JPH0727993A - Optical system with uniformalized light beam - Google Patents

Optical system with uniformalized light beam

Info

Publication number
JPH0727993A
JPH0727993A JP5167711A JP16771193A JPH0727993A JP H0727993 A JPH0727993 A JP H0727993A JP 5167711 A JP5167711 A JP 5167711A JP 16771193 A JP16771193 A JP 16771193A JP H0727993 A JPH0727993 A JP H0727993A
Authority
JP
Japan
Prior art keywords
optical system
optical
light beam
optical waveguide
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5167711A
Other languages
Japanese (ja)
Inventor
Izuru Nakai
出 中井
Toshiharu Okada
俊治 岡田
Yuji Uesugi
雄二 植杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5167711A priority Critical patent/JPH0727993A/en
Publication of JPH0727993A publication Critical patent/JPH0727993A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To make it possible to freely change aspect ratio of the shape of an irradiation spot of light beams and to lower the increased density of energy at a focal point. CONSTITUTION:Two optical system A, B which condense the light beams 1 in one direction with cylindrical lenses 4, 6 on the inlet side, make the condensed light beams incident on optical waveguides 2, 3 having square sections of a sectional size corresponding to the condensing size of the condensed light beams 1, condense the light beams 1 emitted from the optical waveguides 2, 3 in the same one direction with the cylindrical lenses 5, 7 on the exit side and image these beams on an irradiation surface, are arranged in two stages, front and rear. The optical system B of the rear stage is arranged by rotating the system 90 deg. around the optical axis with respect to the optical system A of the front stage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光ビーム均一化光学系に
関し、方形断面を有する光導波路に光ビームを通すこと
により、光強度の均一化を図る光ビーム均一化光学系に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light beam homogenizing optical system, and more particularly to a light beam homogenizing optical system for homogenizing light intensity by passing a light beam through an optical waveguide having a rectangular cross section.

【0002】[0002]

【従来の技術】ところで、レーザビームを用いて材料表
面に処理を施すとき、レーザビームの光強度は正規分布
となっているのが一般的である。このため、ビーム中央
部と周辺部では光強度に差があり、レーザビームの中央
部と周辺部とによる処理に差が生じる。
2. Description of the Related Art When a material surface is processed with a laser beam, the light intensity of the laser beam generally has a normal distribution. Therefore, there is a difference in light intensity between the central portion and the peripheral portion of the beam, and a difference occurs in processing between the central portion and the peripheral portion of the laser beam.

【0003】そこで従来、これを解消するのに、図2に
示すような正方形断面を持ち入射する光ビームを多重に
繰り返し反射させて光強度の均一化を行ういわゆるカラ
コイドスコープと呼ばれる光導波路aを用い、これに球
面レンズbにより集光されたレーザビームcを入射さ
せ、光導波路aから出射したレーザビームcを球面レン
ズdにより照射面eに結像させるようにしている。
Therefore, in order to solve this problem, conventionally, an optical waveguide a called a so-called caracoid scope for uniformizing the light intensity by repeatedly reflecting an incident light beam having a square cross section as shown in FIG. 2 is provided. The laser beam c focused by the spherical lens b is incident on this, and the laser beam c emitted from the optical waveguide a is imaged on the irradiation surface e by the spherical lens d.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来のよ
うな正方形断面を持つ光導波路aと、入射側および出射
側の各球面レンズb、dとの組み合わせ構造によると、
照射面eにレーザビームcを照射するときの照射スポッ
トの形状が、光導波路aの横断面形状に相似な正方形に
限定されてしまい、処理不要な部分にまでレーザビーム
が及んでしまうことがある。
However, according to the conventional combination structure of the optical waveguide a having a square cross section and the spherical lenses b and d on the entrance side and the exit side as described above,
The shape of the irradiation spot when irradiating the irradiation surface e with the laser beam c is limited to a square similar to the cross-sectional shape of the optical waveguide a, and the laser beam may reach a portion where no processing is required. .

