JPH07280367A - Cold thermal storage system - Google Patents

Cold thermal storage system

Info

Publication number
JPH07280367A
JPH07280367A JP6495494A JP6495494A JPH07280367A JP H07280367 A JPH07280367 A JP H07280367A JP 6495494 A JP6495494 A JP 6495494A JP 6495494 A JP6495494 A JP 6495494A JP H07280367 A JPH07280367 A JP H07280367A
Authority
JP
Japan
Prior art keywords
flow path
path switching
cold storage
switching means
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6495494A
Other languages
Japanese (ja)
Inventor
Kanji Haneda
完爾 羽根田
Shinji Watanabe
伸二 渡辺
Yukio Watanabe
幸男 渡邊
Shigeto Yamaguchi
成人 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6495494A priority Critical patent/JPH07280367A/en
Publication of JPH07280367A publication Critical patent/JPH07280367A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To contrive energy conservation by optimally controlling a refrigerant amount in a cold thermal storage circuit at each operating mode. CONSTITUTION:An output of a saturation temperature sensor 13 is sent as a temperature signal by a saturation temperature detector 15 to a differential temperature calculator 17. An output of a receiver upper temperature sensor 14 provided at an upper part of a receiver 12 is sent as a temperature signal by a temperature detector 16 to the calculator 17. In this case, a differential temperature (= saturation temperature - receiver upper temperature) is calculated and sent together with an operating mode from an operating mode discriminator 19 to a solenoid valve set discriminator 18, which sends a command to solenoid valves 10f, 10g to be controlled. Thus, solenoid valve control means for so controlling as to become less refrigerant amount than that at the time of cold dissipating operation is provided at the time of a cold thermal storage operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、運転モードに応じて二
次側回路内の冷媒量を制御する蓄冷システムに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold storage system which controls the amount of refrigerant in a secondary side circuit according to an operation mode.

【0002】[0002]

【従来の技術】住宅、ビルなどの冷房・給冷水利用につ
いて、水蓄熱方式または氷蓄熱方式の蓄熱式冷房システ
ムがある。このシステムは冷凍機と冷水蓄熱槽または氷
蓄熱槽とからなり、熱の発生と需要の時間的ずれを調整
するため、夜間電力を利用して冷水または氷の貯留を行
い、この冷蓄熱を昼間等の必要時に取り出して冷房、給
冷水に用いて省エネルギー化を図ったものである。水蓄
熱方式と氷蓄熱方式とを比較した場合、氷蓄熱方式の方
が水蓄熱方式よりも容積を大幅に縮小できるといった利
点を有し、この氷蓄熱方式が広く採用されるに至ってい
る。
2. Description of the Related Art There is a heat storage type cooling system of a water heat storage system or an ice heat storage system for cooling and supplying hot and cold water to a house, a building and the like. This system consists of a refrigerator and a cold water heat storage tank or an ice heat storage tank.In order to adjust the time lag between heat generation and demand, cold water or ice is stored using night power, and this cold heat storage is stored in the daytime. It is intended to save energy by taking it out when necessary and using it for cooling and hot water supply. When comparing the water heat storage method and the ice heat storage method, the ice heat storage method has an advantage that the volume can be significantly reduced as compared with the water heat storage method, and this ice heat storage method has been widely adopted.

【0003】この氷蓄熱方式はソリッドアイス方式とリ
キッドアイス方式との2種類に大別される。リキッドア
イス方式は冷媒と冷水を直接もしくはそれに近い形で接
触させ、みぞれ状の氷(スラリー)をつくり、これを蓄
熱槽に蓄える方式であるが、制御が複雑である。これに
対し、現在一般に採用されているソリッドアイス方式
は、冷媒もしくはブラインを氷蓄熱槽内部に設けられた
コイル孔内に通し、このコイル外表面に氷を生成し、こ
れによる冷熱を冷房負荷に供給して冷房を行うものであ
る。
The ice heat storage system is roughly classified into two types, a solid ice system and a liquid ice system. The liquid ice method is a method in which a refrigerant and cold water are brought into direct or close contact with each other to form sleet-shaped ice (slurry) and stored in a heat storage tank, but the control is complicated. On the other hand, the solid ice method, which is generally adopted at present, passes a refrigerant or brine through a coil hole provided inside the ice heat storage tank to generate ice on the outer surface of the coil, and the resulting cold heat is used as a cooling load. It supplies and cools.

【0004】以下、図面を参照しながら、上記従来の氷
蓄熱方式について説明する。図9は、従来の氷蓄熱方式
(ソリッドアイス方式)による蓄熱式冷房システム(以
下、蓄冷システムと呼ぶ)の冷凍サイクル図である。
The conventional ice heat storage system will be described below with reference to the drawings. FIG. 9 is a refrigeration cycle diagram of a heat storage type cooling system (hereinafter referred to as a cool storage system) based on a conventional ice heat storage method (solid ice method).

【0005】この蓄冷システムは、一次側冷媒が循環す
る一次側回路と、二次側冷媒が循環する二次側回路から
成っている。
This cold storage system is composed of a primary side circuit in which the primary side refrigerant circulates and a secondary side circuit in which the secondary side refrigerant circulates.

【0006】一次側回路は、インバータ駆動の容量(周
波数)可変形圧縮機1(以下単に圧縮機と称す)、第1
の凝縮器2、ステッピングモータを用いて弁開度をパル
ス制御可能とした電動膨張弁3、第1の蒸発器4を順次
接続して冷凍サイクルを構成している。
The primary side circuit includes an inverter-driven variable capacity (frequency) type compressor 1 (hereinafter simply referred to as a compressor), a first
The condenser 2, the electric expansion valve 3 whose pulse opening can be pulse-controlled by using the stepping motor, and the first evaporator 4 are sequentially connected to form a refrigeration cycle.

【0007】二次側回路には、二次側液冷媒を送出する
冷媒ポンプ5、蓄冷タンク6内に設置され、蓄冷タンク
6内の水から吸熱して氷をその表面に生成させる蓄冷熱
交換器7、氷蓄熱を行う蓄冷運転時にのみ使用される第
2の凝縮器8、その作られた氷から冷熱を取り出して冷
房運転を行う放冷運転時にのみ使用される第2の蒸発器
9、運転モードにより開閉する電磁弁10a、10b、
10c、10d、放冷運転時に蓄冷熱交換器7の出口と
冷媒ポンプ入口をつなぐバイパス回路11、およびその
バイパス回路に放冷時のみ開となる電磁弁10eが設け
られている。
In the secondary side circuit, a refrigerant pump 5 for delivering a secondary side liquid refrigerant and a cold storage tank 6 are installed, and cold storage heat exchange for absorbing heat from the water in the cold storage tank 6 to generate ice on the surface thereof. Container 7, second condenser 8 used only in cold storage operation for storing ice heat, second evaporator 9 used only in cooling operation in which cold heat is taken out from the produced ice to perform cooling operation, Solenoid valves 10a, 10b that open and close depending on the operation mode
10c, 10d, a bypass circuit 11 that connects the outlet of the cold storage heat exchanger 7 and the refrigerant pump inlet during the cooling operation, and a solenoid valve 10e that is opened only during the cooling operation are provided in the bypass circuit.

【0008】一次側の第1の蒸発器と二次側の蓄冷運転
時のみ使用される第2の凝縮器は一体化されて一つの冷
媒−冷媒熱交換器となっており、そこで二次側冷媒から
一次側冷媒へ熱が伝達される。
The first evaporator on the primary side and the second condenser used only during the cold storage operation on the secondary side are integrated into one refrigerant-refrigerant heat exchanger, where the secondary side is placed. Heat is transferred from the refrigerant to the primary side refrigerant.

【0009】氷蓄熱を行う蓄冷運転時は、一次側回路と
二次側回路の両回路が運転される。二次側回路では、蓄
冷タンク6内の水よりも低温の二次側冷媒が冷媒ポンプ
5から送出され、電磁弁10aを通過して蓄冷熱交換器
7に入り、ここで水から吸熱してガス化したのち、電磁
弁10bを通過して第2の凝縮器8に入り、ここで一次
側冷媒に熱を放出し、液化して冷媒ポンプ5に戻るとい
う冷凍サイクルを構成する。そして、水温の低下と共に
二次側冷媒温度も低下していき、零度以下になると蓄冷
熱交換器7の外表面に氷が生成され始め、徐々に成長し
ていく。
During the cold storage operation for storing ice heat, both the primary side circuit and the secondary side circuit are operated. In the secondary side circuit, the secondary side refrigerant having a temperature lower than that of the water in the cold storage tank 6 is delivered from the refrigerant pump 5, passes through the electromagnetic valve 10a and enters the cold storage heat exchanger 7, where it absorbs heat from the water. After being gasified, it passes through the solenoid valve 10b and enters the second condenser 8, where heat is released to the primary side refrigerant, liquefies and returns to the refrigerant pump 5, thereby forming a refrigeration cycle. Then, as the water temperature lowers, the secondary side refrigerant temperature also lowers, and when the temperature becomes lower than zero, ice begins to be generated on the outer surface of the cold storage heat exchanger 7 and gradually grows.

【0010】作られた氷から冷熱を取り出して冷房運転
を行う放冷運転時は、一次側回路を運転せずに二次側回
路のみ運転する。二次側回路では、冷媒ポンプ5から送
出された二次側液冷媒は、電磁弁10cを通過して第2
の蒸発器9に入り、ここで空気から熱を奪う冷房運転を
行ってガス化したのち、電磁弁10dを通過し、蓄冷運
転時とは逆方向から蓄冷熱交換器7に入り、ここで氷お
よび水に熱を放出して液化し、バイパス回路11、電磁
弁10eを通過して冷媒ポンプ5に戻るという冷凍サイ
クルを構成する。
During the cooling operation in which cold heat is taken out from the produced ice to perform the cooling operation, only the secondary side circuit is operated without operating the primary side circuit. In the secondary side circuit, the secondary side liquid refrigerant sent out from the refrigerant pump 5 passes through the solenoid valve 10c to the second side.
After passing through the solenoid valve 10d and entering the cold storage heat exchanger 7 from the opposite direction to the cold storage operation, the cooling operation is performed to remove the heat from the air and gasify it. Also, a refrigeration cycle is formed in which heat is released to water and liquefied, passes through the bypass circuit 11 and the electromagnetic valve 10e, and returns to the refrigerant pump 5.

【0011】この時の各モード毎の電磁弁の開閉を下記
(表1)に示す。
The opening and closing of the solenoid valve for each mode at this time is shown in Table 1 below.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上記従
来の蓄冷システムには以下のような課題があった。
However, the above conventional cold storage system has the following problems.

