JP2008216074A - Expansion amount sensing method and device of polymer actuator - Google Patents

Expansion amount sensing method and device of polymer actuator Download PDF

Info

Publication number
JP2008216074A
JP2008216074A JP2007054537A JP2007054537A JP2008216074A JP 2008216074 A JP2008216074 A JP 2008216074A JP 2007054537 A JP2007054537 A JP 2007054537A JP 2007054537 A JP2007054537 A JP 2007054537A JP 2008216074 A JP2008216074 A JP 2008216074A
Authority
JP
Japan
Prior art keywords
expansion
polymer actuator
contraction
amount
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007054537A
Other languages
Japanese (ja)
Inventor
Hironobu Yoshitake
博信 吉武
Kenjo Akiyoshi
建丞 秋吉
Iwao Sasaki
巌 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2007054537A priority Critical patent/JP2008216074A/en
Publication of JP2008216074A publication Critical patent/JP2008216074A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an expansion amount sensing method and device of a polymer actuator that improve the expansion amount sensing accuracy of the polymer actuator and are compact. <P>SOLUTION: In this method, driving of the polymer actuator 1 is performed by driving voltage 8 whose frequency is modulated, and phases 15 of driver voltage 8 and driving waveform 10 are compared with each other. Thus, by measuring variation of capacitance accompanying the expansion of the polymer actuator 1, the expansion amount 17 of the polymer actuator is determined. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、化学的な変化により、機械的変形を生じる高分子アクチュエータに関する。   The present invention relates to a polymer actuator that causes mechanical deformation by chemical change.

高分子アクチュエータの伸縮量センシング方法として、外部センサにより伸縮量を求めるものが提案されている(例えば、特許文献1参照)。
また、高分子アクチュエータに伸縮量のセンシングにおいて、伸縮に伴う高分子アクチュエータ自身の静電容量変化を利用することで、外部センサを必要としない方法も提案されている(特許文献2参照)。
図5は、外部センサを必要としない従来の高分子アクチュエータの伸縮量センシング方法の構成図である。高分子アクチュエータ1は、伸縮量を検出するため駆動電圧8に検出用電圧発生用回路29から発生させた低い振幅で高い周波数の検出用電圧22を重畳させた検出用電圧重畳駆動電圧23により伸張させる。このときの、高分子アクチュエータ1は静電容量成分と考えられるので、抵抗器24と高分子アクチュエータ1でハイパスフィルタを構成することができる。すなわち、検出電圧25には高い周波数の検出用電圧22のみが検出される。ここで、高分子アクチュエータ1の静電容量成分は伸縮量により変化するので、検出電圧25の振幅は高分子アクチュエータ1の伸縮量と比例関係にある。この関係を利用し、電圧振幅検出回路26において検出電圧25の振幅27を求め、伸縮量算出回路28において高分子アクチェータ1の伸縮量17を算出している。
特開2005-46980 (請求項第1項、図4) 特表2005-522162 (請求項第73項)
As a method for sensing the amount of expansion / contraction of a polymer actuator, a method for obtaining the amount of expansion / contraction using an external sensor has been proposed (see, for example, Patent Document 1).
Also, a method has been proposed in which an external sensor is not required by sensing the amount of expansion / contraction of the polymer actuator by utilizing the capacitance change of the polymer actuator itself accompanying expansion / contraction (see Patent Document 2).
FIG. 5 is a block diagram of a conventional polymer actuator expansion / contraction sensing method that does not require an external sensor. The polymer actuator 1 is expanded by a detection voltage superimposed drive voltage 23 in which a detection voltage 22 with a low amplitude and a high frequency generated from the detection voltage generation circuit 29 is superimposed on the drive voltage 8 to detect the amount of expansion and contraction. Let Since the polymer actuator 1 at this time is considered to be a capacitance component, the resistor 24 and the polymer actuator 1 can constitute a high-pass filter. That is, only the detection voltage 22 having a high frequency is detected as the detection voltage 25. Here, since the electrostatic capacitance component of the polymer actuator 1 varies depending on the amount of expansion / contraction, the amplitude of the detection voltage 25 is proportional to the amount of expansion / contraction of the polymer actuator 1. Using this relationship, the amplitude 27 of the detection voltage 25 is obtained by the voltage amplitude detection circuit 26, and the expansion / contraction amount 17 of the polymer actuator 1 is calculated by the expansion / contraction amount calculation circuit 28.
JP 2005-46980 (Claim 1, FIG. 4) Special Table 2005-522162 (Claim 73)

ところが、従来の高分子アクチュエータの伸縮量センシング方法は、外部センサにより伸縮量を求めていたため、アクチュエータの重量や大きさが増え、軽量で小型であるという高分子アクチュエータの特徴を十分に生かすことができなかった。また、伸縮に伴う高分子アクチュエータ自身の静電容量変化を利用することで外部センサを必要としない方法では、駆動電圧が高いため、伸縮量検出用交流信号のSN比が悪くなり、高分子アクチュエータの伸縮量を精度よく求めるのが困難であった。さらに、ハイパスフィルタ構成に用いられる抵抗器による損失が大きいことや、抵抗器自身のサイズが大きくなることなどの問題が生じていた。   However, since the conventional method for sensing the amount of expansion / contraction of the polymer actuator requires the amount of expansion / contraction using an external sensor, the weight and size of the actuator increase, and the features of the polymer actuator that are lightweight and compact can be fully utilized. could not. Also, in the method that does not require an external sensor by utilizing the capacitance change of the polymer actuator itself accompanying expansion / contraction, the drive voltage is high, so the SN ratio of the AC signal for detecting the expansion / contraction amount is deteriorated. It was difficult to accurately determine the amount of expansion / contraction of. Furthermore, there are problems such as a large loss due to the resistor used in the high-pass filter configuration and an increase in the size of the resistor itself.