【0005】また、従来の光導波路aの場合、球面レン
ズbにより集光したレーザビームcが入射されるので、
球面レンズbの焦点部においてレーザビームcが一点に
集光される。これにより、焦点部でエネルギ密度が極端
に高くなり、高ピークパワーのレーザビームcなどに用
いると、エネルギ密度が15.62J/cm2 (パルス
幅10ns)に達する付近から、空気の電離破壊が起こ
り、エネルギ損失が生じてしまうと云ったことや、光導
波路aに耐エネルギ性の高い石英を用いたとしても、こ
れが焦点部での高いエネルギ密度のために損傷すると云
ったことが起こり、耐エネルギ性の観点からの問題もあ
る。
Further, in the case of the conventional optical waveguide a, since the laser beam c focused by the spherical lens b is incident,
The laser beam c is focused on one point at the focal point of the spherical lens b. As a result, the energy density becomes extremely high at the focal point, and when it is used for a laser beam c having a high peak power, the ionization breakdown of air starts from the vicinity where the energy density reaches 15.62 J / cm 2 (pulse width 10ns). That is, energy loss occurs, and even if quartz having high energy resistance is used for the optical waveguide a, it is said that this is damaged due to the high energy density at the focal portion, There is also a problem from the viewpoint of energy.

【0006】そこで本発明は、このような従来の問題を
解決することを課題として、光ビームの方形形状をなす
照射スポットの縦横比を変えることができ、しかも焦点
部でのエネルギ密度の低減を図って高ピークパワーのパ
ルスレーザビームにも用いることができる、光ビーム平
均化光学系を提供することを目的とするものである。
Therefore, the present invention has an object to solve such a conventional problem, and it is possible to change the aspect ratio of an irradiation spot having a rectangular shape of a light beam, and further, to reduce the energy density at a focal portion. It is an object of the present invention to provide a light beam averaging optical system that can be used for a pulse laser beam having a high peak power.

【0007】[0007]

【課題を解決するための手段】本発明の光ビーム平均化
光学系は、上記のような目的を達成するために、光ビー
ムを入射側のシリンドリカルレンズにより一方向に集光
させて、この集光された光ビームの集光寸法に対応する
断面寸法となる方形断面を持った光導波路に入射させ、
この光導波路から出射される光ビームを出射側のシリン
ドリカルレンズにより前記と同じ一方向に集光させて照
射面に結像させる光学系を、前後2段に配置し、後段の
光学系は前段の光学系に対し光軸まわりに90度回転さ
せた配置としたことを特徴とするものである。
In order to achieve the above-mentioned object, a light beam averaging optical system of the present invention collects a light beam in one direction by a cylindrical lens on the incident side, and collects the light beam. The light is made incident on an optical waveguide having a rectangular cross section having a cross-sectional size corresponding to the condensed size of the light beam.
An optical system for converging the light beam emitted from this optical waveguide in the same one direction as the above by the emitting side cylindrical lens and forming an image on the irradiation surface is arranged in two stages before and after, and the optical system in the latter stage is arranged in the former stage. It is characterized in that the optical system is arranged so as to be rotated 90 degrees around the optical axis.

【0008】この場合、前段、後段の各光学系におい
て、入射側のシリンドリカルレンズによる光ビームの焦
点位置が光導波路の手前位置にあるように設定するのが
好適である。
In this case, it is preferable that in each of the front and rear optical systems, the focal position of the light beam by the incident side cylindrical lens is set to be in front of the optical waveguide.

【0009】[0009]