【0014】図2は、二次側冷媒量を変化させた時の蓄
冷運転でのシステム効率(=蓄冷能力/圧縮機入力)を
示したもので、圧縮機運転周波数および冷媒ポンプ運転
周波数は所定値に固定している。同図より明らかなよう
に、放冷可能冷媒量は蓄冷運転時のシステム効率がピー
クを示す二次側冷媒量より多く、この二次側冷媒量で蓄
冷運転を行うと、システム効率の低い運転となり、同一
の蓄冷能力を得ようとすると圧縮機入力が高くなってし
まう。逆に、蓄冷運転時のピークを示す二次側冷媒量で
放冷運転を行うと、冷媒ポンプ手前に戻る冷媒が不足し
てガス噛み運転となり、結局、冷媒を液で送ることがで
きなくなり運転が停止してしまう。
FIG. 2 shows the system efficiency (= cold storage capacity / compressor input) in the cold storage operation when the amount of the secondary side refrigerant is changed. The compressor operating frequency and the refrigerant pump operating frequency are predetermined. It is fixed to the value. As is clear from the figure, the amount of refrigerant that can be cooled is larger than the amount of the secondary-side refrigerant at which the system efficiency during the cold-storage operation shows a peak. Therefore, when trying to obtain the same cold storage capacity, the compressor input becomes high. On the contrary, if the cooling operation is performed with the secondary side refrigerant amount that shows the peak during the cold storage operation, the refrigerant returning to the front side of the refrigerant pump becomes insufficient and gas bite operation occurs, and eventually the refrigerant cannot be sent as a liquid. Will stop.

【0015】すなわち、蓄冷運転と放冷運転のいずれの
場合も蓄冷熱交換器は使用するが、本実施例の場合にお
いては、蓄冷運転時のみ使用する二次側冷媒から一次側
冷媒へ放熱する第2の凝縮器内の容積と、放冷運転時の
み使用する第2の蒸発器内の容積とを比較すると、後者
は前者より約2000cc容積が大きい。そのため、蓄
冷運転時と放冷運転時のいずれの場合も最も効率の高い
運転をする場合、放冷運転時は蓄冷運転時よりも多くの
冷媒が必要となり、放冷運転時と同一冷媒量で蓄冷運転
を行うと、効率の良い点での運転を外れて非常に効率の
悪い点での運転となってしまうという課題を有してい
た。
That is, although the cold storage heat exchanger is used in both the cold storage operation and the cold discharge operation, in the case of this embodiment, heat is radiated from the secondary side refrigerant used only during the cold storage operation to the primary side refrigerant. Comparing the volume in the second condenser with the volume in the second evaporator used only during the cooling operation, the latter has a larger volume of about 2000 cc than the former. Therefore, when performing the most efficient operation both during cold storage operation and during cold discharge operation, more refrigerant is required during cold discharge operation than during cold storage operation, and the same amount of refrigerant is used during cold discharge operation. When the cold storage operation is performed, there is a problem that the operation at the point of high efficiency deviates from the operation at the point of extremely low efficiency.

【0016】本発明の蓄冷システムは上記課題に鑑み、
冷凍サイクルの構成を複雑にすることなく、しかも蓄冷
運転と放冷運転毎に冷媒量を追加したり抜いたりしたり
せずに、いずれの運転でも効率の良い点での運転を可能
にすることを目的としている。
In view of the above problems, the cold storage system of the present invention is
To enable efficient operation in any operation without complicating the structure of the refrigeration cycle and without adding or removing the amount of refrigerant for each cold storage operation and cooling operation. It is an object.

【0017】[0017]

【課題を解決するための手段】上記課題を解決するため
に本発明の蓄冷システムは、容量可変形圧縮機、第1の
凝縮器、減圧器、第1の蒸発器を順次接続して一次側回
路の冷凍サイクルを構成し、冷媒ポンプ、蓄冷熱交換
器、第2の凝縮器を順次接続して二次側回路の冷凍サイ
クルを構成し、前記冷媒ポンプと前記蓄冷熱交換器の間
と、前記蓄冷熱交換器と前記第2の凝縮器の間とをバイ
パスする第1のバイパス回路を設け、その第1のバイパ
ス回路上に第1の流路切り換え手段、第2の蒸発器、第
2の流路切り換え手段を順次設け、前記冷媒ポンプ側の
前記第1のバイパス回路の分岐点と前記蓄冷熱交換器と
の間と、前記冷媒ポンプと前記第1の凝縮器との間とを
バイパスする第2のバイパス回路を設け、その第2のバ
イパス回路上に第3の流路切り換え手段を設け、前記冷
媒ポンプ側の前記第1のバイパス回路の分岐点と、前記
蓄冷熱交換器側の前記第2のバイパス回路の分岐点との
間に第4の流路切り換え手段を設け、前記第2の凝縮器
側の前記第1のバイパス回路の分岐点と前記第2の凝縮
器との間に第5の流路切り換え手段を設け、前記冷媒ポ
ンプ、前記第4の流路切り換え手段、前記蓄冷熱交換
器、前記第5の流路切り換え手段、前記第2の凝縮器の
順に二次側冷媒を流す氷蓄冷運転と、前記冷媒ポンプ、
前記第1の流路切り換え手段、前記第2の蒸発器、前記
第2の流路切り換え手段、前記蓄冷熱交換器、前記第3
の流路切り換え手段の順に二次側冷媒を流す氷蓄冷利用
運転とを、前記第1から第5の流路切り換え手段により
切り換え制御し、一次側の前記第1の蒸発器と二次側の
前記第2の凝縮器を熱交換的に接触させ、前記第3の流
路切り換え手段と前記第2の凝縮器側の前記第2のバイ
パス回路の分岐点との間に第6の流路切り換え手段とレ
シーバを設け、前記第2のバイパス回路と前記レシーバ
の間に第7の流路切り換え手段を設け、氷蓄熱運転か氷
蓄熱利用冷房運転かを検出する運転モード検出手段を設
け、前記レシーバ上部温度を検出するレシーバ上部温度
検出手段と前記レシーバ上部の飽和温度を検出する飽和
温度検出手段とを設け、前記レシーバ上部温度検出手段
と前記飽和温度検出手段とから前記レシーバ上部温度と
前記飽和温度との差温を算出する差温算出手段を設け、
前記運転モード検出手段により検出された運転モードが
氷蓄熱運転の場合には、まず氷蓄熱利用運転冷凍サイク
ルで運転し、前記差温算出手段により算出された差温に
応じて、前記第6および第7の流路切り換え手段を切り
換え制御し、氷蓄熱運転を行うものである。
In order to solve the above problems, a regenerator system of the present invention is configured such that a variable capacity compressor, a first condenser, a pressure reducer, and a first evaporator are sequentially connected to a primary side. A refrigeration cycle of the circuit is configured, and a refrigerant pump, a cold storage heat exchanger, and a second condenser are sequentially connected to configure a refrigeration cycle of a secondary side circuit, and between the refrigerant pump and the cold storage heat exchanger, A first bypass circuit that bypasses between the cold storage heat exchanger and the second condenser is provided, and the first flow path switching means, the second evaporator, and the second bypass circuit are provided on the first bypass circuit. Flow path switching means are sequentially provided to bypass between the branch point of the first bypass circuit on the refrigerant pump side and the cold storage heat exchanger and between the refrigerant pump and the first condenser. A second bypass circuit for connecting the second bypass circuit to the third bypass circuit Flow passage switching means is provided, and fourth flow passage switching means is provided between a branch point of the first bypass circuit on the refrigerant pump side and a branch point of the second bypass circuit on the cold storage heat exchanger side. And a fifth flow path switching means between the branch point of the first bypass circuit on the second condenser side and the second condenser, the refrigerant pump, the fourth flow path. An ice cold storage operation in which a secondary side refrigerant is caused to flow in the order of a path switching means, the cold storage heat exchanger, the fifth flow path switching means, and the second condenser;
The first flow path switching means, the second evaporator, the second flow path switching means, the cold storage heat exchanger, the third
The flow control means switches the ice-cooling utilization operation in which the secondary side refrigerant flows in the order of the flow path switching means by the first to fifth flow path switching means, and the first evaporator on the primary side and the secondary side The second condenser is brought into contact with each other in a heat exchange manner, and a sixth passage is switched between the third passage switching means and a branch point of the second bypass circuit on the second condenser side. Means and a receiver, and a seventh flow path switching means between the second bypass circuit and the receiver, and an operation mode detection means for detecting an ice heat storage operation or an ice heat storage utilizing cooling operation. A receiver upper temperature detecting means for detecting an upper temperature and a saturation temperature detecting means for detecting a saturation temperature of the receiver are provided, and the receiver upper temperature and the saturation temperature are selected from the receiver upper temperature detecting means and the saturation temperature detecting means. With The differential temperature calculating means for calculating the temperature provided,
When the operation mode detected by the operation mode detection means is the ice heat storage operation, first, the operation is performed in the ice heat storage operation operation refrigeration cycle, and the sixth and the sixth and The seventh flow path switching means is switched and controlled to perform the ice heat storage operation.