本発明はこのような問題点に鑑みてなされたものであり、高分子アクチュエータの伸縮量を、重量や大きさを増やすことなく、高精度にセンシングする方法およびセンシング装置である。   The present invention has been made in view of such problems, and is a method and a sensing device for sensing the amount of expansion / contraction of a polymer actuator with high accuracy without increasing the weight and size.

上記問題を解決するため、本発明は、次のように構成したものである。   In order to solve the above problems, the present invention is configured as follows.

請求項1に記載の発明は、高分子アクチュエータを駆動させる駆動電圧に伸縮量を検出する検出用電圧を重畳し、制御器の指令により前記高分子アクチュエータを駆動させ、前記高分子アクチュエータの伸縮に伴う静電容量の変化を検出電圧として計測することにより前記高分子アクチュエータの伸縮量を求める高分子アクチュエータの伸縮量センシング方法において、前記検出用電圧を周波数変調電圧とし、前記周波数変調電圧が重畳された駆動電圧とその電流との位相差を位相差関係線と照合することにより、前記高分子アクチュエータの伸縮量を求めるものである。   The invention according to claim 1 superimposes a detection voltage for detecting the amount of expansion and contraction on a drive voltage for driving the polymer actuator, drives the polymer actuator according to a command from a controller, and expands and contracts the polymer actuator. In the polymer actuator expansion / contraction amount sensing method for obtaining the expansion / contraction amount of the polymer actuator by measuring the accompanying change in capacitance as a detection voltage, the detection voltage is a frequency modulation voltage, and the frequency modulation voltage is superimposed. The amount of expansion / contraction of the polymer actuator is obtained by comparing the phase difference between the drive voltage and the current with the phase difference relationship line.

請求項2に記載の発明は、前記位相差関係線が前記高分子アクチュエータを伸縮変化させたときの位相差と伸縮量との関係を予め求めておいたものである。   According to the second aspect of the present invention, the relationship between the phase difference and the amount of expansion / contraction when the phase difference relationship line changes the expansion / contraction of the polymer actuator is obtained in advance.

請求項3に記載の発明は、高分子アクチュエータと、制御器の指令により前記高分子アクチュエータに駆動電圧を印加して駆動させる駆動回路と、前記駆動電圧に伸縮量を検出する検出用電圧を重畳する検出電圧発生回路と、検出した検出電圧を基に伸縮量を計測する伸縮量算出回路とを備え、前記高分子アクチュエータの伸縮に伴う静電容量の変化を検出電圧として計測することにより前記高分子アクチュエータの伸縮量を求める高分子アクチュエータの伸縮量センシング装置において、前記検出電圧発生回路を周波数変調した周波数変調回路とし、前記駆動回路と前記高分子アクチュエータとの間に前記駆動電圧とその電流との位相差を検出する位相差検出部を設けたものである。   According to a third aspect of the present invention, a polymer actuator, a drive circuit that drives the polymer actuator by applying a drive voltage according to a command from a controller, and a detection voltage that detects an expansion / contraction amount are superimposed on the drive voltage. A detection voltage generation circuit for measuring the amount of expansion / contraction based on the detected detection voltage, and measuring the change in capacitance accompanying the expansion / contraction of the polymer actuator as a detection voltage. In the polymer actuator expansion / contraction amount sensing device for obtaining the expansion / contraction amount of the molecular actuator, the detection voltage generation circuit is a frequency modulation circuit that performs frequency modulation, and the drive voltage and its current are between the drive circuit and the polymer actuator. A phase difference detection unit for detecting the phase difference is provided.

請求項4に記載の発明は、前記位相差検出部が電流検出回路とハイパスフィルタ回路とを含む電圧・電流位相検出回路からなるものである。   According to a fourth aspect of the present invention, the phase difference detection unit includes a voltage / current phase detection circuit including a current detection circuit and a high-pass filter circuit.

請求項5に記載の発明は、前記伸縮量算出回路が前記位相差を位相差関係線と照合する回路を有するものである。   According to a fifth aspect of the present invention, the expansion / contraction amount calculation circuit includes a circuit that collates the phase difference with a phase difference relation line.

請求項6に記載の発明は、前記位相差関係線はが前記高分子アクチュエータを伸縮変化させたときの位相差と伸縮量との関係を記憶回路に記憶させておいたものである。 According to a sixth aspect of the present invention, the phase difference relationship line stores the relationship between the phase difference and the amount of expansion / contraction when the polymer actuator is expanded / contracted in a memory circuit.