【作用】本発明の光ビーム平均化光学系の上記構成で
は、前段の光学系の、入射側のシリンドリカルレンズお
よび光導波路によって、光ビームを一方向に集光させた
後平均化を行い、次いでこの光ビームを、出射側のシリ
ンドリカルレンズにより前記一方向に再度集光させて照
射面に対し結像するようにし、また、後段の各光学系
の、入射側のシリンドリカルレンズおよび光導波路によ
って、前段の光学系から出射される光ビームを、前段の
光学系とは光軸まわりに90度回転した向きの一方向に
集光させた後平均化を行い、次いでこの光ビームを、出
射側のシリンドリカルレンズにより入射側のシリンドリ
カルレンズと同一の方向に再度集光させて照射面に対し
結像させるので、光ビームは互いに直角な2つの方向に
集光した方形な照射スポットをなして照射面に照射さ
れ、前段の光学系と後段の光学系との結像倍率を変える
ことにより、照射スポットの方形形状の縦横比を自在に
変更することができる。
In the above-described configuration of the light beam averaging optical system of the present invention, the light beams are converged in one direction by the incident side cylindrical lens and the optical waveguide of the preceding optical system, and then the averaging is performed, and then the averaging is performed. This light beam is focused again in the one direction by the emission side cylindrical lens to form an image on the irradiation surface, and the front side optical system is provided by the incidence side cylindrical lens and optical waveguide of each optical system in the latter stage. The optical beam emitted from the optical system is focused in one direction, which is rotated by 90 degrees around the optical axis from the optical system in the previous stage, and then averaged. The lens refocuses the light in the same direction as the cylindrical lens on the incident side and forms an image on the irradiation surface, so the light beam is focused in two directions at right angles to each other. Tsu is irradiated bets on the irradiation surface forms a, by changing the imaging magnification with preceding optical system and the subsequent optical system, can be freely changed the aspect ratio of the rectangular shape of the irradiation spot.

【0010】また光ビームを前段光学系および後段光学
系の、入射側および出射側の各シリンドリカルレンズに
より互いに直角な一方向にのみ集光して前記方形な照射
スポットをなすようにするものであり、従来の球面レン
ズのように一点に集光することはなく集光によるエネル
ギの高密度化を低減することができる。
Further, the light beam is condensed only in one direction perpendicular to each other by each of the incident side and exit side cylindrical lenses of the front optical system and the rear optical system to form the rectangular irradiation spot. Unlike the conventional spherical lens, it is possible to reduce energy densification due to light condensing without condensing at one point.

【0011】さらに、前段及び後段の各光学系が有する
光導波路は、それぞれに入射される光ビームの集光寸法
に対応する断面寸法となる方形断面を持っていることに
より、光導波路の光ビームに沿ったより直近の反射面に
て活発かつ万遍なく反射させるので、光強度の平均化を
効率よく十分に達成することができる。
Further, the optical waveguides of the optical systems of the front stage and the rear stage have a rectangular cross section having a sectional size corresponding to the converging size of the light beam incident on each of the optical systems. Since the light is reflected on the nearest reflecting surface along the line vigorously and evenly, the averaging of the light intensity can be efficiently and sufficiently achieved.

【0012】また、前段、後段の各光学系において、入
射側のシリンドリカルレンズによる光ビームの焦点位置
が光導波路の手前位置にあるように設定してあると、入
射側のシリンドリカルレンズの焦点位置に光ビームが集
光することにより集中するエネルギ密度が光導波路に働
かず、光導波路に影響するエネルギ密度を低減すること
ができる。
Further, in each of the front and rear optical systems, if the focal position of the light beam by the incident side cylindrical lens is set to be in front of the optical waveguide, the focal position of the incident side cylindrical lens is set. When the light beam is condensed, the concentrated energy density does not work on the optical waveguide, and the energy density affecting the optical waveguide can be reduced.

【0013】[0013]

【実施例】以下本発明が適用された一実施例としての光
ビーム平均化装置について、図1に基づき説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A light beam averaging device as an embodiment to which the present invention is applied will be described below with reference to FIG.

【0014】本実施例の装置は図1に示すように、シリ
ンドリカルレンズ4、5と、これらの間に位置する光導
波路2とで前段の光学系Aをなし、シリンドリカルレン
ズ6、7と、これらの間に位置する光導波路3とが後段
の光学系Bをなしている。
In the apparatus of this embodiment, as shown in FIG. 1, the cylindrical lenses 4 and 5 and the optical waveguide 2 located between them form a pre-stage optical system A. The optical waveguide 3 located between the two forms an optical system B in the subsequent stage.