【0018】また、本発明の他の蓄冷システムは、容量
可変形圧縮機、第1の凝縮器、減圧器、第1の蒸発器を
順次接続して一次側回路の冷凍サイクルを構成し、冷媒
ポンプ、蓄冷熱交換器、第2の凝縮器を順次接続して二
次側回路の冷凍サイクルを構成し、前記冷媒ポンプと前
記蓄冷熱交換器の間と、前記蓄冷熱交換器と前記第2の
凝縮器の間とをバイパスする第1のバイパス回路を設
け、その第1のバイパス回路上に第1の流路切り換え手
段、第2の蒸発器、第2の流路切り換え手段を順次設
け、前記冷媒ポンプ側の前記第1のバイパス回路の分岐
点と前記蓄冷熱交換器との間と、前記冷媒ポンプと前記
第1の凝縮器との間とをバイパスする第2のバイパス回
路を設け、その第2のバイパス回路上に第3の流路切り
換え手段を設け、前記冷媒ポンプ側の前記第1のバイパ
ス回路の分岐点と、前記蓄冷熱交換器側の前記第2のバ
イパス回路の分岐点との間に第4の流路切り換え手段を
設け、前記第2の凝縮器側の前記第1のバイパス回路の
分岐点と前記第2の凝縮器との間に第5の流路切り換え
手段を設け、前記冷媒ポンプ、前記第4の流路切り換え
手段、前記蓄冷熱交換器、前記第5の流路切り換え手
段、前記第2の凝縮器の順に二次側冷媒を流す氷蓄冷運
転と、前記冷媒ポンプ、前記第1の流路切り換え手段、
前記第2の蒸発器、前記第2の流路切り換え手段、前記
蓄冷熱交換器、前記第3の流路切り換え手段の順に二次
側冷媒を流す氷蓄冷利用運転とを、前記第1から第5の
流路切り換え手段により切り換え制御し、一次側の前記
第1の蒸発器と二次側の前記第2の凝縮器を熱交換的に
接触させ、前記第3の流路切り換え手段と前記第2の凝
縮器側の前記第2のバイパス回路の分岐点との間に第6
の流路切り換え手段とレシーバを設け、前記第2のバイ
パス回路と前記レシーバの間に第7の流路切り換え手段
を設け、氷蓄熱運転か氷蓄熱利用冷房運転かを検出する
運転モード検出手段を設け、前記レシーバ上部温度を検
出するレシーバ上部温度検出手段と前記レシーバ上部の
飽和温度を検出する飽和温度検出手段とを設け、前記レ
シーバ上部温度検出手段と前記飽和温度検出手段とから
前記レシーバ上部温度と前記飽和温度との差温を算出す
る差温算出手段を設け、前記運転モード検出手段により
検出された運転モードが氷蓄熱運転の場合には、一次側
回路の運転と二次側回路の氷蓄熱利用運転冷凍サイクル
で運転し、前記差温算出手段により算出された差温に応
じて、前記第6および第7の流路切り換え手段を切り換
え制御し、氷蓄熱運転を行うものである。
Further, in another cold storage system of the present invention, a variable capacity compressor, a first condenser, a pressure reducer, and a first evaporator are sequentially connected to constitute a refrigeration cycle of a primary side circuit, and a refrigerant is used. A pump, a cold storage heat exchanger, and a second condenser are sequentially connected to form a refrigeration cycle of a secondary side circuit, between the refrigerant pump and the cold storage heat exchanger, and between the cold storage heat exchanger and the second A first bypass circuit for bypassing between the condensers, and a first flow path switching means, a second evaporator, and a second flow path switching means are sequentially provided on the first bypass circuit, A second bypass circuit that bypasses between the branch point of the first bypass circuit on the refrigerant pump side and the cold storage heat exchanger and between the refrigerant pump and the first condenser is provided, A third flow path switching means is provided on the second bypass circuit, and A fourth flow path switching means is provided between a branch point of the first bypass circuit on the medium pump side and a branch point of the second bypass circuit on the cold storage heat exchanger side, and the second condensing unit is provided. A fifth flow path switching means is provided between a branch point of the first bypass circuit on the side of the container and the second condenser, and the refrigerant pump, the fourth flow path switching means, and the cold storage heat exchange are provided. Ice storage operation in which a secondary side refrigerant is caused to flow in the order of a container, the fifth flow path switching means, and the second condenser, the refrigerant pump, and the first flow path switching means,
The second cold evaporator, the second flow path switching means, the cold storage heat exchanger, and the third flow path switching means, in order, the ice cold storage utilization operation in which the secondary-side refrigerant flows Switching control is performed by the flow path switching means of No. 5, and the first evaporator on the primary side and the second condenser on the secondary side are brought into heat exchange contact with each other, and the third flow path switching means and the third flow path switching means are connected. 6th between the branch point of the second bypass circuit on the condenser side of 2nd
The flow path switching means and the receiver are provided, and the seventh flow path switching means is provided between the second bypass circuit and the receiver, and the operation mode detection means for detecting the ice heat storage operation or the ice heat storage utilizing cooling operation is provided. A receiver upper temperature detecting means for detecting the receiver upper temperature and a saturation temperature detecting means for detecting a saturated temperature of the receiver are provided, and the receiver upper temperature detecting means and the receiver upper temperature are provided. Temperature difference calculating means for calculating a temperature difference between the saturation temperature and the saturation temperature, when the operation mode detected by the operation mode detecting means is ice heat storage operation, the operation of the primary circuit and the ice of the secondary circuit Operation in a heat storage utilization refrigeration cycle, and switching control of the sixth and seventh flow path switching means is carried out in accordance with the temperature difference calculated by the temperature difference calculation means, thereby storing ice heat. And performs rolling.

【0019】また、本発明の他の蓄冷システムは、容量
可変形圧縮機、第1の凝縮器、減圧器、第1の蒸発器を
順次接続して一次側回路の冷凍サイクルを構成し、冷媒
ポンプ、蓄冷熱交換器、第2の凝縮器を順次接続して二
次側回路の冷凍サイクルを構成し、前記冷媒ポンプと前
記蓄冷熱交換器の間と、前記蓄冷熱交換器と前記第2の
凝縮器の間とをバイパスする第1のバイパス回路を設
け、その第1のバイパス回路上に第1の流路切り換え手
段、第2の蒸発器、第2の流路切り換え手段を順次設
け、前記冷媒ポンプ側の前記第1のバイパス回路の分岐
点と前記蓄冷熱交換器との間と、前記冷媒ポンプと前記
第1の凝縮器との間とをバイパスする第2のバイパス回
路を設け、その第2のバイパス回路上に第3の流路切り
換え手段を設け、前記冷媒ポンプ側の前記第1のバイパ
ス回路の分岐点と、前記蓄冷熱交換器側の前記第2のバ
イパス回路の分岐点との間に第4の流路切り換え手段を
設け、前記第2の凝縮器側の前記第1のバイパス回路の
分岐点と前記第2の凝縮器との間に第5の流路切り換え
手段を設け、前記冷媒ポンプ、前記第4の流路切り換え
手段、前記蓄冷熱交換器、前記第5の流路切り換え手
段、前記第2の凝縮器の順に二次側冷媒を流す氷蓄冷運
転と、前記冷媒ポンプ、前記第1の流路切り換え手段、
前記第2の蒸発器、前記第2の流路切り換え手段、前記
蓄冷熱交換器、前記第3の流路切り換え手段の順に二次
側冷媒を流す氷蓄冷利用運転とを、前記第1から第5の
流路切り換え手段により切り換え制御し、一次側の前記
第1の蒸発器と二次側の前記第2の凝縮器を熱交換的に
接触させ、氷蓄熱運転か氷蓄熱利用冷房運転かを検出す
る運転モード検出手段を設け、前記第2の蒸発器の出口
部温度を検出する第2の蒸発器出口部温度検出手段と前
記第2の蒸発器出口部の飽和温度を検出する飽和温度検
出手段とを設け、前記第2の蒸発器出口部温度検出手段
と前記飽和温度検出手段とから前記第2の蒸発器出口部
温度と前記飽和温度との差温を算出する差温算出手段を
設け、前記運転モード検出手段により検出された運転モ
ードが氷蓄熱運転の場合には、まず氷蓄熱利用運転冷凍
サイクルで運転し、前記差温算出手段により算出された
差温に応じて、前記第1および第2の流路切り換え手段
を切り換え制御し、氷蓄熱運転を行うものである。
Further, in another regenerator system of the present invention, a variable capacity compressor, a first condenser, a pressure reducer and a first evaporator are sequentially connected to constitute a refrigeration cycle of a primary side circuit, and a refrigerant is used. A pump, a cold storage heat exchanger, and a second condenser are sequentially connected to form a refrigeration cycle of a secondary side circuit, between the refrigerant pump and the cold storage heat exchanger, and between the cold storage heat exchanger and the second A first bypass circuit for bypassing between the condensers, and a first flow path switching means, a second evaporator, and a second flow path switching means are sequentially provided on the first bypass circuit, A second bypass circuit that bypasses between the branch point of the first bypass circuit on the refrigerant pump side and the cold storage heat exchanger and between the refrigerant pump and the first condenser is provided, A third flow path switching means is provided on the second bypass circuit, and A fourth flow path switching means is provided between a branch point of the first bypass circuit on the medium pump side and a branch point of the second bypass circuit on the cold storage heat exchanger side, and the second condensing unit is provided. A fifth flow path switching means is provided between a branch point of the first bypass circuit on the side of the container and the second condenser, and the refrigerant pump, the fourth flow path switching means, and the cold storage heat exchange are provided. Ice storage operation in which a secondary side refrigerant is caused to flow in the order of a container, the fifth flow path switching means, and the second condenser, the refrigerant pump, and the first flow path switching means,
The second cold evaporator, the second flow path switching means, the cold storage heat exchanger, and the third flow path switching means, in order, the ice cold storage utilization operation in which the secondary-side refrigerant flows Switching control is performed by the flow path switching means of 5, and the first evaporator on the primary side and the second condenser on the secondary side are brought into contact with each other in a heat exchange manner to determine whether the ice heat storage operation or the ice heat storage utilization cooling operation is performed. A second evaporator outlet temperature detecting means for detecting an outlet temperature of the second evaporator and a saturation temperature detecting for detecting a saturation temperature of the second evaporator outlet are provided with an operation mode detecting means for detecting. And means for calculating the temperature difference between the second evaporator outlet temperature and the saturation temperature from the second evaporator outlet temperature detecting means and the saturation temperature detecting means. , The operation mode detected by the operation mode detection means is the ice heat storage operation In this case, first, the ice heat storage operation refrigeration cycle is operated, and the first and second flow path switching means are switched and controlled in accordance with the temperature difference calculated by the temperature difference calculation means to perform the ice heat storage operation. It is something to do.

【0020】[0020]

【作用】本発明は、上記手段により次のような作用を有
する。
The present invention has the following actions due to the above means.

【0021】すなわち、前記第3の流路切り換え手段と
前記第2の凝縮器側の前記第2のバイパス回路の分岐点
との間に第6の流路切り換え手段とレシーバを設け、前
記第2のバイパス回路と前記レシーバの間に第7の流路
切り換え手段を設け、氷蓄熱運転か氷蓄熱利用冷房運転
かを検出する運転モード検出手段を設け、前記レシーバ
上部温度を検出するレシーバ上部温度検出手段と前記レ
シーバ上部の飽和温度を検出する飽和温度検出手段とを
設け、前記レシーバ上部温度検出手段と前記飽和温度検
出手段とから前記レシーバ上部温度と前記飽和温度との
差温を算出する差温算出手段を設け、前記運転モード検
出手段により検出された運転モードが氷蓄熱運転の場合
には、まず氷蓄熱利用運転冷凍サイクルで運転し、前記
差温算出手段により算出された差温に応じて、前記第6
および第7の流路切り換え手段を切り換え制御し、氷蓄
熱運転を行うことにより、蓄冷運転時と放冷運転時に最
も効率のよい運転が可能となり、省エネルギーを図るこ
とができる。
That is, a sixth flow path switching means and a receiver are provided between the third flow path switching means and the branch point of the second bypass circuit on the second condenser side, and the second flow path switching means and the receiver are provided. A seventh flow path switching means is provided between the bypass circuit of the receiver and the receiver, operation mode detection means for detecting an ice heat storage operation or an ice heat storage utilization cooling operation is provided, and a receiver top temperature detection for detecting the receiver top temperature. Means and a saturation temperature detecting means for detecting a saturation temperature of the receiver upper part, and a differential temperature for calculating a temperature difference between the receiver upper temperature and the saturation temperature from the receiver upper temperature detecting means and the saturation temperature detecting means. When the operation mode detected by the operation mode detection means is an ice heat storage operation, first, an ice heat storage utilization operation refrigeration cycle is operated, and the temperature difference calculation means is provided. According to the calculated differential temperature, the sixth
By performing switching control of the seventh flow path switching means and performing the ice heat storage operation, the most efficient operation can be performed during the cold storage operation and the cold discharge operation, and energy can be saved.