請求項7に記載の発明は、請求項3から6のいずれかに記載の高分子アクチュエータの伸縮量センシング装置と、前記高分子アクチュエータを制御する制御器とを有した高分子アクチュエータ駆動装置である。   The invention according to claim 7 is a polymer actuator driving device comprising the polymer actuator expansion / contraction amount sensing device according to any of claims 3 to 6 and a controller for controlling the polymer actuator. .

請求項1に記載の発明によると、高分子アクチュエータの駆動を、周波数変調した検出用電圧を重畳した駆動電圧とその電流との位相差を位相差関係線と照合することにより、前記高分子アクチュエータの伸縮量を求めるので、高分子アクチュエータの伸縮量センシングの精度を向上させることができる。   According to the first aspect of the present invention, the polymer actuator is driven by collating the phase difference between the drive voltage on which the frequency-modulated detection voltage is superimposed and the current thereof with the phase difference relation line. Therefore, the accuracy of sensing the amount of expansion / contraction of the polymer actuator can be improved.

請求項2に記載の発明によると、位相差関係線は高分子アクチュエータを伸縮変化させたときの位相差と伸縮量との関係を予め求めているので、高分子アクチュエータの伸縮量センシングの精度を向上させることができる。   According to the second aspect of the present invention, the phase difference relationship line obtains in advance the relationship between the phase difference and the amount of expansion / contraction when the polymer actuator is expanded / contracted. Can be improved.

請求項3〜7に記載の発明によると、高分子アクチュエータの駆動を周波数変調した駆動電圧により行い、駆動電圧と電流波形との位相差を比較することにより、前記高分子アクチュエータの伸縮に伴う静電容量の変化を計測するので、コンパクトな装置で伸縮量センシングを行うことができる。   According to the third to seventh aspects of the present invention, the polymer actuator is driven with a frequency-modulated drive voltage, and the phase difference between the drive voltage and the current waveform is compared, so that Since the change in electric capacity is measured, it is possible to perform expansion / contraction sensing with a compact device.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1実施例を示す高分子アクチュエータの伸縮量センシング方法の構成図である。図において、4は搬送波、5は駆動指令3を搬送波4により周波数変調する周波数変調回路、6は周波数変調回路5より出力される変調電圧、7は高分子アクチュエータ1を伸縮させるための駆動電圧を出力する駆動回路、16は高分子アクチュエータ1の伸縮量を検出する伸縮量算出回路、17は高分子アクチュエータ1の伸縮量、30は位相差検出部である。
位相差検出部30は、電流検出回路9、ハイパスフィルタ回路11a、11b、伸縮量算出回路14からなる。なお、8は駆動回路7より出力される駆動電圧、10は電流検出回路9より出力される検出電流、12はハイパスフィルタ11aにより分離された搬送波電圧、13はハイパスフィルタ11bにより分離された搬送波電流、14は搬送波電圧12と搬送波電流13の位相を検出するための電圧・電流位相検出回路、15は電圧・電流位相検出回路14より出力される位相である。
FIG. 1 is a configuration diagram of an expansion / contraction amount sensing method for a polymer actuator according to a first embodiment of the present invention. In the figure, 4 is a carrier wave, 5 is a frequency modulation circuit that modulates the frequency of the drive command 3 with the carrier wave 4, 6 is a modulation voltage output from the frequency modulation circuit 5, and 7 is a drive voltage for expanding and contracting the polymer actuator 1. An output drive circuit, 16 is an expansion / contraction amount calculation circuit for detecting the expansion / contraction amount of the polymer actuator 1, 17 is an expansion / contraction amount of the polymer actuator 1, and 30 is a phase difference detection unit.
The phase difference detection unit 30 includes a current detection circuit 9, high-pass filter circuits 11a and 11b, and an expansion / contraction amount calculation circuit 14. 8 is a drive voltage output from the drive circuit 7, 10 is a detection current output from the current detection circuit 9, 12 is a carrier voltage separated by the high-pass filter 11a, and 13 is a carrier current separated by the high-pass filter 11b. , 14 is a voltage / current phase detection circuit for detecting the phase of the carrier voltage 12 and the carrier current 13, and 15 is a phase output from the voltage / current phase detection circuit 14.

本発明が特許文献1および特許文献2と異なる部分は、高分子アクチュエータ1伸縮量を、外部センサや伸縮量検出用交流信号を重畳して検出する代わりに、搬送波により周波数変調された駆動指令に基づいて出力される駆動電圧を高分子アクチュエータ1に印加し、高分子アクチュエータ1の伸縮に伴う高分子アクチュエータの静電容量変化を、駆動電圧および検出電流に含まれる搬送波の位相を検出することにより、高分子アクチュエータの伸縮量を求めている部分である。   The present invention differs from Patent Document 1 and Patent Document 2 in that the polymer actuator 1 expands and contracts by using a drive command frequency-modulated by a carrier instead of detecting an external sensor or an AC signal for detecting the amount of expansion and contraction. By applying a drive voltage output based on this to the polymer actuator 1 and detecting a change in electrostatic capacity of the polymer actuator as the polymer actuator 1 expands and contracts, the phase of the carrier wave included in the drive voltage and detection current is detected. This is the part for which the amount of expansion / contraction of the polymer actuator is obtained.