【0015】光導波路2、3は石英製であり、これらの
前にある各光学系A、Bでの入射側の各シリンドリカル
レンズ4、6を経て、図1に示す互いに直角なXY2方
向の内の一方向に集光されるレーザビーム1の集光寸法
に対応した断面寸法となる方形断面を持っている。
The optical waveguides 2 and 3 are made of quartz, and pass through the incident side cylindrical lenses 4 and 6 in the optical systems A and B in front of them, respectively, and then in the XY2 directions orthogonal to each other shown in FIG. It has a rectangular cross section having a cross-sectional size corresponding to the focused size of the laser beam 1 focused in one direction.

【0016】特に、前段の光学系Aのシリンドリカルレ
ンズ4からは、前記一方向、本実施例では水平なX方向
の集光によってY方向に向く線状に集光されたレーザビ
ーム1が出射され、光導波路2はこれに対応する長方形
断面を持っている。
In particular, from the cylindrical lens 4 of the optical system A in the preceding stage, the laser beam 1 which is linearly focused in the one direction, that is, the horizontal X direction in this embodiment, is emitted in the Y direction. The optical waveguide 2 has a rectangular cross section corresponding to this.

【0017】また、後段の光学系Bは前段の光学系Aに
対し光軸まわりに90度回転された配置とされ、垂直な
Y方向にレーザビーム1を集光させるようになってい
る。
The optical system B in the latter stage is arranged so as to be rotated by 90 degrees around the optical axis with respect to the optical system A in the former stage, so that the laser beam 1 is focused in the vertical Y direction.

【0018】次に、動作について説明する。レーザビー
ム1は例えばE/O Qスイッチパルスレーザからパル
ス幅10nsにて出射され、これが前段光学系Aの入射
側のシリンドリカルレンズ4を経て図のX方向に集光さ
れ、つまりY方向に向く線状となるように集光され、光
導波路2に入射される。
Next, the operation will be described. The laser beam 1 is emitted from, for example, an E / O Q switch pulse laser with a pulse width of 10 ns, passes through a cylindrical lens 4 on the incident side of the pre-stage optical system A, and is condensed in the X direction in the figure, that is, a line directed in the Y direction. The light is condensed so as to have a shape and is incident on the optical waveguide 2.

【0019】このとき、光導波路2をなす石英が損傷を
受けないように、シリンドリカルレンズ4の焦点位置が
光導波路2の手前となるように設定してあり、シリンド
リカルレンズ4の焦点位置へのレーザービーム1の集光
位置が光導波路2の手前にずれるので、光導波路2の入
射端でのレーザエネルギ密度を実験により求めた石英の
しきい値である4.3J/cm2 (パルス幅10ns)
以下となるようにしている。
At this time, the focal point of the cylindrical lens 4 is set in front of the optical waveguide 2 so that the quartz forming the optical waveguide 2 is not damaged, and the laser beam to the focal point of the cylindrical lens 4 is set. Since the focus position of the beam 1 is shifted to the front of the optical waveguide 2, the laser energy density at the incident end of the optical waveguide 2 is 4.3 J / cm 2 (pulse width 10 ns) which is the threshold value of quartz obtained by experiment.
The following is set.

【0020】光導波路2に入射されるレーザビーム1
は、これの集光寸法に対応した断面寸法となる方形断面
を持った光導波路2の中で、光導波路の光ビームに沿っ
たより直近の反射面にて活発かつ万遍なく多重反射させ
るので、光強度のX方向での平均化を効率よく十分に達
成することができる。なお、光導波路2の断面寸法はレ
ーザビーム1の少なくとも集光方向寸法に対応したもの
であれば、平均化機能を十分に満足することができる。
Laser beam 1 incident on the optical waveguide 2
In the optical waveguide 2 having a rectangular cross-section having a cross-sectional size corresponding to the light-condensing size, is actively and uniformly multi-reflected on the nearest reflecting surface along the light beam of the optical waveguide. The averaging of the light intensity in the X direction can be efficiently and sufficiently achieved. If the cross-sectional dimension of the optical waveguide 2 corresponds to at least the dimension of the laser beam 1 in the focusing direction, the averaging function can be sufficiently satisfied.