【0022】また、前記第3の流路切り換え手段と前記
第2の凝縮器側の前記第2のバイパス回路の分岐点との
間に第6の流路切り換え手段とレシーバを設け、前記第
2のバイパス回路と前記レシーバの間に第7の流路切り
換え手段を設け、氷蓄熱運転か氷蓄熱利用冷房運転かを
検出する運転モード検出手段を設け、前記レシーバ上部
温度を検出するレシーバ上部温度検出手段と前記レシー
バ上部の飽和温度を検出する飽和温度検出手段とを設
け、前記レシーバ上部温度検出手段と前記飽和温度検出
手段とから前記レシーバ上部温度と前記飽和温度との差
温を算出する差温算出手段を設け、前記運転モード検出
手段により検出された運転モードが氷蓄熱運転の場合に
は、一次側回路の運転と二次側回路の氷蓄熱利用運転冷
凍サイクルで運転し、前記差温算出手段により算出され
た差温に応じて、前記第6および第7の流路切り換え手
段を切り換え制御し、氷蓄熱運転を行うことにより、蓄
冷運転時と放冷運転時に最も効率のよい運転が可能とな
り、省エネルギーを図ることができる。
Further, a sixth flow path switching means and a receiver are provided between the third flow path switching means and a branch point of the second bypass circuit on the second condenser side, and the second flow path switching means and the receiver are provided. A seventh flow path switching means is provided between the bypass circuit of the receiver and the receiver, operation mode detection means for detecting an ice heat storage operation or an ice heat storage utilization cooling operation is provided, and a receiver top temperature detection for detecting the receiver top temperature. Means and a saturation temperature detecting means for detecting a saturation temperature of the receiver upper part, and a differential temperature for calculating a temperature difference between the receiver upper temperature and the saturation temperature from the receiver upper temperature detecting means and the saturation temperature detecting means. When the operation mode detected by the operation mode detecting means is an ice heat storage operation, the operation of the primary side circuit and the operation of the secondary side circuit using the ice heat storage refrigeration cycle are performed. In accordance with the temperature difference calculated by the temperature difference calculating means, the sixth and seventh flow path switching means are switched and controlled, and the ice heat storage operation is performed. Good driving is possible and energy saving can be achieved.

【0023】また、氷蓄熱運転か氷蓄熱利用冷房運転か
を検出する運転モード検出手段を設け、前記第2の蒸発
器の出口部温度を検出する第2の蒸発器出口部温度検出
手段と前記第2の蒸発器出口部の飽和温度を検出する飽
和温度検出手段とを設け、前記第2の蒸発器出口部温度
検出手段と前記飽和温度検出手段とから前記第2の蒸発
器出口部温度と前記飽和温度との差温を算出する差温算
出手段を設け、前記運転モード検出手段により検出され
た運転モードが氷蓄熱運転の場合には、まず氷蓄熱利用
運転冷凍サイクルで運転し、前記差温算出手段により算
出された差温に応じて、前記第1および第2の流路切り
換え手段を切り換え制御し、氷蓄熱運転を行うことによ
り、蓄冷運転時と放冷運転時に最も効率のよい運転が可
能となり、省エネルギーを図ることができる。
Further, there is provided operation mode detection means for detecting the ice heat storage operation or the ice heat utilization cooling operation, and the second evaporator outlet temperature detection means for detecting the outlet temperature of the second evaporator and the above Saturation temperature detecting means for detecting the saturation temperature of the second evaporator outlet portion is provided, and the second evaporator outlet portion temperature is calculated from the second evaporator outlet portion temperature detecting means and the saturation temperature detecting means. A temperature difference calculating means for calculating a temperature difference from the saturation temperature is provided, and when the operation mode detected by the operation mode detecting means is an ice heat storage operation, first, an ice heat storage utilization operation refrigeration cycle is operated, and the difference According to the temperature difference calculated by the temperature calculation means, the first and second flow path switching means are switched and controlled, and the ice heat storage operation is performed, so that the most efficient operation is performed during the cold storage operation and the cold discharge operation. Energy saving It is possible to achieve the ghee.

【0024】[0024]

【実施例】以下、本発明の実施例について、図面を参考
に説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0025】図1は、本発明の冷媒量制御機能付き蓄冷
システムの第1の実施例における冷凍サイクル図であ
る。
FIG. 1 is a refrigeration cycle diagram in a first embodiment of a cold storage system with a refrigerant amount control function of the present invention.

【0026】同図において、この蓄冷システムは、一次
側冷媒が循環する一次側回路と、二次側冷媒が循環する
二次側回路とから成っている。
In the figure, this cold storage system comprises a primary side circuit in which the primary side refrigerant circulates and a secondary side circuit in which the secondary side refrigerant circulates.

【0027】一次側回路は、インバータ駆動の周波数可
変形圧縮機1(以下単に圧縮機と称す)、第1の凝縮器
2、ステッピングモータを用いて弁開度をパルス制御可
能とした電動膨張弁3、第1の蒸発器4を順次接続して
冷凍サイクルを構成している。
The primary side circuit is an electric expansion valve in which the valve opening degree can be pulse-controlled using an inverter-driven variable frequency compressor 1 (hereinafter simply referred to as compressor), a first condenser 2, and a stepping motor. 3 and the first evaporator 4 are sequentially connected to form a refrigeration cycle.

【0028】二次側回路には、二次側液冷媒を送出する
冷媒ポンプ5、蓄冷タンク6内に設置され、同じく蓄冷
タンク6内の水から吸熱して氷をその表面に生成させる
蓄冷熱交換器7、氷蓄熱を行う蓄冷運転時にのみ使用さ
れる第2の凝縮器8、その作られた氷から冷熱を取り出
して冷房運転を行う放冷運転時にのみ使用される第2の
蒸発器9、運転モードにより開閉する電磁弁10a、1
0b、10c、10d、放冷運転時に蓄冷熱交換器7の
出口と冷媒ポンプ入口をつなぐバイパス回路11、およ
びそのバイパス回路に放冷時のみ開となる電磁弁10e
が設けられている。さらに本発明では、冷媒ポンプ5の
手前に冷媒液を貯溜可能なレシーバ12、飽和温度を検
出する飽和温度センサー13、レシーバ上部の温度を検
出するレシーバ上部温度センサー14、液冷媒をレシー
バ12内に送り込むために回路を切り換える電磁弁10
f、10gが設けられている。
In the secondary side circuit, a refrigerant pump 5 for delivering a secondary side liquid refrigerant and a cold storage tank 6 are installed. Similarly, cold storage heat that absorbs heat from water in the cold storage tank 6 to generate ice on its surface. The exchanger 7, the second condenser 8 used only in the cold storage operation for storing ice heat, and the second evaporator 9 used only in the cooling operation for extracting the cold heat from the produced ice to perform the cooling operation. , Solenoid valves 10a that open and close depending on the operation mode, 1
0b, 10c, 10d, a bypass circuit 11 that connects the outlet of the cold storage heat exchanger 7 and the refrigerant pump inlet during the cooling operation, and a solenoid valve 10e that is opened to the bypass circuit only when the cooling is performed.
Is provided. Further, in the present invention, the receiver 12 capable of storing the refrigerant liquid in front of the refrigerant pump 5, the saturation temperature sensor 13 for detecting the saturation temperature, the receiver upper temperature sensor 14 for detecting the temperature of the receiver upper portion, the liquid refrigerant in the receiver 12 Solenoid valve 10 that switches circuits for delivery
f and 10g are provided.

【0029】一次側の第1の蒸発器と二次側の蓄冷運転
時のみ使用される第2の凝縮器は一体化されて一つの冷
媒−冷媒熱交換器となっており、そこで二次側冷媒から
一次側冷媒へ熱が伝達される。
The first evaporator on the primary side and the second condenser used only during the cold storage operation on the secondary side are integrated into one refrigerant-refrigerant heat exchanger, where the secondary side is provided. Heat is transferred from the refrigerant to the primary side refrigerant.

【0030】氷蓄熱を行う蓄冷運転時は、一次側回路と
二次側回路の両回路が運転される。二次側回路では、蓄
冷タンク6内の水よりも低温の二次側冷媒が冷媒ポンプ
5から送出され、電磁弁10aを通過して蓄冷熱交換器
7に入り、ここで水から吸熱してガス化したのち、電磁
弁10bを通過して第2の凝縮器8に入り、ここで一次
側冷媒に熱を放出し、液化して冷媒ポンプ5に戻るとい
う冷凍サイクルを構成する。そして、水温の低下と共に
二次側冷媒温度も低下していき、零度以下になると蓄冷
熱交換器7の外表面に氷が生成され始め、徐々に成長し
ていく。
During the cold storage operation for storing ice heat, both the primary side circuit and the secondary side circuit are operated. In the secondary side circuit, the secondary side refrigerant having a temperature lower than that of the water in the cold storage tank 6 is delivered from the refrigerant pump 5, passes through the electromagnetic valve 10a and enters the cold storage heat exchanger 7, where it absorbs heat from the water. After being gasified, it passes through the solenoid valve 10b and enters the second condenser 8, where heat is released to the primary side refrigerant, liquefies and returns to the refrigerant pump 5, thereby forming a refrigeration cycle. Then, as the water temperature lowers, the secondary side refrigerant temperature also lowers, and when the temperature becomes lower than zero, ice begins to be generated on the outer surface of the cold storage heat exchanger 7 and gradually grows.

【0031】作られた氷から冷熱を取り出して冷房運転
を行う放冷運転時は、一次側回路を運転せずに二次側回
路のみ運転する。二次側回路では、冷媒ポンプ5から送
出された二次側液冷媒は、電磁弁10cを通過して第2
の蒸発器9に入り、ここで空気から熱を奪う冷房運転を
行ってガス化したのち、電磁弁10dを通過し、蓄冷運
転時とは逆方向から蓄冷熱交換器7に入り、ここで氷お
よび水に熱を放出して液化し、バイパス回路11、電磁
弁10eを通過して冷媒ポンプ5に戻るという冷凍サイ
クルを構成する。
During the cooling operation in which cold heat is taken out from the produced ice to perform the cooling operation, only the secondary side circuit is operated without operating the primary side circuit. In the secondary side circuit, the secondary side liquid refrigerant sent out from the refrigerant pump 5 passes through the solenoid valve 10c to the second side.
After passing through the solenoid valve 10d and entering the cold storage heat exchanger 7 from the opposite direction to the cold storage operation, the cooling operation is performed to remove the heat from the air and gasify it. Also, a refrigeration cycle is formed in which heat is released to water and liquefied, passes through the bypass circuit 11 and the electromagnetic valve 10e, and returns to the refrigerant pump 5.

【0032】そこで、蓄冷運転のための準備運転時の電
磁弁の制御方法について説明する。図3は蓄冷運転のた
めの準備運転のフローチャート、図4は電磁弁の開閉制
御の流れを示すブロック図である。
Therefore, a method of controlling the solenoid valve during the preparatory operation for the cold storage operation will be described. FIG. 3 is a flowchart of a preparatory operation for the cold storage operation, and FIG. 4 is a block diagram showing a flow of opening / closing control of the solenoid valve.

【0033】まず、蓄冷運転の信号が送られると、蓄冷
準備運転の信号が送られる。この時、電磁弁は下記(表
2)に示すように制御される。
First, when the signal for the cold storage operation is sent, the signal for the cold storage preparation operation is sent. At this time, the solenoid valve is controlled as shown below (Table 2).