図1において、制御器2から出力される駆動指令3は、周波数変調回路5において搬送波4を用いて周波数変調され、変調電圧6として出力される。このときの変調方法としては、PWM変調などが挙げられる。また、搬送波4の周波数は、駆動指令3に対して十分高く、たとえば、駆動指令3の最高周波数が10Hzであるならば、搬送波4の周波数は100倍以上の1kHz以上とする。次に、スイッチング素子などで構成されている駆動回路7より変調電圧6に基づき駆動電圧8が出力される。この駆動電圧8が高分子アクチュエータ1に印加され、高分子アクチュエータ1が伸縮動作する。このときの電流検出回路9により検出電流10が出力される。この電流検出回路9はシャント抵抗などで構成される。駆動電圧8と検出電流10はそれぞれ、ハイパスフィルタ回路11a、ハイパスフィルタ回路11bに入力される。ここでハイパスフィルタ回路11aおよび11bのカットオフ周波数は、駆動電圧8と検出電流10に含まれる搬送波4の成分のみが出力される値である駆動指令3の最高周波数と搬送波4の周波数のほぼ中間値に設定されている。たとえば、駆動指令3の最高周波数が10Hz、搬送波4の周波数が1kHzであるならば、ハイパスフィルタ回路11aおよび11bのカットオフ周波数は500Hz付近に設定される。ハイパスフィルタ回路11aおよび11bから、駆動電圧8より分離された搬送波電圧12および駆動電流9より分離された搬送波電流13がそれぞれ出力される。この搬送波電圧12と搬送波電流13の位相15を、電圧・電流位相検出回路14で求める。最後に、伸縮量算出回路16において位相15より高分子アクチュエータ1の伸縮量17を求める。   In FIG. 1, a drive command 3 output from the controller 2 is frequency-modulated using a carrier wave 4 in a frequency modulation circuit 5 and output as a modulation voltage 6. Examples of the modulation method at this time include PWM modulation. The frequency of the carrier wave 4 is sufficiently higher than the drive command 3. For example, if the maximum frequency of the drive command 3 is 10 Hz, the frequency of the carrier wave 4 is set to 1 kHz or more, which is 100 times or more. Next, a drive voltage 8 is output based on the modulation voltage 6 from the drive circuit 7 constituted by a switching element or the like. This driving voltage 8 is applied to the polymer actuator 1, and the polymer actuator 1 expands and contracts. The detection current 10 is output by the current detection circuit 9 at this time. The current detection circuit 9 is composed of a shunt resistor or the like. The drive voltage 8 and the detection current 10 are input to the high pass filter circuit 11a and the high pass filter circuit 11b, respectively. Here, the cut-off frequency of the high-pass filter circuits 11a and 11b is approximately halfway between the maximum frequency of the drive command 3 and the frequency of the carrier wave 4, which is a value that outputs only the component of the carrier wave 4 included in the drive voltage 8 and the detection current 10. Is set to a value. For example, if the maximum frequency of the drive command 3 is 10 Hz and the frequency of the carrier wave 4 is 1 kHz, the cutoff frequency of the high-pass filter circuits 11a and 11b is set to around 500 Hz. From the high-pass filter circuits 11a and 11b, a carrier voltage 12 separated from the drive voltage 8 and a carrier current 13 separated from the drive current 9 are output, respectively. The phase 15 of the carrier voltage 12 and the carrier current 13 is obtained by the voltage / current phase detection circuit 14. Finally, the expansion / contraction amount calculation circuit 16 obtains the expansion / contraction amount 17 of the polymer actuator 1 from the phase 15.

ここで、図2および図3を用いて高分子アクチュエータ1の伸縮量17の求め方を説明する。
図2は、高分子アクチュエータ1の断面図である。高分子アクチュエータ1は高分子18の両面に電極19が貼り付けられた構成となっている。図2(a)は電極19に電圧が印加されていない状態、図2(b)は電極19に電圧が印加されている状態である。高分子アクチュエータ1を伸張動作させるために、電極19に電圧を印加すると、図2(b)のように、高分子18が電極19により圧縮され、押し広げられることで高分子アクチュエータ1は伸張する。電圧印加で、高分子18の厚みdは小さくなり、電極表面積Sは広がる。高分子アクチュエータ1は電気的にはコンデンサーと考えられるので、電圧を印加することで高分子アクチュエータ1の静電容量が増加する。図3は高分子アクチュエータ1の等価回路である。容量成分のリアクタンスXc20および内部抵抗R21で構成される。高分子アクチュエータ1に駆動電圧Vを印加した場合の、駆動電圧Vと電流Iの位相θの関係を図4に示す。また、駆動電圧Vと電流Iの位相θの関係を数式で表すと、次式のようになる。
Here, how to obtain the expansion / contraction amount 17 of the polymer actuator 1 will be described with reference to FIGS. 2 and 3.
FIG. 2 is a cross-sectional view of the polymer actuator 1. The polymer actuator 1 has a configuration in which electrodes 19 are attached to both surfaces of a polymer 18. FIG. 2A shows a state where no voltage is applied to the electrode 19, and FIG. 2B shows a state where a voltage is applied to the electrode 19. When a voltage is applied to the electrode 19 in order to extend the polymer actuator 1, the polymer actuator 1 is expanded by being compressed and expanded by the electrode 19 as shown in FIG. 2B. . By applying a voltage, the thickness d of the polymer 18 decreases and the electrode surface area S increases. Since the polymer actuator 1 is electrically considered as a capacitor, the capacitance of the polymer actuator 1 is increased by applying a voltage. FIG. 3 is an equivalent circuit of the polymer actuator 1. It is composed of a reactance Xc20 of a capacitive component and an internal resistance R21. FIG. 4 shows the relationship between the drive voltage V and the phase θ of the current I when the drive voltage V is applied to the polymer actuator 1. Further, the relationship between the driving voltage V and the phase θ of the current I is expressed by the following equation.