【0021】光導波路2から出たレーザビーム1は、前
段光学系Aの出射側のシリンドリカルレンズ5によっ
て、後段の光学系Bを介してレーザ照射面8の面上に結
像させるようにする。このとき、前段の光学系Aの場合
同様に、後段の光学系Bのシリンドリカルレンズ6の焦
点位置が、光導波路3の手前位置となるようにしてある
ので、後段の光学系Bにおいても、光導波路3の入射端
でのレーザエネルギ密度を低減することができる。
The laser beam 1 emitted from the optical waveguide 2 is made to form an image on the surface of the laser irradiation surface 8 via the optical system B in the rear stage by the cylindrical lens 5 on the emission side of the front optical system A. At this time, as in the case of the optical system A in the former stage, the focal position of the cylindrical lens 6 in the optical system B in the latter stage is set to be the position before the optical waveguide 3, so that in the latter optical system B, The laser energy density at the incident end of the waveguide 3 can be reduced.

【0022】もっとも上記のような構成上、前段および
後段の各光学系A、Bのいずれの光学要素にもレーザビ
ームの集光位置がないので、前記各光導波路2、3はも
とより、これらよりも耐エネルギ密度の低いシリンドリ
カルレンズ4〜7にも、エネルギ密度が集中するような
ことを回避している。
However, because of the above structure, there is no focusing position of the laser beam in any of the optical elements of the optical systems A and B in the front stage and the rear stage. Moreover, the energy density is prevented from being concentrated on the cylindrical lenses 4 to 7 having a low energy resistance density.

【0023】後段の光学系Bにおいてもレーザビーム1
は、入射側のシリンドリカルレンズ6により図のY方向
に集光された後、このときのレーザビーム1の集光寸
法、特に集光方向寸法と対応した断面寸法となる方形断
面を持った光導波路3により、前記前段の光学系Aの場
合と同様に、Y方向の光強度の均一化を効率よく十分に
達成され、この後シリンドリカルレンズ7によりレーザ
照射面8上に結像される。
Also in the optical system B in the latter stage, the laser beam 1
Is an optical waveguide having a rectangular cross section, which is focused by the cylindrical lens 6 on the incident side in the Y direction of the figure and then has a focusing dimension of the laser beam 1 at this time, in particular, a sectional dimension corresponding to the dimension in the focusing direction. As in the case of the optical system A of the preceding stage, the uniformization of the light intensity in the Y direction can be efficiently and sufficiently achieved by the method 3, and thereafter, the image is formed on the laser irradiation surface 8 by the cylindrical lens 7.

【0024】以上のようにレーザビーム1は、前段の光
学系Aと後段の光学系Bとにより、互いに直角なXY2
方向に集光した方形な照射スポット1aをなして照射面
に照射されることになる。
As described above, the laser beam 1 is XY2 perpendicular to each other by the optical system A at the front stage and the optical system B at the rear stage.
The irradiation surface is irradiated with a rectangular irradiation spot 1a condensed in the direction.

【0025】このとき、シリンドリカルレンズ5、7の
焦点距離を変え、かつ光導波路2、3とシリンドリカル
レンズ5、7の位置関係を変化させることにより、レー
ザ照射面8上での方形な照射スポット1aのX方向およ
びY方向での結像倍率を個別に変化させることができ、
レーザビーム1による照射スポットの縦横比を自在に変
更することができる。
At this time, by changing the focal lengths of the cylindrical lenses 5 and 7 and changing the positional relationship between the optical waveguides 2 and 3 and the cylindrical lenses 5 and 7, a rectangular irradiation spot 1a on the laser irradiation surface 8 is obtained. The imaging magnification in the X and Y directions of can be changed individually,
The aspect ratio of the irradiation spot by the laser beam 1 can be freely changed.