【0034】[0034]

【表2】 [Table 2]

【0035】次に、この状態で冷媒ポンプを稼働して放
冷運転を行い、蓄冷熱交換器7で二次側冷媒が液化さ
れ、その液冷媒がレシーバ12にため込まれる。そし
て、飽和温度センサー13の出力を飽和温度検出回路1
5より温度信号として差温演算回路17に送出し、レシ
ーバ12上部に設けられたレシーバ上部温度センサー1
4の出力を温度検出回路16より温度信号として差温演
算回路17に送出し、ここで差温(=飽和温度−レシー
バ上部温度)を算出して、運転モード判別回路19から
の運転モードと併せて電磁弁設定判別回路18に送っ
て、下記(表3)により電磁弁10f、10gに指令を
送り、制御する。
Next, in this state, the refrigerant pump is operated to perform the cooling operation, the secondary side refrigerant is liquefied in the cold storage heat exchanger 7, and the liquid refrigerant is stored in the receiver 12. Then, the output of the saturation temperature sensor 13 is used as the saturation temperature detection circuit 1
5 is sent to the differential temperature calculation circuit 17 as a temperature signal, and the receiver upper temperature sensor 1 provided above the receiver 12
The output of No. 4 is sent from the temperature detection circuit 16 as a temperature signal to the temperature difference calculation circuit 17, where the temperature difference (= saturation temperature-receiver upper temperature) is calculated and combined with the operation mode from the operation mode determination circuit 19. And sends it to the solenoid valve setting discriminating circuit 18 to send commands to the solenoid valves 10f and 10g according to the following (Table 3) to control.

【0036】[0036]

【表3】 [Table 3]

【0037】△T<0となったところでレシーバ内に二
次側液冷媒が封じ込められるので、二次側回路内の冷媒
量は蓄冷運転に最も適した冷媒量となっており、このあ
と蓄冷運転を行うことができる。
When ΔT <0, the secondary side liquid refrigerant is confined in the receiver, so that the refrigerant amount in the secondary side circuit is the most suitable refrigerant amount for the cold storage operation. It can be performed.

【0038】次に、放冷運転の信号が送られると、放冷
準備運転の信号が送られ、運転モード判別回路19から
送出された結果に基づき、上記(表3)により電磁弁1
0f、10gに指令を送り、制御する。
Next, when the signal for the cooling operation is sent, the signal for the cooling preparation operation is sent, and based on the result sent from the operation mode discriminating circuit 19, the solenoid valve 1 is set by the above (Table 3).
Controls by sending commands to 0f and 10g.

【0039】次に、この状態で冷媒ポンプを稼働して放
冷運転を行うと、レシーバ12にため込まれた液冷媒が
二次側回路内に戻されて、放冷時最適二次側冷媒量とな
る。
Next, when the refrigerant pump is operated in this state to perform the cooling operation, the liquid refrigerant accumulated in the receiver 12 is returned into the secondary side circuit, and the optimum secondary side refrigerant during cooling is provided. It becomes the amount.

【0040】このように、蓄冷運転に入る前に蓄冷準備
運転として放冷運転を行い、蓄冷熱交換器で凝縮液化し
た二次側冷媒を、最も効率が高い蓄冷運転を可能とする
二次側冷媒量まで冷媒ポンプ手前のレシーバにため込む
ことにより、蓄冷運転時に最も効率のよい運転が可能と
なり、省エネルギーを図ることができる。また、放冷運
転時は、レシーバにため込んだ冷媒を電磁弁の開閉操作
により冷凍サイクル中に戻して循環させることにより、
放冷運転にとって最も効率の高い運転が可能となり、省
エネルギーを図ることができる。
As described above, the cooling operation is performed as the cold storage preparatory operation before the cold storage operation is started, and the secondary side refrigerant condensed and liquefied in the cold storage heat exchanger is cooled to the secondary side with the highest efficiency. By accumulating the amount of refrigerant in the receiver in front of the refrigerant pump, the most efficient operation can be performed during the cold storage operation, and energy can be saved. Also, during the cooling operation, the refrigerant accumulated in the receiver is returned to the refrigeration cycle by the opening / closing operation of the solenoid valve to circulate,
The most efficient cooling operation is possible, and energy can be saved.

【0041】次に、本発明の第2の実施例について、図
面を参照しながら説明する。なお、第2の実施例におけ
る冷凍サイクル図と蓄冷準備運転時の電磁弁の開閉制御
の流れを示すブロック図は、それぞれ図1と図4に示す
第1の実施例の場合と同一であるので説明を省略する。
Next, a second embodiment of the present invention will be described with reference to the drawings. The refrigeration cycle diagram in the second embodiment and the block diagram showing the flow of the opening / closing control of the solenoid valve during the cold storage preparation operation are the same as those in the first embodiment shown in FIGS. 1 and 4, respectively. The description is omitted.

【0042】第2の実施例が第1の実施例と異なる点
は、蓄冷運転のための蓄冷準備運転のフローチャートで
ある。この時のフローチャートを図5に示す。
The second embodiment differs from the first embodiment in the flow chart of the cold storage preparation operation for the cold storage operation. A flowchart at this time is shown in FIG.

【0043】すなわち、第1の実施例では、蓄冷準備運
転として二次側回路の放冷運転だけで液冷媒をレシーバ
12にため込んでいたのに対し、第2の実施例では、放
冷運転だけでなく、一次側回路も運転して、冷媒ポンプ
に液冷媒を供給しながら放冷運転によりレシーバに液冷
媒をため込むものである。
That is, in the first embodiment, the liquid refrigerant is stored in the receiver 12 only by the cooling operation of the secondary side circuit as the cold storage preparation operation, whereas in the second embodiment only the cooling operation is performed. Not only that, the primary side circuit is also operated, and the liquid refrigerant is stored in the receiver by the cooling operation while supplying the liquid refrigerant to the refrigerant pump.

【0044】このように、蓄冷運転のための蓄冷準備運
転として二次側回路の放冷運転だけでなく、一次側回路
も併せて運転することにより、冷媒ポンプ入口には充分
な液冷媒が供給でき、蓄冷運転にとって余剰の冷媒をレ
シーバにため込んで、蓄冷運転時に最も効率のよい運転
が可能となり、省エネルギーを図ることができる。ま
た、放冷運転時は、レシーバにため込んだ冷媒を電磁弁
の開閉操作により冷凍サイクル中に戻して循環させるこ
とにより、放冷運転でも最も高い効率での運転が可能と
なり、省エネルギーを図ることができる。
As described above, as the cold storage preparatory operation for the cold storage operation, not only the cooling operation of the secondary side circuit but also the primary side circuit is operated, so that sufficient liquid refrigerant is supplied to the refrigerant pump inlet. Therefore, it is possible to store the excess refrigerant for the cold storage operation in the receiver, and to perform the most efficient operation during the cold storage operation, and to save energy. Also, during the cooling operation, the refrigerant accumulated in the receiver is returned to the refrigeration cycle by the opening / closing operation of the solenoid valve and circulated, so that the cooling operation can be operated with the highest efficiency, and energy saving can be achieved. it can.

【0045】次に、本発明の第3の実施例について説明
する。図6は本発明の冷媒量制御機能付き蓄冷システム
の第3の実施例における冷凍サイクル図である。この冷
凍サイクルが上記第1および第2の実施例の場合と異な
る点は、冷媒液を貯溜可能なレシーバ12、飽和温度を
検出する飽和温度センサー13、レシーバ上部の温度を
検出するレシーバ上部温度センサー14、液冷媒をレシ
ーバ12内に送り込むために回路を切り換える電磁弁1
0f、10gがなく、その代わりに飽和温度を検出する
飽和温度センサー20、第2の蒸発器出口部の温度を検
出する第2の蒸発器出口部温度センサー21が設けられ
ている点である。また、図7は本実施例における蓄冷運
転のための蓄冷準備運転のフローチャート、図8は本実
施例における電磁弁の開閉制御の流れを示すブロック図
である。
Next, a third embodiment of the present invention will be described. FIG. 6 is a refrigeration cycle diagram in the third embodiment of the cold storage system with the refrigerant amount control function of the present invention. This refrigeration cycle is different from the first and second embodiments in that the receiver 12 capable of storing the refrigerant liquid, the saturation temperature sensor 13 for detecting the saturation temperature, and the receiver upper temperature sensor for detecting the temperature of the receiver upper part 14. Solenoid valve 1 that switches the circuit to send the liquid refrigerant into the receiver 12.
0 f and 10 g are not provided, but instead, a saturation temperature sensor 20 for detecting the saturation temperature and a second evaporator outlet temperature sensor 21 for detecting the temperature of the second evaporator outlet are provided. Further, FIG. 7 is a flowchart of the cold storage preparatory operation for the cold storage operation in this embodiment, and FIG. 8 is a block diagram showing the flow of opening / closing control of the solenoid valve in this embodiment.

【0046】第3の実施例が第1および第2の実施例と
異なる点は、蓄冷運転前に液冷媒をため込む場所とその
蓄冷準備運転方法である。
The third embodiment differs from the first and second embodiments in the place for storing the liquid refrigerant before the cold storage operation and the cold storage preparatory operation method.

【0047】すなわち、第1および第2の実施例では、
液冷媒を冷媒ポンプ手前のレシーバ12にため込んでい
たのに対し、第3の実施例では、放冷運転の際の第2の
蒸発器内に液冷媒をため込むものである。
That is, in the first and second embodiments,
While the liquid refrigerant was stored in the receiver 12 in front of the refrigerant pump, in the third embodiment, the liquid refrigerant is stored in the second evaporator during the cooling operation.

【0048】まず、蓄冷運転の信号が送られると、蓄冷
準備運転の信号が送られる。この時、電磁弁は下記(表
4)に示すように制御される。
First, when the signal for the cold storage operation is sent, the signal for the cold storage preparation operation is sent. At this time, the solenoid valve is controlled as shown in the following (Table 4).

【0049】[0049]

【表4】 [Table 4]

【0050】次に、この状態で一次側回路を運転し、第
2の凝縮器8の温度を二次側冷媒のその時の圧力に対す
る飽和温度以下にして二次側冷媒を凝縮液化させ、冷媒
ポンプ5に液冷媒を供給しながら冷媒ポンプ5を稼働し
て放冷運転を行うことにより、放冷運転時の第2の蒸発
器9に二次側液冷媒をため込む。そして、飽和温度セン
サー20の出力を飽和温度検出回路22より温度信号と
して差温演算回路17に送出し、第2の蒸発器9出口部
に設けられた温度センサー21の出力を第2の蒸発器出
口部温度検出回路23より温度信号として差温演算回路
17に送出し、ここで差温(=飽和温度−第2の蒸発器
出口部温度)を算出して、運転モード判別回路19から
の運転モードと併せて電磁弁設定判別回路18に送っ
て、下記(表5)より判別し、電磁弁10c、10dに
指令を送り、制御する。
Next, in this state, the primary side circuit is operated to bring the temperature of the second condenser 8 to the saturation temperature or less with respect to the pressure of the secondary side refrigerant at that time to condense and liquefy the secondary side refrigerant, and the refrigerant pump By supplying the liquid refrigerant to 5 and operating the refrigerant pump 5 to perform the cooling operation, the secondary-side liquid refrigerant is accumulated in the second evaporator 9 during the cooling operation. Then, the output of the saturation temperature sensor 20 is sent from the saturation temperature detection circuit 22 as a temperature signal to the differential temperature calculation circuit 17, and the output of the temperature sensor 21 provided at the outlet of the second evaporator 9 is used as the second evaporator. A temperature signal is sent from the outlet temperature detection circuit 23 to the temperature difference calculation circuit 17, where the temperature difference (= saturation temperature-second evaporator outlet temperature) is calculated and the operation from the operation mode determination circuit 19 is performed. It is sent to the solenoid valve setting discriminating circuit 18 together with the mode and discriminated from the following (Table 5), and a command is sent to the solenoid valves 10c and 10d for control.