駆動電圧Vと電流Iの位相θは、容量成分のリアクタンスXc20および内部抵抗R21の値に依存することがわかる。ここで、高分子アクチュエータ1が伸張する際、内部抵抗R21の値の変化は容量成分のリアクタンスXc20の値の変化に比べわずかであるため、位相θは内部抵抗R21の値の変化の影響をほとんど受けない。そのため、高分子アクチュエータ1の伸張時の位相θ変化は、容量成分のリアクタンスXc20の値の変化に依存するといえる。先に述べたように、高分子アクチュエータ1は伸張する際、高分子アクチュエータ1の静電容量が増加するため、容量成分のリアクタンスXc20の値は減少し、位相θも減少する。この位相θの値の変化より、高分子アクチュエータ1の伸縮量を求めることができる。ここで、駆動電圧Vと電流Iには、駆動指令3と搬送波4の成分が含まれているが、高分子アクチュエータ1の制御に無関係で一定値を保つ搬送波4のみで位相θを求めると、高分子アクチュエータ1の伸縮量17を正確に求めることが可能となる。具体的には、ハイパスフィルタ回路11aおよび11bにより分離された搬送波電圧12および搬送波電流13を用いて、電圧・電流位相検出回路14において位相15を求める。この位相15より、伸縮量算出回路16において高分子アクチュエータ1の伸縮量17を求めるが、あらかじめ高分子アクチュエータ1を最小値から最大値まで変化させたときの伸縮量17と位相15の関係を記憶装置(図示していない)に記憶させておき、現在求めた位相15と、記憶させた値を比較することにより、現在の伸縮量17を求めている。   It can be seen that the phase θ of the drive voltage V and the current I depends on the values of the reactance Xc20 and the internal resistance R21 of the capacitive component. Here, when the polymer actuator 1 is extended, the change in the value of the internal resistance R21 is slight compared with the change in the value of the reactance Xc20 of the capacitive component, and therefore the phase θ is almost affected by the change in the value of the internal resistance R21. I do not receive it. Therefore, it can be said that the change in phase θ when the polymer actuator 1 is extended depends on the change in the value of the reactance Xc20 of the capacitive component. As described above, when the polymer actuator 1 expands, the capacitance of the polymer actuator 1 increases, so that the value of the reactance Xc20 of the capacitive component decreases and the phase θ also decreases. The expansion / contraction amount of the polymer actuator 1 can be obtained from the change in the value of the phase θ. Here, the drive voltage V and the current I include the components of the drive command 3 and the carrier wave 4, but when the phase θ is obtained only by the carrier wave 4 that maintains a constant value regardless of the control of the polymer actuator 1, The expansion / contraction amount 17 of the polymer actuator 1 can be accurately obtained. Specifically, the phase 15 is obtained in the voltage / current phase detection circuit 14 using the carrier voltage 12 and the carrier current 13 separated by the high-pass filter circuits 11a and 11b. Based on this phase 15, the expansion / contraction amount calculation circuit 16 calculates the expansion / contraction amount 17 of the polymer actuator 1. The relationship between the expansion / contraction amount 17 and the phase 15 when the polymer actuator 1 is changed from the minimum value to the maximum value is stored in advance. The current amount of expansion / contraction 17 is obtained by storing it in a device (not shown) and comparing the currently obtained phase 15 with the stored value.

本発明の第1実施例を示す高分子アクチュエータの伸縮量センシング方法の構成図The block diagram of the expansion-contraction amount sensing method of the polymer actuator which shows 1st Example of this invention 高分子アクチュエータの動作の説明図であり、(a)は収縮時の説明図、(b)は伸張時の説明図It is explanatory drawing of operation | movement of a polymer actuator, (a) is explanatory drawing at the time of contraction, (b) is explanatory drawing at the time of expansion | extension 本発明の第1実施例の動作を示す回路構成図1 is a circuit configuration diagram showing the operation of the first embodiment of the present invention. 本発明の第1実施例の動作を示す他の説明図Other explanatory views showing the operation of the first embodiment of the present invention. 従来の高分子アクチュエータの伸縮量センシング方法を示す構成図Configuration diagram showing a conventional polymer actuator expansion / contraction sensing method