【0026】また前段および後段の各光学系A、Bは、
それぞれの入力側および出力側の各シリンドリカルレン
ズ4,5、6,7によってレーザビーム1を互いに直角
なX方向およびY方向のうちの一方向にのみ個別に集光
して前記方形な照射スポット1aをなすように集光させ
るものであり、従来の球面レンズのように一点に集光す
ることはなく集光によるエネルギの高密度化を低減する
ことができ、高ピークパワーのレーザに適用しても空気
の電離破壊によるエネルギ損失を防止することができ
る。
The front and rear optical systems A and B are
The rectangular irradiation spot 1a is formed by individually condensing the laser beam 1 only in one of the X direction and the Y direction which are orthogonal to each other by each of the input side and output side cylindrical lenses 4, 5, 6, 7. Since it does not focus on a single point like a conventional spherical lens, it can reduce the energy density increase due to focusing, and can be applied to lasers with high peak power. Can prevent energy loss due to ionization breakdown of air.

【0027】[0027]

【発明の効果】本発明の光ビーム均一化装置によれば、
光ビームは前後段の2つの光学系によって互いに直角な
2つの方向に個別に集光した方形な照射スポットをなし
て照射面に照射され、前段の光学系と後段の光学系との
結像倍率を変えることにより、照射スポットの方形形状
の縦横比を自在に変更できるので、処理に必要な領域に
のみ光ビームを照射して、適正にしかも無駄なく処理す
ることができる。
According to the light beam homogenizing apparatus of the present invention,
The light beam forms a rectangular irradiation spot that is individually focused in two directions orthogonal to each other by the two optical systems in the front and rear stages, and is irradiated onto the irradiation surface, and the imaging magnification of the front stage optical system and the rear stage optical system is increased. Since the aspect ratio of the rectangular shape of the irradiation spot can be freely changed by changing, the light beam can be irradiated only to the area necessary for the processing, and the processing can be performed properly and without waste.

【0028】また光ビームを前段および後段にて互いに
直角な一方向にのみ個別に集光して前記方形な照射スポ
ットをなすようにし、従来の球面レンズのように一点に
集光するようなことなく集光によるエネルギの高密度化
を低減するので、空気の電離破壊によるエネルギの損失
の問題なしに高ピークパワーのレーザ等にも適用するこ
とができる。
In addition, the light beams are individually focused only in one direction perpendicular to each other in the front stage and the rear stage so as to form the rectangular irradiation spot, and are focused at one point like a conventional spherical lens. Since the density of energy is reduced by condensing light, it can be applied to a laser with high peak power without the problem of energy loss due to ionization breakdown of air.

【0029】さらに、前段及び後段の各光学系の光導波
路が、それぞれに入射される光ビームに対応した方形断
面により、光ビームに沿ったより直近の反射面にて活発
かつ万遍なく反射させて、光強度の平均化を十分に達成
させられるので、平均化効率が高く光ビームによる処理
の高精度化が図れる。
Further, the optical waveguides of the front and rear optical systems have a rectangular cross-section corresponding to the light beam incident on each of them, so that the light is reflected uniformly and uniformly on the reflection surface closer to the light beam. Since the averaging of the light intensity can be sufficiently achieved, the averaging efficiency is high and the accuracy of the processing by the light beam can be improved.

【0030】そして、前段および後段の光学系におい
て、入射側のシリンドリカルレンズの焦点位置が光導波
路の手前位置となるように設定してあるので、シリンド
リカルレンズの焦点位置に光ビームが集光されて集中す
るエネルギ密度が光導波路に働かず、この光導波路に影
響するエネルギ密度を低減することができ、光学系の安
全が図れる。
In the front and rear optical systems, since the focal position of the incident side cylindrical lens is set to the front position of the optical waveguide, the light beam is condensed at the focal position of the cylindrical lens. The concentrated energy density does not act on the optical waveguide, and the energy density affecting this optical waveguide can be reduced, and the safety of the optical system can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用された一実施例としての光ビーム
均一化装置を示す概略斜視図である。
FIG. 1 is a schematic perspective view showing a light beam homogenizing apparatus as one embodiment to which the present invention is applied.

【図2】従来の光ビーム均一化装置を示す概略斜視図で
ある。
FIG. 2 is a schematic perspective view showing a conventional light beam homogenizing device.