【0051】[0051]

【表5】 [Table 5]

【0052】△T<0となったところで第2の蒸発器内
に二次側液冷媒が封じ込められるので、二次側回路内の
冷媒量は蓄冷運転に最も適した冷媒量となっており、こ
のあと蓄冷運転を行うことができる。
When ΔT <0, the secondary side liquid refrigerant is contained in the second evaporator, so that the refrigerant amount in the secondary side circuit is the most suitable refrigerant amount for the cold storage operation. After this, the cold storage operation can be performed.

【0053】次に、放冷運転の信号が送られると、運転
モード判別回路19から送出された結果に基づき、上記
(表5)により電磁弁に指令を送り、制御する。この状
態で冷媒ポンプを稼働して放冷運転を行うと、第2の蒸
発器にため込まれた液冷媒が二次側回路内に循環し、放
冷時最適二次側冷媒量となる。
Next, when the cooling operation signal is sent, based on the result sent from the operation mode discriminating circuit 19, a command is sent to the solenoid valve by the above (Table 5) to control. When the refrigerant pump is operated in this state to perform the cooling operation, the liquid refrigerant accumulated in the second evaporator circulates in the secondary side circuit, and becomes the optimum secondary side refrigerant amount during cooling.

【0054】このように、蓄冷運転に入る前に蓄冷準備
運転として一次側回路を運転し、第2の凝縮器の温度を
二次側冷媒のその時の圧力に対する飽和温度以下にして
二次側冷媒を凝縮液化させ、冷媒ポンプに液冷媒を供給
しながら冷媒ポンプを稼働して放冷運転を行うことによ
り、最も効率が高い蓄冷運転を可能とする二次側冷媒量
まで第2の蒸発器内にため込んで、蓄冷運転時に最も効
率のよい運転が可能となり、省エネルギーを図ることが
できる。また、放冷運転時は、第2の蒸発器にため込ん
だ冷媒を電磁弁の開操作により冷凍サイクル中に戻して
循環させることにより、放冷運転にとって最も効率の高
い運転が可能となり、省エネルギーを図ることができ
る。
As described above, before the cold storage operation is started, the primary side circuit is operated as the cold storage preparation operation, and the temperature of the second condenser is made equal to or lower than the saturation temperature with respect to the pressure of the secondary side refrigerant at that time. Inside the second evaporator up to the amount of the secondary side refrigerant that enables the most efficient cold storage operation by condensing and liquefying the refrigerant and operating the refrigerant pump while supplying the liquid refrigerant to the refrigerant pump to perform the cooling operation. Therefore, the most efficient operation can be performed during the cold storage operation, and energy can be saved. Further, during the cooling operation, the refrigerant accumulated in the second evaporator is returned to the refrigeration cycle by the opening operation of the electromagnetic valve and circulated, whereby the operation with the highest efficiency for the cooling operation can be performed and energy saving can be achieved. Can be planned.

【0055】[0055]

【発明の効果】上記実施例より明らかなように本発明の
蓄冷システムは、前記第3の流路切り換え手段と前記第
2の凝縮器側の前記第2のバイパス回路の分岐点との間
に第6の流路切り換え手段とレシーバを設け、前記第2
のバイパス回路と前記レシーバの間に第7の流路切り換
え手段を設け、氷蓄熱運転か氷蓄熱利用冷房運転かを検
出する運転モード検出手段を設け、前記レシーバ上部温
度を検出するレシーバ上部温度検出手段と前記レシーバ
上部の飽和温度を検出する飽和温度検出手段とを設け、
前記レシーバ上部温度検出手段と前記飽和温度検出手段
とから前記レシーバ上部温度と前記飽和温度との差温を
算出する差温算出手段を設け、前記運転モード検出手段
により検出された運転モードが氷蓄熱運転の場合には、
まず氷蓄熱利用運転冷凍サイクルで運転し、前記差温算
出手段により算出された差温に応じて、前記第6および
第7の流路切り換え手段を切り換え制御し、氷蓄熱運転
を行うことにより、蓄冷運転時と放冷運転時に最も効率
のよい運転が可能となり、省エネルギーを図ることがで
きる。
As is apparent from the above-described embodiment, the cold storage system of the present invention is provided between the third flow path switching means and the branch point of the second bypass circuit on the second condenser side. A sixth flow path switching means and a receiver are provided, and the second
A seventh flow path switching means is provided between the bypass circuit of the receiver and the receiver, operation mode detection means for detecting an ice heat storage operation or an ice heat storage utilization cooling operation is provided, and a receiver top temperature detection for detecting the receiver top temperature. Means and a saturation temperature detecting means for detecting the saturation temperature of the receiver upper part,
Provided is a temperature difference calculating means for calculating the temperature difference between the receiver upper temperature and the saturation temperature from the receiver upper temperature detecting means and the saturation temperature detecting means, and the operation mode detected by the operation mode detecting means is ice heat storage. In the case of driving,
First, by operating in an ice heat storage operation refrigeration cycle, switching control of the sixth and seventh flow path switching means is performed according to the temperature difference calculated by the temperature difference calculation means, and by performing ice heat storage operation, The most efficient operation can be performed during the cold storage operation and the cold discharge operation, and energy can be saved.

【0056】また、前記第3の流路切り換え手段と前記
第2の凝縮器側の前記第2のバイパス回路の分岐点との
間に第6の流路切り換え手段とレシーバを設け、前記第
2のバイパス回路と前記レシーバの間に第7の流路切り
換え手段を設け、氷蓄熱運転か氷蓄熱利用冷房運転かを
検出する運転モード検出手段を設け、前記レシーバ上部
温度を検出するレシーバ上部温度検出手段と前記レシー
バ上部の飽和温度を検出する飽和温度検出手段とを設
け、前記レシーバ上部温度検出手段と前記飽和温度検出
手段とから前記レシーバ上部温度と前記飽和温度との差
温を算出する差温算出手段を設け、前記運転モード検出
手段により検出された運転モードが氷蓄熱運転の場合に
は、一次側回路の運転と二次側回路の氷蓄熱利用運転冷
凍サイクルで運転し、前記差温算出手段により算出され
た差温に応じて、前記第6および第7の流路切り換え手
段を切り換え制御し、氷蓄熱運転を行うことにより、蓄
冷運転時と放冷運転時に最も効率のよい運転が可能とな
り、省エネルギーを図ることができる。
Further, a sixth flow path switching means and a receiver are provided between the third flow path switching means and the branch point of the second bypass circuit on the side of the second condenser, and the sixth flow path switching means and the receiver are provided. A seventh flow path switching means is provided between the bypass circuit of the receiver and the receiver, operation mode detection means for detecting an ice heat storage operation or an ice heat storage utilization cooling operation is provided, and a receiver top temperature detection for detecting the receiver top temperature. Means and a saturation temperature detecting means for detecting a saturation temperature of the receiver upper part, and a differential temperature for calculating a temperature difference between the receiver upper temperature and the saturation temperature from the receiver upper temperature detecting means and the saturation temperature detecting means. When the operation mode detected by the operation mode detecting means is an ice heat storage operation, the operation of the primary side circuit and the operation of the secondary side circuit using the ice heat storage refrigeration cycle are performed. In accordance with the temperature difference calculated by the temperature difference calculating means, the sixth and seventh flow path switching means are switched and controlled, and the ice heat storage operation is performed. Good driving is possible and energy saving can be achieved.

【0057】また、氷蓄熱運転か氷蓄熱利用冷房運転か
を検出する運転モード検出手段を設け、前記第2の蒸発
器の出口部温度を検出する第2の蒸発器出口部温度検出
手段と前記第2の蒸発器出口部の飽和温度を検出する飽
和温度検出手段とを設け、前記第2の蒸発器出口部温度
検出手段と前記飽和温度検出手段とから前記第2の蒸発
器出口部温度と前記飽和温度との差温を算出する差温算
出手段を設け、前記運転モード検出手段により検出され
た運転モードが氷蓄熱運転の場合には、まず氷蓄熱利用
運転冷凍サイクルで運転し、前記差温算出手段により算
出された差温に応じて、前記第1および第2の流路切り
換え手段を切り換え制御し、氷蓄熱運転を行うことによ
り、蓄冷運転時と放冷運転時に最も効率のよい運転が可
能となり、省エネルギーを図ることができる。
Further, there is provided operation mode detection means for detecting the ice heat storage operation or the ice heat storage utilization cooling operation, and the second evaporator outlet temperature detection means for detecting the outlet temperature of the second evaporator and the above Saturation temperature detecting means for detecting the saturation temperature of the second evaporator outlet portion is provided, and the second evaporator outlet portion temperature is calculated from the second evaporator outlet portion temperature detecting means and the saturation temperature detecting means. A temperature difference calculating means for calculating a temperature difference from the saturation temperature is provided, and when the operation mode detected by the operation mode detecting means is an ice heat storage operation, first, an ice heat storage utilization operation refrigeration cycle is operated, and the difference According to the temperature difference calculated by the temperature calculation means, the first and second flow path switching means are switched and controlled, and the ice heat storage operation is performed, so that the most efficient operation is performed during the cold storage operation and the cold discharge operation. Energy saving It is possible to achieve the ghee.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の蓄冷システムの第1の実施例における
冷凍サイクル図
FIG. 1 is a refrigeration cycle diagram in a first embodiment of a cold storage system of the present invention.

【図2】二次側冷媒量を変化させた時の蓄冷運転でのシ
ステム効率(=蓄冷能力/圧縮機入力)を示す説明図
FIG. 2 is an explanatory diagram showing system efficiency (= cold storage capacity / compressor input) in a cold storage operation when the amount of secondary side refrigerant is changed.

【図3】本発明の蓄冷システムの第1の実施例における
蓄冷運転のための準備運転のフローチャート
FIG. 3 is a flowchart of a preparatory operation for cold storage operation in the first embodiment of the cold storage system of the present invention.

【図4】同実施例における電磁弁の開閉制御の流れを示
すブロック図
FIG. 4 is a block diagram showing a flow of opening / closing control of a solenoid valve in the embodiment.