符号の説明Explanation of symbols

1 高分子アクチュエータ
2 制御器
3 駆動指令
4 搬送波
5 周波数変調回路
6 変調電圧
7 駆動回路
8 駆動電圧
9 電流検出回路
10 駆動電流
11a ハイパスフィルタ回路
11b ハイパスフィルタ回路
12 搬送波電圧
13 搬送波電流
14 電圧・電流位相検出回路
15 位相
16 伸縮量算出回路
17 伸縮量
18 高分子
19 電極
20 容量成分のリアクタンスXc
21 内部抵抗R
22 検出用電圧
23 検出電圧重畳駆動電圧
24 抵抗器
25 検出電圧
26 電圧振幅検出回路
27 振幅
28 伸縮量算出回路
29 検出用電圧発生回路
30 位相差検出部
DESCRIPTION OF SYMBOLS 1 Polymer actuator 2 Controller 3 Drive command 4 Carrier wave 5 Frequency modulation circuit 6 Modulation voltage 7 Drive circuit 8 Drive voltage 9 Current detection circuit 10 Drive current 11a High pass filter circuit 11b High pass filter circuit 12 Carrier voltage 13 Carrier current 14 Voltage / current Phase detection circuit 15 Phase 16 Stretching amount calculation circuit 17 Stretching amount 18 Polymer 19 Electrode 20 Reactance Xc of capacitive component
21 Internal resistance R
22 detection voltage 23 detection voltage superimposed drive voltage 24 resistor 25 detection voltage 26 voltage amplitude detection circuit 27 amplitude 28 expansion / contraction amount calculation circuit 29 detection voltage generation circuit 30 phase difference detection unit

Claims (7)

高分子アクチュエータを駆動させる駆動電圧に伸縮量を検出する検出用電圧を重畳し、制御器の指令により前記高分子アクチュエータを駆動させ、前記高分子アクチュエータの伸縮に伴う静電容量の変化を検出電圧として計測することにより前記高分子アクチュエータの伸縮量を求める高分子アクチュエータの伸縮量センシング方法において、
前記検出用電圧を周波数変調電圧とし、前記周波数変調電圧が重畳された駆動電圧とその電流との位相差を位相差関係線と照合することにより、前記高分子アクチュエータの伸縮量を求めることを特徴とした高分子アクチュエータの伸縮量センシング方法。
A detection voltage for detecting the amount of expansion and contraction is superimposed on the drive voltage for driving the polymer actuator, the polymer actuator is driven by a command from a controller, and a change in capacitance due to the expansion and contraction of the polymer actuator is detected. In the method for sensing the amount of expansion / contraction of the polymer actuator by measuring the amount of expansion / contraction of the polymer actuator by measuring as
The detection voltage is a frequency modulation voltage, and the expansion / contraction amount of the polymer actuator is obtained by comparing the phase difference between the drive voltage on which the frequency modulation voltage is superimposed and the current with a phase difference relationship line. A method for sensing the amount of expansion and contraction of polymer actuators.
前記位相差関係線は、前記高分子アクチュエータを伸縮変化させたときの位相差と伸縮量との関係を予め求めておいたものであることを特徴とする請求項1記載の高分子アクチュエータの伸縮量センシング方法。   2. The expansion / contraction of the polymer actuator according to claim 1, wherein the phase difference relation line is obtained in advance from a relationship between a phase difference and an amount of expansion / contraction when the polymer actuator is expanded / contracted. Quantity sensing method. 高分子アクチュエータと、制御器の指令により前記高分子アクチュエータに駆動電圧を印加して駆動させる駆動回路と、前記駆動電圧に伸縮量を検出する検出用電圧を重畳する検出電圧発生回路と、検出した検出電圧を基に伸縮量を計測する伸縮量算出回路とを備え、前記高分子アクチュエータの伸縮に伴う静電容量の変化を検出電圧として計測することにより前記高分子アクチュエータの伸縮量を求める高分子アクチュエータの伸縮量センシング装置において、
前記検出電圧発生回路を周波数変調した周波数変調回路とし、前記駆動回路と前記高分子アクチュエータとの間に前記駆動電圧とその電流との位相差を検出する位相差検出部を設けたことを特徴とする高分子アクチュエータの伸縮量センシング装置。
A polymer actuator; a drive circuit that applies a drive voltage to the polymer actuator according to a command from a controller to drive the polymer actuator; and a detection voltage generation circuit that superimposes a detection voltage for detecting an expansion / contraction amount on the drive voltage. A polymer that calculates an amount of expansion / contraction of the polymer actuator by measuring a change in capacitance associated with the expansion / contraction of the polymer actuator as a detection voltage. In the actuator expansion / contraction amount sensing device,
The detection voltage generation circuit is a frequency modulation circuit that performs frequency modulation, and a phase difference detection unit that detects a phase difference between the drive voltage and its current is provided between the drive circuit and the polymer actuator. An expansion and contraction sensing device for polymer actuators.
前記位相差検出部は、電流検出回路とハイパスフィルタ回路とを含む電圧・電流位相検出回路からなることを特徴とする請求項3記載の高分子アクチュエータの伸縮量センシング装置。   4. The expansion / contraction amount sensing device for a polymer actuator according to claim 3, wherein the phase difference detection unit includes a voltage / current phase detection circuit including a current detection circuit and a high-pass filter circuit. 前記伸縮量算出回路は、前記位相差を位相差関係線と照合する回路を有することを特徴とする請求項3記載の高分子アクチュエータの伸縮量センシング装置。   4. The expansion / contraction amount sensing device for a polymer actuator according to claim 3, wherein the expansion / contraction amount calculation circuit includes a circuit for comparing the phase difference with a phase difference relation line. 前記位相差関係線は、前記高分子アクチュエータを伸縮変化させたときの位相差と伸縮量との関係を記憶回路に記憶させておいたものであることを特徴とする請求項5記載の高分子アクチュエータの伸縮量センシング装置。   6. The polymer according to claim 5, wherein the phase difference relationship line stores a relationship between the phase difference and the amount of expansion / contraction when the polymer actuator is expanded / contracted in a memory circuit. Actuator expansion / contraction amount sensing device. 請求項3から6のいずれかに記載の高分子アクチュエータの伸縮量センシング装置と、前記高分子アクチュエータを制御する制御器とを有したことを特徴とする高分子アクチュエータ駆動装置。   A polymer actuator driving device comprising the polymer actuator expansion / contraction amount sensing device according to claim 3 and a controller for controlling the polymer actuator.
JP2007054537A 2007-03-05 2007-03-05 Expansion amount sensing method and device of polymer actuator Pending JP2008216074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007054537A JP2008216074A (en) 2007-03-05 2007-03-05 Expansion amount sensing method and device of polymer actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007054537A JP2008216074A (en) 2007-03-05 2007-03-05 Expansion amount sensing method and device of polymer actuator