【符号の説明】[Explanation of symbols]

A 前段の光学系 B 後段の光学系 1 光ビーム 2、3 光導波路 4〜7 シリンドリカルレンズ 8 照射面 A Front-stage optical system B Back-stage optical system 1 Light beam 2, 3 Optical waveguide 4-7 Cylindrical lens 8 Irradiation surface

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光ビームを入射側のシリンドリカルレン
ズにより一方向に集光させて、この集光された光ビーム
の集光寸法に対応する断面寸法の方形断面を持った光導
波路に入射させ、この光導波路から出射される光ビーム
を出射側のシリンドリカルレンズにより前記と同じ一方
向に集光させて照射面に結像させる光学系を、前後2段
に配置し、後段の光学系は前段の光学系に対し光軸まわ
りに90度回転させた配置としたことを特徴とする光ビ
ーム均一化光学系。
1. A light beam is condensed by a cylindrical lens on the incident side in one direction and is incident on an optical waveguide having a rectangular cross section having a cross-sectional dimension corresponding to the condensed dimension of the condensed light beam, An optical system for converging the light beam emitted from this optical waveguide in the same one direction as the above by the emitting side cylindrical lens and forming an image on the irradiation surface is arranged in two stages before and after, and the optical system in the latter stage is arranged in the former stage. An optical system for uniformizing a light beam, wherein the optical system is arranged so as to be rotated by 90 degrees around the optical axis with respect to the optical system.
【請求項2】 前段、後段の各光学系において、入射側
のシリンドリカルレンズによる光の焦点位置が光導波路
の手前位置にあるように設定した請求項1に記載の光ビ
ーム均一化光学系。
2. The light beam homogenizing optical system according to claim 1, wherein in each of the front and rear optical systems, the focal position of the light by the incident side cylindrical lens is set to the front position of the optical waveguide.
JP5167711A 1993-07-07 1993-07-07 Optical system with uniformalized light beam Pending JPH0727993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5167711A JPH0727993A (en) 1993-07-07 1993-07-07 Optical system with uniformalized light beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5167711A JPH0727993A (en) 1993-07-07 1993-07-07 Optical system with uniformalized light beam

Publications (1)

Publication Number Publication Date
JPH0727993A true JPH0727993A (en) 1995-01-31

Family

ID=15854794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5167711A Pending JPH0727993A (en) 1993-07-07 1993-07-07 Optical system with uniformalized light beam

Country Status (1)