【図5】本発明の蓄冷システムの第2の実施例における
蓄冷運転のための蓄冷準備運転のフローチャート
FIG. 5 is a flowchart of a cold storage preparatory operation for the cold storage operation in the second embodiment of the cold storage system of the present invention.

【図6】本発明の蓄冷システムの第3の実施例における
冷凍サイクル図
FIG. 6 is a refrigeration cycle diagram in the third embodiment of the cold storage system of the present invention.

【図7】同実施例における蓄冷運転のための蓄冷準備運
転のフローチャート
FIG. 7 is a flowchart of a cold storage preparatory operation for cold storage operation in the same embodiment.

【図8】同実施例における電磁弁の開閉制御の流れを示
すブロック図
FIG. 8 is a block diagram showing a flow of opening / closing control of a solenoid valve in the embodiment.

【図9】従来の蓄冷システムの冷凍サイクル図FIG. 9 is a refrigeration cycle diagram of a conventional cold storage system.

【符号の説明】[Explanation of symbols]

1 容量(周波数)可変形圧縮機 2 第1の凝縮器 3 電動膨張弁 4 第1の蒸発器 5 冷媒ポンプ 6 蓄冷タンク 7 蓄冷熱交換器 8 第2の凝縮器 9 第2の蒸発器 10a 電磁弁 10b 電磁弁 10c 電磁弁 10d 電磁弁 10e 電磁弁 10f 電磁弁 10g 電磁弁 11 バイパス回路 12 レシーバ 13 飽和温度センサー 14 レシーバ上部温度センサー 15 飽和温度検出回路 16 レシーバ上部温度検出回路 17 差温演算回路 18 電磁弁設定判別回路 19 運転モード判別回路 20 飽和温度センサー 21 第2の蒸発器出口部温度センサー 22 飽和温度検出回路 23 第2の蒸発器出口部温度検出回路 1 Variable Capacity (Frequency) Compressor 2 First Condenser 3 Electric Expansion Valve 4 First Evaporator 5 Refrigerant Pump 6 Cold Storage Tank 7 Cold Storage Heat Exchanger 8 Second Condenser 9 Second Evaporator 10a Electromagnetic Valve 10b Solenoid valve 10c Solenoid valve 10d Solenoid valve 10e Solenoid valve 10f Solenoid valve 10g Solenoid valve 11 Bypass circuit 12 Receiver 13 Saturation temperature sensor 14 Receiver upper temperature sensor 15 Saturation temperature detection circuit 16 Receiver upper temperature detection circuit 17 Differential temperature calculation circuit 18 Solenoid valve setting discriminating circuit 19 Operation mode discriminating circuit 20 Saturation temperature sensor 21 Second evaporator outlet temperature sensor 22 Saturation temperature detecting circuit 23 Second evaporator outlet temperature detecting circuit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F25B 5/02 510 H F25C 1/08 A (72)発明者 山口 成人 大阪府門真市大字門真1006番地 松下電器 産業株式会社内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location F25B 5/02 510 H F25C 1/08 A (72) Inventor Yamaguchi Adult Kadoma City, Osaka Prefecture 1006 Kadoma Address: Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】容量可変形圧縮機、第1の凝縮器、減圧
器、第1の蒸発器を順次接続して一次側回路の冷凍サイ
クルを構成し、冷媒ポンプ、蓄冷熱交換器、第2の凝縮
器を順次接続して二次側回路の冷凍サイクルを構成し、
前記冷媒ポンプと前記蓄冷熱交換器の間と、前記蓄冷熱
交換器と前記第2の凝縮器の間とをバイパスする第1の
バイパス回路を設け、その第1のバイパス回路上に第1
の流路切り換え手段、第2の蒸発器、第2の流路切り換
え手段を順次設け、前記冷媒ポンプ側の前記第1のバイ
パス回路の分岐点と前記蓄冷熱交換器との間と、前記冷
媒ポンプと前記第1の凝縮器との間とをバイパスする第
2のバイパス回路を設け、その第2のバイパス回路上に
第3の流路切り換え手段を設け、前記冷媒ポンプ側の前
記第1のバイパス回路の分岐点と、前記蓄冷熱交換器側
の前記第2のバイパス回路の分岐点との間に第4の流路
切り換え手段を設け、前記第2の凝縮器側の前記第1の
バイパス回路の分岐点と前記第2の凝縮器との間に第5
の流路切り換え手段を設け、前記冷媒ポンプ、前記第4
の流路切り換え手段、前記蓄冷熱交換器、前記第5の流
路切り換え手段、前記第2の凝縮器の順に二次側冷媒を
流す氷蓄冷運転と、前記冷媒ポンプ、前記第1の流路切
り換え手段、前記第2の蒸発器、前記第2の流路切り換
え手段、前記蓄冷熱交換器、前記第3の流路切り換え手
段の順に二次側冷媒を流す氷蓄冷利用運転とを、前記第
1から第5の流路切り換え手段により切り換え制御し、
一次側の前記第1の蒸発器と二次側の前記第2の凝縮器
を熱交換的に接触させ、前記第3の流路切り換え手段と
前記第2の凝縮器側の前記第2のバイパス回路の分岐点
との間に第6の流路切り換え手段とレシーバを設け、前
記第2のバイパス回路と前記レシーバの間に第7の流路
切り換え手段を設け、氷蓄熱運転か氷蓄熱利用冷房運転
かを検出する運転モード検出手段を設け、前記レシーバ
上部温度を検出するレシーバ上部温度検出手段と前記レ
シーバ上部の飽和温度を検出する飽和温度検出手段とを
設け、前記レシーバ上部温度検出手段と前記飽和温度検
出手段とから前記レシーバ上部温度と前記飽和温度との
差温を算出する差温算出手段を設け、前記運転モード検
出手段により検出された運転モードが氷蓄熱運転の場合
には、まず氷蓄熱利用運転冷凍サイクルで運転し、前記
差温算出手段により算出された差温に応じて、前記第6
および第7の流路切り換え手段を切り換え制御し、氷蓄
熱運転を行う蓄冷システム。
1. A variable capacity compressor, a first condenser, a pressure reducer, and a first evaporator are sequentially connected to constitute a refrigeration cycle of a primary side circuit, and a refrigerant pump, a cold storage heat exchanger, and a second The condensers of are connected in sequence to form the refrigeration cycle of the secondary circuit,
A first bypass circuit that bypasses between the refrigerant pump and the cold storage heat exchanger and between the cold storage heat exchanger and the second condenser is provided, and a first bypass circuit is provided on the first bypass circuit.
The flow path switching means, the second evaporator, and the second flow path switching means in this order, and between the branch point of the first bypass circuit on the refrigerant pump side and the cold storage heat exchanger, and the refrigerant. A second bypass circuit that bypasses between the pump and the first condenser is provided, and a third flow path switching unit is provided on the second bypass circuit, and the first bypass pump on the refrigerant pump side is provided. Fourth flow path switching means is provided between a branch point of the bypass circuit and a branch point of the second bypass circuit on the cold storage heat exchanger side, and the first bypass on the second condenser side. A fifth point is provided between the branch point of the circuit and the second condenser.
Flow path switching means of the refrigerant pump, the fourth
Of the flow path switching means, the cold storage heat exchanger, the fifth flow path switching means, and the second condenser in this order, the ice cold storage operation in which the secondary-side refrigerant flows, the refrigerant pump, and the first flow path. The operation for switching the ice, the second evaporator, the second flow path switching means, the cold storage heat exchanger, and the third flow path switching means in order of the ice cold storage use operation in which the secondary-side refrigerant flows. Switching control is performed by the first to fifth flow path switching means,
The first evaporator on the primary side and the second condenser on the secondary side are brought into contact with each other in a heat exchange manner, and the third flow path switching means and the second bypass on the second condenser side. A sixth flow path switching means and a receiver are provided between the branch point of the circuit, and a seventh flow path switching means is provided between the second bypass circuit and the receiver, and the ice heat storage operation or the ice heat storage utilization cooling is performed. An operation mode detecting means for detecting whether the operation is performed, a receiver upper temperature detecting means for detecting the receiver upper temperature and a saturation temperature detecting means for detecting a saturation temperature of the receiver are provided, and the receiver upper temperature detecting means and the If a temperature difference calculating means for calculating a temperature difference between the receiver upper temperature and the saturation temperature is provided from a saturation temperature detecting means, and if the operation mode detected by the operation mode detecting means is ice heat storage operation, first, ice Heat storage Operating at use operating the refrigeration cycle, in accordance with the calculated differential temperature by the difference temperature calculating means, the sixth
And a cold storage system for performing an ice heat storage operation by switching and controlling the seventh flow path switching means.
【請求項2】容量可変形圧縮機、第1の凝縮器、減圧
器、第1の蒸発器を順次接続して一次側回路の冷凍サイ
クルを構成し、冷媒ポンプ、蓄冷熱交換器、第2の凝縮
器を順次接続して二次側回路の冷凍サイクルを構成し、
前記冷媒ポンプと前記蓄冷熱交換器の間と、前記蓄冷熱
交換器と前記第2の凝縮器の間とをバイパスする第1の
バイパス回路を設け、その第1のバイパス回路上に第1
の流路切り換え手段、第2の蒸発器、第2の流路切り換
え手段を順次設け、前記冷媒ポンプ側の前記第1のバイ
パス回路の分岐点と前記蓄冷熱交換器との間と、前記冷
媒ポンプと前記第1の凝縮器との間とをバイパスする第
2のバイパス回路を設け、その第2のバイパス回路上に
第3の流路切り換え手段を設け、前記冷媒ポンプ側の前
記第1のバイパス回路の分岐点と、前記蓄冷熱交換器側
の前記第2のバイパス回路の分岐点との間に第4の流路
切り換え手段を設け、前記第2の凝縮器側の前記第1の
バイパス回路の分岐点と前記第2の凝縮器との間に第5
の流路切り換え手段を設け、前記冷媒ポンプ、前記第4
の流路切り換え手段、前記蓄冷熱交換器、前記第5の流
路切り換え手段、前記第2の凝縮器の順に二次側冷媒を
流す氷蓄冷運転と、前記冷媒ポンプ、前記第1の流路切
り換え手段、前記第2の蒸発器、前記第2の流路切り換
え手段、前記蓄冷熱交換器、前記第3の流路切り換え手
段の順に二次側冷媒を流す氷蓄冷利用運転とを、前記第
1から第5の流路切り換え手段により切り換え制御し、
一次側の前記第1の蒸発器と二次側の前記第2の凝縮器
を熱交換的に接触させ、前記第3の流路切り換え手段と
前記第2の凝縮器側の前記第2のバイパス回路の分岐点
との間に第6の流路切り換え手段とレシーバを設け、前
記第2のバイパス回路と前記レシーバの間に第7の流路
切り換え手段を設け、氷蓄熱運転か氷蓄熱利用冷房運転
かを検出する運転モード検出手段を設け、前記レシーバ
上部温度を検出するレシーバ上部温度検出手段と前記レ
シーバ上部の飽和温度を検出する飽和温度検出手段とを
設け、前記レシーバ上部温度検出手段と前記飽和温度検
出手段とから前記レシーバ上部温度と前記飽和温度との
差温を算出する差温算出手段を設け、前記運転モード検
出手段により検出された運転モードが氷蓄熱運転の場合
には、一次側回路の運転と二次側回路の氷蓄熱利用運転
冷凍サイクルで運転し、前記差温算出手段により算出さ
れた差温に応じて、前記第6および第7の流路切り換え
手段を切り換え制御し、氷蓄熱運転を行う蓄冷システ
ム。
2. A variable capacity compressor, a first condenser, a pressure reducer, and a first evaporator are sequentially connected to constitute a refrigeration cycle of a primary side circuit, and a refrigerant pump, a cold storage heat exchanger, and a second The condensers of are connected in sequence to form the refrigeration cycle of the secondary circuit,
A first bypass circuit that bypasses between the refrigerant pump and the cold storage heat exchanger and between the cold storage heat exchanger and the second condenser is provided, and a first bypass circuit is provided on the first bypass circuit.
The flow path switching means, the second evaporator, and the second flow path switching means in this order, and between the branch point of the first bypass circuit on the refrigerant pump side and the cold storage heat exchanger, and the refrigerant. A second bypass circuit that bypasses between the pump and the first condenser is provided, and a third flow path switching unit is provided on the second bypass circuit, and the first bypass pump on the refrigerant pump side is provided. Fourth flow path switching means is provided between a branch point of the bypass circuit and a branch point of the second bypass circuit on the cold storage heat exchanger side, and the first bypass on the second condenser side. A fifth point is provided between the branch point of the circuit and the second condenser.
Flow path switching means of the refrigerant pump, the fourth
Of the flow path switching means, the cold storage heat exchanger, the fifth flow path switching means, and the second condenser in this order, the ice cold storage operation in which the secondary-side refrigerant flows, the refrigerant pump, and the first flow path. The operation for switching the ice, the second evaporator, the second flow path switching means, the cold storage heat exchanger, and the third flow path switching means in order of the ice cold storage use operation in which the secondary-side refrigerant flows. Switching control is performed by the first to fifth flow path switching means,
The first evaporator on the primary side and the second condenser on the secondary side are brought into contact with each other in a heat exchange manner, and the third flow path switching means and the second bypass on the second condenser side. A sixth flow path switching means and a receiver are provided between the branch point of the circuit, and a seventh flow path switching means is provided between the second bypass circuit and the receiver, and the ice heat storage operation or the ice heat storage utilization cooling is performed. An operation mode detecting means for detecting whether the operation is performed, a receiver upper temperature detecting means for detecting the receiver upper temperature and a saturation temperature detecting means for detecting a saturation temperature of the receiver are provided, and the receiver upper temperature detecting means and the Provided is a temperature difference calculating means for calculating the temperature difference between the receiver upper temperature and the saturation temperature from the saturation temperature detecting means, and when the operation mode detected by the operation mode detecting means is ice heat storage operation, the primary side circuit Operation and operation in a secondary side circuit using ice heat storage The operation is performed in a refrigeration cycle, and the sixth and seventh flow path switching means are controlled to be switched according to the temperature difference calculated by the temperature difference calculation means, and ice heat storage is performed. Cold storage system that operates.
【請求項3】容量可変形圧縮機、第1の凝縮器、減圧
器、第1の蒸発器を順次接続して一次側回路の冷凍サイ
クルを構成し、冷媒ポンプ、蓄冷熱交換器、第2の凝縮
器を順次接続して二次側回路の冷凍サイクルを構成し、
前記冷媒ポンプと前記蓄冷熱交換器の間と、前記蓄冷熱
交換器と前記第2の凝縮器の間とをバイパスする第1の
バイパス回路を設け、その第1のバイパス回路上に第1
の流路切り換え手段、第2の蒸発器、第2の流路切り換
え手段を順次設け、前記冷媒ポンプ側の前記第1のバイ
パス回路の分岐点と前記蓄冷熱交換器との間と、前記冷
媒ポンプと前記第1の凝縮器との間とをバイパスする第
2のバイパス回路を設け、その第2のバイパス回路上に
第3の流路切り換え手段を設け、前記冷媒ポンプ側の前
記第1のバイパス回路の分岐点と、前記蓄冷熱交換器側
の前記第2のバイパス回路の分岐点との間に第4の流路
切り換え手段を設け、前記第2の凝縮器側の前記第1の
バイパス回路の分岐点と前記第2の凝縮器との間に第5
の流路切り換え手段を設け、前記冷媒ポンプ、前記第4
の流路切り換え手段、前記蓄冷熱交換器、前記第5の流
路切り換え手段、前記第2の凝縮器の順に二次側冷媒を
流す氷蓄冷運転と、前記冷媒ポンプ、前記第1の流路切
り換え手段、前記第2の蒸発器、前記第2の流路切り換
え手段、前記蓄冷熱交換器、前記第3の流路切り換え手
段の順に二次側冷媒を流す氷蓄冷利用運転とを、前記第
1から第5の流路切り換え手段により切り換え制御し、
一次側の前記第1の蒸発器と二次側の前記第2の凝縮器
を熱交換的に接触させ、氷蓄熱運転か氷蓄熱利用冷房運
転かを検出する運転モード検出手段を設け、前記第2の
蒸発器の出口部温度を検出する第2の蒸発器出口部温度
検出手段と前記第2の蒸発器出口部の飽和温度を検出す
る飽和温度検出手段とを設け、前記第2の蒸発器出口部
温度検出手段と前記飽和温度検出手段とから前記第2の
蒸発器出口部温度と前記飽和温度との差温を算出する差
温算出手段を設け、前記運転モード検出手段により検出
された運転モードが氷蓄熱運転の場合には、まず氷蓄熱
利用運転冷凍サイクルで運転し、前記差温算出手段によ
り算出された差温に応じて、前記第1および第2の流路
切り換え手段を切り換え制御し、氷蓄熱運転を行う蓄冷
システム。
3. A variable capacity compressor, a first condenser, a pressure reducer, and a first evaporator are sequentially connected to constitute a refrigeration cycle of a primary side circuit, and a refrigerant pump, a cold storage heat exchanger, and a second The condensers of are connected in sequence to form the refrigeration cycle of the secondary circuit,
A first bypass circuit that bypasses between the refrigerant pump and the cold storage heat exchanger and between the cold storage heat exchanger and the second condenser is provided, and a first bypass circuit is provided on the first bypass circuit.
The flow path switching means, the second evaporator, and the second flow path switching means in this order, and between the branch point of the first bypass circuit on the refrigerant pump side and the cold storage heat exchanger, and the refrigerant. A second bypass circuit that bypasses between the pump and the first condenser is provided, and a third flow path switching unit is provided on the second bypass circuit, and the first bypass pump on the refrigerant pump side is provided. Fourth flow path switching means is provided between a branch point of the bypass circuit and a branch point of the second bypass circuit on the cold storage heat exchanger side, and the first bypass on the second condenser side. A fifth point is provided between the branch point of the circuit and the second condenser.
Flow path switching means of the refrigerant pump, the fourth
Of the flow path switching means, the cold storage heat exchanger, the fifth flow path switching means, and the second condenser in this order, the ice cold storage operation in which the secondary-side refrigerant flows, the refrigerant pump, and the first flow path. The operation for switching the ice, the second evaporator, the second flow path switching means, the cold storage heat exchanger, and the third flow path switching means in order of the ice cold storage use operation in which the secondary-side refrigerant flows. Switching control is performed by the first to fifth flow path switching means,
The first evaporator on the primary side and the second condenser on the secondary side are brought into contact with each other in a heat exchange manner to provide an operation mode detection means for detecting an ice heat storage operation or an ice heat storage utilization cooling operation, Second evaporator outlet temperature detecting means for detecting the outlet temperature of the second evaporator and saturation temperature detecting means detecting the saturation temperature of the second evaporator outlet are provided, and the second evaporator is provided. A temperature difference calculating means for calculating a temperature difference between the second evaporator outlet temperature and the saturation temperature is provided from the outlet temperature detecting means and the saturation temperature detecting means, and the operation detected by the operation mode detecting means is provided. When the mode is the ice heat storage operation, first, the ice heat storage operation operation refrigeration cycle is operated, and the first and second flow path switching means are switched and controlled in accordance with the temperature difference calculated by the temperature difference calculating means. A cold storage system that performs ice heat storage operation.
JP6495494A 1994-04-01 1994-04-01 Cold thermal storage system Pending JPH07280367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6495494A JPH07280367A (en) 1994-04-01 1994-04-01 Cold thermal storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6495494A JPH07280367A (en) 1994-04-01 1994-04-01 Cold thermal storage system