Publications (1)

Publication Number Publication Date
JP2008216074A true JP2008216074A (en) 2008-09-18

Family

ID=39836281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007054537A Pending JP2008216074A (en) 2007-03-05 2007-03-05 Expansion amount sensing method and device of polymer actuator

Country Status (1)

Country Link
JP (1) JP2008216074A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114435A1 (en) * 2010-03-16 2011-09-22 アルプス電気株式会社 Driving device using polymer actuator elements
JP2012042560A (en) * 2010-08-16 2012-03-01 Sony Corp Driving device, lens module and imaging device
JP2012518384A (en) * 2009-02-19 2012-08-09 オークランド・ユニサービシス・リミテッド System and method for dynamic self-sensing of dielectric elastomer actuators
JP2013543365A (en) * 2010-10-18 2013-11-28 オークランド ユニサービシズ リミテッド Self-sensing of dielectric elastomers using planar approximation
JP2016197087A (en) * 2015-04-06 2016-11-24 バンドー化学株式会社 Capacitive sensor sheet and sensor device
WO2019117138A1 (en) * 2017-12-14 2019-06-20 豊田合成株式会社 External force control device
WO2021024628A1 (en) * 2019-08-06 2021-02-11 豊田合成株式会社 Control device and actuator device
WO2023007841A1 (en) * 2021-07-27 2023-02-02 ソニーグループ株式会社 Sensor-equipped piezoelectric coil and electronic device

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191481A (en) * 1987-10-02 1989-04-11 Toyota Motor Corp Piezoelectric actuator
JPH04259015A (en) * 1991-02-13 1992-09-14 Canon Inc Fine driving device
JPH07280503A (en) * 1994-04-04 1995-10-27 Nkk Corp Device for measuring surface film thickness
JPH09137872A (en) * 1995-11-16 1997-05-27 Matsushita Electric Ind Co Ltd Polymer electrolyte actuator
JPH10233421A (en) * 1997-01-31 1998-09-02 Internatl Business Mach Corp <Ibm> Device and method for measuring in-line thickness of dielectric layer
JP2000022230A (en) * 1998-06-30 2000-01-21 Kyocera Corp Laminated piezoelectric actuator
JP2000515253A (en) * 1998-01-23 2000-11-14 住友金属工業株式会社 Capacitance-voltage conversion device and conversion method
JP2001286162A (en) * 2000-03-31 2001-10-12 Keiwa Ryu Drive device utilizing electrostrictive expansion and construction material
JP2001309651A (en) * 2000-04-25 2001-11-02 Matsushita Electric Ind Co Ltd Piezoelectric element driving circuit
JP2003219664A (en) * 2002-01-17 2003-07-31 Yamazaki Seisakusho:Kk Deterioration detector of piezoelectric actuator
JP2003326723A (en) * 2002-05-13 2003-11-19 Seiko Epson Corp Method of inspecting actuator device and method of inspecting inkjet recording head
JP2005046980A (en) * 2003-07-31 2005-02-24 Sharp Corp Articulated manipulator
JP2005522162A (en) * 2002-03-18 2005-07-21 エスアールアイ インターナショナル Electroactive polymer devices that move fluids
JP2005210023A (en) * 2004-01-26 2005-08-04 Honda Motor Co Ltd Piezoelectric material, generator and high polymer actuator
JP2006295999A (en) * 2005-04-06 2006-10-26 Olympus Corp Polymer linear actuator

