929A (en) * 2006-05-10 2007-11-22 Sumitomo Electric Ind Ltd Thickness measuring mechanism for coating layer and coating layer forming device using the same
JP2008216074A (en) * 2007-03-05 2008-09-18 Yaskawa Electric Corp Expansion amount sensing method and device of polymer actuator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302929A (en) * 2006-05-10 2007-11-22 Sumitomo Electric Ind Ltd Thickness measuring mechanism for coating layer and coating layer forming device using the same
US7946247B2 (en) 2006-05-10 2011-05-24 Sumitomo Electric Industries, Ltd. Coating layer thickness measurement mechanism and coating layer forming apparatus using the same
JP2008216074A (en) * 2007-03-05 2008-09-18 Yaskawa Electric Corp Expansion amount sensing method and device of polymer actuator

Similar Documents

Publication Publication Date Title
EP0503032B1 (en) Capacitance sensing probe
US4067225A (en) Capacitance type non-contact displacement and vibration measuring device and method of maintaining calibration
US4682105A (en) Apparatus for electrically contactlessly measuring the thickness of electrically conducting thin films on non-conducting travelling webs in vacuum deposition apparatus
KR930701753A (en) Apparatus and method for measuring dielectric and structural properties of materials
JPH04273002A (en) Volume sensor
US2274735A (en) Apparatus for determining the position of the conductor in electrical cables
JPH01318975A (en) Non-destructively measuring apparatus for ohm resistance of thin layer
JP2001099802A (en) Apparatus for monitoring adhesion of liquid or paste-like medium onto substrate
JP2000046884A (en) Method for correcting charge density in space charge measurement
JPH07280503A (en) Device for measuring surface film thickness
GB2131176A (en) Method of manufacturing a capacitance distance measuring probe
EP0230198B1 (en) Triaxial electrostatic accelerometer with dual electrical connection to its test weight
US4862065A (en) On-line web internal resistivity measuring apparatus
JPH04279801A (en) Sheetlike medium static electricity detection electrode
US3329804A (en) Function generator
RU2104506C1 (en) Gear measuring pressure
JP2655886B2 (en) Laser processing machine nozzle distance detection device
JP2867616B2 (en) High frequency voltage detector for film forming equipment
JPH06160006A (en) Displacement detector
SU1725156A1 (en) Method of measuring thin film electric conductivity
GB797399A (en) Improvements in or relating to apparatus for making electrical measurements upon coated conductors
JP3793314B2 (en) Method for measuring electrical resistance of conductive film
US11892487B2 (en) Sensing over a shared physical channel
JPH095373A (en) Method and equipment for locally evaluating thin film
JPS5496046A (en) Transfer device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605