Publications (1)

Publication Number Publication Date
JPH07280367A true JPH07280367A (en) 1995-10-27

Family

ID=13272950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6495494A Pending JPH07280367A (en) 1994-04-01 1994-04-01 Cold thermal storage system

Country Status (1)

Country Link
JP (1) JPH07280367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510952A (en) * 2004-08-18 2008-04-10 アイス エナジー インコーポレーテッド Second refrigerant separation type heat storage and cooling system
CN113883626A (en) * 2021-11-05 2022-01-04 珠海格力电器股份有限公司 Air conditioning system and cold charging and discharging control method of cold storage tank thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510952A (en) * 2004-08-18 2008-04-10 アイス エナジー インコーポレーテッド Second refrigerant separation type heat storage and cooling system
CN113883626A (en) * 2021-11-05 2022-01-04 珠海格力电器股份有限公司 Air conditioning system and cold charging and discharging control method of cold storage tank thereof

Similar Documents

Publication Publication Date Title
US4471630A (en) Cooling system having combination of compression and absorption type units
KR960010634B1 (en) Heat storage type air-conditioning apparatus
JP3352469B2 (en) Air conditioner
JP3377846B2 (en) Thermal storage type air conditioner
JP3319676B2 (en) Thermal storage type air conditioner and its operation control method
JPH07280367A (en) Cold thermal storage system
JPH06257868A (en) Heat pump type ice heat accumulating device for air conditioning
JP4273470B2 (en) Refrigeration apparatus and method for increasing capacity of refrigeration apparatus
JP2757660B2 (en) Thermal storage type air conditioner
JPH06147677A (en) Air conditioner
JP2500979B2 (en) Thermal storage refrigeration cycle device
JP2001208436A (en) Compression freezing device for common use in subcritical operation and supercritical operation
CN117175079B (en) Direct-cooling battery thermal management system with electric heater and control method thereof
JP3164079B2 (en) Refrigeration equipment
JPH06159743A (en) Heat accumulation type cooling device
JPH09159210A (en) Cooling system
JP3008925B2 (en) Refrigeration equipment
JP3871206B2 (en) Refrigeration system combining absorption and compression
JP3036338B2 (en) Complex refrigerant circuit equipment
JPH1130450A (en) Air conditioner
JP2001227779A (en) Heat storage type refrigerating air conditioner
JP2001033076A (en) Heat storage air conditioner
JP2023079334A (en) refrigerator
JP2006118810A (en) Heat storage type air conditioner
JPS5829396Y2 (en) Air conditioning equipment