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191481A (en) * 1987-10-02 1989-04-11 Toyota Motor Corp Piezoelectric actuator
JPH04259015A (en) * 1991-02-13 1992-09-14 Canon Inc Fine driving device
JPH07280503A (en) * 1994-04-04 1995-10-27 Nkk Corp Device for measuring surface film thickness
JPH09137872A (en) * 1995-11-16 1997-05-27 Matsushita Electric Ind Co Ltd Polymer electrolyte actuator
JPH10233421A (en) * 1997-01-31 1998-09-02 Internatl Business Mach Corp <Ibm> Device and method for measuring in-line thickness of dielectric layer
JP2000515253A (en) * 1998-01-23 2000-11-14 住友金属工業株式会社 Capacitance-voltage conversion device and conversion method
JP2000022230A (en) * 1998-06-30 2000-01-21 Kyocera Corp Laminated piezoelectric actuator
JP2001286162A (en) * 2000-03-31 2001-10-12 Keiwa Ryu Drive device utilizing electrostrictive expansion and construction material
JP2001309651A (en) * 2000-04-25 2001-11-02 Matsushita Electric Ind Co Ltd Piezoelectric element driving circuit
JP2003219664A (en) * 2002-01-17 2003-07-31 Yamazaki Seisakusho:Kk Deterioration detector of piezoelectric actuator
JP2005522162A (en) * 2002-03-18 2005-07-21 エスアールアイ インターナショナル Electroactive polymer devices that move fluids
JP2003326723A (en) * 2002-05-13 2003-11-19 Seiko Epson Corp Method of inspecting actuator device and method of inspecting inkjet recording head
JP2005046980A (en) * 2003-07-31 2005-02-24 Sharp Corp Articulated manipulator
JP2005210023A (en) * 2004-01-26 2005-08-04 Honda Motor Co Ltd Piezoelectric material, generator and high polymer actuator
JP2006295999A (en) * 2005-04-06 2006-10-26 Olympus Corp Polymer linear actuator

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012518384A (en) * 2009-02-19 2012-08-09 オークランド・ユニサービシス・リミテッド System and method for dynamic self-sensing of dielectric elastomer actuators
US8860336B2 (en) 2009-02-19 2014-10-14 Auckland Uniservices Limited System and method for dynamic self-sensing of dielectric elastomer actuators
JP5466757B2 (en) * 2010-03-16 2014-04-09 アルプス電気株式会社 Drive device using polymer actuator element
JPWO2011114435A1 (en) * 2010-03-16 2013-06-27 アルプス電気株式会社 Drive device using polymer actuator element
WO2011114435A1 (en) * 2010-03-16 2011-09-22 アルプス電気株式会社 Driving device using polymer actuator elements
CN102375204A (en) * 2010-08-16 2012-03-14 索尼公司 Driving unit, lens module, and image pickup device
JP2012042560A (en) * 2010-08-16 2012-03-01 Sony Corp Driving device, lens module and imaging device
US9127652B2 (en) 2010-08-16 2015-09-08 Sony Corporation Method and apparatus for driving a polymer actuator to control a lens
JP2013543365A (en) * 2010-10-18 2013-11-28 オークランド ユニサービシズ リミテッド Self-sensing of dielectric elastomers using planar approximation
JP2016197087A (en) * 2015-04-06 2016-11-24 バンドー化学株式会社 Capacitive sensor sheet and sensor device
WO2019117138A1 (en) * 2017-12-14 2019-06-20 豊田合成株式会社 External force control device
JP2019106844A (en) * 2017-12-14 2019-06-27 豊田合成株式会社 External force control device
WO2021024628A1 (en) * 2019-08-06 2021-02-11 豊田合成株式会社 Control device and actuator device
JP2021027722A (en) * 2019-08-06 2021-02-22 豊田合成株式会社 Control device and actuator device
WO2023007841A1 (en) * 2021-07-27 2023-02-02 ソニーグループ株式会社 Sensor-equipped piezoelectric coil and electronic device

Similar Documents

Publication Publication Date Title
JP2008216074A (en) Expansion amount sensing method and device of polymer actuator
JP5160248B2 (en) Voltage detector
EP2862209B1 (en) Self-sensing dielectric elastomer device
JP2006217716A (en) Ultrasonic actuator driving unit and ultrasonic actuator driving method
JP2011095104A5 (en)
WO2016059940A1 (en) Pressure detection device, pressure detection device control method, and program
JP2010273397A (en) Vibration type drive device
JP2018078769A (en) Control method for vibration type actuator, vibration type drive device and electronic apparatus
JP2020509588A (en) Actuator and sensor device based on electroactive polymer
RU2766272C2 (en) Drive based on electroactive material and excitation method
JP5796955B2 (en) Control device for vibration actuator
JP6021055B2 (en) Ultrasonic sensor
JP5355334B2 (en) Calibration method for inertial drive actuator and inertial drive actuator device
US7997135B2 (en) Angular velocity sensor
JP2005147831A5 (en)
KR20120081134A (en) Vibration-type drive apparatus, and control method for vibration-type drive apparatus
JP5849580B2 (en) Power generation device and method for controlling power generation device
JP6609046B2 (en) Microelectromechanical system and control method
JP2009131117A (en) Apparatus for driving vibrating-wave actuator, and its controlling method
JP2018063239A (en) Cylinder stroke sensor
JP2016003979A (en) Sensor signal detection circuit
JP5387467B2 (en) Vacuum gauge
JP2002032126A (en) Method and device for controlling position and speed of piezoelectric element
JP2007089277A (en) Leak detector for electric car
JP2010273439A (en) Vibration type drive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

A977 Report on retrieval

Effective date: 20110310

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110317

A02 Decision of refusal

Effective date: 20110719

Free format text: JAPANESE INTERMEDIATE CODE: A02