Country Link
JP (1) JPH0727993A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19520187C1 (en) * 1995-06-01 1996-09-12 Microlas Lasersystem Gmbh Optical system for excimer laser
DE19619481C1 (en) * 1996-05-14 1997-11-27 Aesculap Meditec Gmbh Method and device for removing material with a laser beam
JP2004134785A (en) * 2002-09-19 2004-04-30 Semiconductor Energy Lab Co Ltd Beam homogenizer, laser irradiator and method for manufacturing semiconductor device
JP2005072565A (en) * 2003-08-04 2005-03-17 Semiconductor Energy Lab Co Ltd Beam homogenizer, laser irradiation unit, and method for manufacturing semiconductor device
JP2005129889A (en) * 2003-04-24 2005-05-19 Semiconductor Energy Lab Co Ltd Beam homogenizer, laser irradiator, and method of manufacturing semiconductor device
US7128737B1 (en) 1997-10-22 2006-10-31 Carl Zeiss Meditec Ag Object figuring device
JP2007007683A (en) * 2005-06-29 2007-01-18 Sumitomo Heavy Ind Ltd Beam superposition device, and laser machining method
JP2007185687A (en) * 2006-01-13 2007-07-26 National Institute Of Advanced Industrial & Technology Laser beam machining apparatus
KR101037119B1 (en) * 2003-04-24 2011-05-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Beam homogenizer, laser irradiation apparatus, and method for manufacturing semiconductor device
US8105435B2 (en) 2002-09-19 2012-01-31 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer and laser irradiation apparatus and method of manufacturing semiconductor device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19520187C1 (en) * 1995-06-01 1996-09-12 Microlas Lasersystem Gmbh Optical system for excimer laser
US5721416A (en) * 1995-06-01 1998-02-24 Microlas Lasersystem Gmbh Optics for forming a sharp illuminating line of a laser beam
DE19619481C1 (en) * 1996-05-14 1997-11-27 Aesculap Meditec Gmbh Method and device for removing material with a laser beam
US7545515B2 (en) 1997-10-22 2009-06-09 Carl Zeiss Meditec Ag Object shaping device
US7128737B1 (en) 1997-10-22 2006-10-31 Carl Zeiss Meditec Ag Object figuring device
US7859684B2 (en) 1997-10-22 2010-12-28 Carl Zeiss Meditec Ag Object figuring device
JP2004134785A (en) * 2002-09-19 2004-04-30 Semiconductor Energy Lab Co Ltd Beam homogenizer, laser irradiator and method for manufacturing semiconductor device
US8105435B2 (en) 2002-09-19 2012-01-31 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer and laser irradiation apparatus and method of manufacturing semiconductor device
JP2005129889A (en) * 2003-04-24 2005-05-19 Semiconductor Energy Lab Co Ltd Beam homogenizer, laser irradiator, and method of manufacturing semiconductor device
US8457463B2 (en) 2003-04-24 2013-06-04 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer, laser irradiation apparatus, and method for manufacturing semiconductor device
US7953310B2 (en) 2003-04-24 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer, laser irradiation apparatus, and method for manufacturing semiconductor device
JP4619035B2 (en) * 2003-04-24 2011-01-26 株式会社半導体エネルギー研究所 Beam homogenizer, laser irradiation apparatus, and method for manufacturing semiconductor device
KR101037119B1 (en) * 2003-04-24 2011-05-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Beam homogenizer, laser irradiation apparatus, and method for manufacturing semiconductor device
JP2005072565A (en) * 2003-08-04 2005-03-17 Semiconductor Energy Lab Co Ltd Beam homogenizer, laser irradiation unit, and method for manufacturing semiconductor device
JP2007007683A (en) * 2005-06-29 2007-01-18 Sumitomo Heavy Ind Ltd Beam superposition device, and laser machining method
JP2007185687A (en) * 2006-01-13 2007-07-26 National Institute Of Advanced Industrial & Technology Laser beam machining apparatus

Similar Documents

Publication Publication Date Title
JPH08327942A (en) Optical apparatus for generation of sharp irradiated radiation from laser beam
JPH0764003A (en) Scanning optical system
US5601733A (en) Full field mask illumination enhancement methods and apparatus
JPH0727993A (en) Optical system with uniformalized light beam
US20070139791A1 (en) Illumination system optimized for throughput and manufacturability
KR100659438B1 (en) Apparatus and method for laser processing
KR20020033059A (en) Illumination system with reduced heat load
US5828496A (en) Illumination optical system
Kahlert et al. Excimer laser illumination and imaging optics for controlled microstructure generation
JP2006084932A (en) Optical fiber transmission apparatus for high power laser beam
JP3406946B2 (en) Illumination optical system, optical apparatus using the same, and device manufacturing method using the optical apparatus
JPH07221000A (en) Laser exposure lithography apparatus
KR100582813B1 (en) Quadrupole device for projection lithography by means of charged particles
JP2002023099A (en) Laser beam machining device and laser beam machining method
JP3057110B2 (en) Laser processing mask irradiation equipment
US7810938B2 (en) Laser configuration
JP2001075043A (en) Precise variable type long beam optical system
JP3285957B2 (en) Optical device
JP4927051B2 (en) Semiconductor laser light output device and solid-state laser rod excitation module
JP4818958B2 (en) Beam irradiation apparatus and beam irradiation method
RU2778397C1 (en) Device for manufacturing a groove and method for manufacturing a groove
JPH10197709A (en) Binary optics and laser working device using the same
JP2687791B2 (en) Light processing equipment
JP3883077B2 (en) Solid-state laser device and method of entering laser light into fiber
JP2004195516A (en) Laser beam machining apparatus and laser beam machining method