JPH07279774A - Estimating device of internal combustion engine exhaust gas reflux rate - Google Patents

Estimating device of internal combustion engine exhaust gas reflux rate

Info

Publication number
JPH07279774A
JPH07279774A JP6100557A JP10055794A JPH07279774A JP H07279774 A JPH07279774 A JP H07279774A JP 6100557 A JP6100557 A JP 6100557A JP 10055794 A JP10055794 A JP 10055794A JP H07279774 A JPH07279774 A JP H07279774A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas recirculation
rate
recirculation rate
net
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6100557A
Other languages
Japanese (ja)
Other versions
JP3307770B2 (en
Inventor
Isao Komoriya
勲 小森谷
Yusuke Hasegawa
祐介 長谷川
Hidetaka Maki
秀隆 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP10055794A priority Critical patent/JP3307770B2/en
Priority to US08/421,181 priority patent/US5505174A/en
Priority to EP95105659A priority patent/EP0677651B1/en
Priority to DE69530721T priority patent/DE69530721T2/en
Publication of JPH07279774A publication Critical patent/JPH07279774A/en
Application granted granted Critical
Publication of JP3307770B2 publication Critical patent/JP3307770B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve accuracy of controlling fuel injection by determining the basic rate of gas reflux from the engine speed and load, estimating the respective exhaust gas quantities in accordance with the opening area of an exhaust gas reflux valve and an opening area command value, and from the result of such estimation, estimating the net rate of exhaust gas reflux. CONSTITUTION:In controlling an exhaust gas reflux mechanism 25 composed by interposing an exhaust gas reflux valve 19 in the midway of an exhaust gas reflux passage 18 connected to an intake pipe 2 of an exhaust gas pipe 13, a correction factor of a basic rate of exhaust gas reflux is retrieved by retrieving a map from the engine speed and the intake pressure, as well as retrieving a lift command value from the engine speed and the intake pressure. The ratio of intake pressure to atmospheric pressure is found and gas quantity QA is found by retrieving a map from this ratio and a lift command value. Also a gas quantity QC is found by retrieving a map from this ratio and the actual lift quantity. The value obtained by computing the correction factor of the basic rate of exhaust gas reflux from 1 is assumed as the steady reflux rate and the net rate is found by multiplying the ratio of values QA, QC by the steady reflux rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は内燃機関の排気還流率
推定装置に関し、より具体的には簡易な構成でありなが
ら、機関燃焼室に実際に吸入されたであろう排気ガスの
正味の排気還流率を精度良く推定できるようにした内燃
機関の排気還流率推定装置に関する。尚、ここで「排気
還流率」は、排気ガス/吸入空気の体積比ないしは重量
比を意味する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas recirculation rate estimating device for an internal combustion engine, and more specifically, it has a simple structure, but it is a net exhaust gas of exhaust gas that may have actually been sucked into an engine combustion chamber. The present invention relates to an exhaust gas recirculation rate estimation device for an internal combustion engine capable of accurately estimating the recirculation rate. Here, the “exhaust gas recirculation ratio” means the volume ratio or the weight ratio of exhaust gas / intake air.

【0002】[0002]

【従来の技術】内燃機関の排気通路と吸気通路を接続す
る排気還流通路を設けて排気ガスの一部を前記吸気通路
に還流させると共に、そこに排気還流弁を設けて還流量
を制御し、NOxの低減と燃費の向上を図る排気還流制
御は良く知られている。
2. Description of the Related Art An exhaust gas recirculation passage connecting an exhaust passage and an intake passage of an internal combustion engine is provided to recirculate a part of exhaust gas to the intake passage, and an exhaust gas recirculation valve is provided there to control the amount of recirculation. Exhaust gas recirculation control for reducing NOx and improving fuel economy is well known.

【0003】排気還流制御においては機関回転数と機関
負荷などから排気還流弁のリフト指令値を決定して行う
が、図9に示すように、指令値に対して実リフトは遅れ
を持つ。電動式の排気還流弁では遅れ時間は一定である
が、負圧式の排気還流弁では運転状態に応じて遅れ時間
が変化する。更に、その開弁動作に応じて排気還流ガス
が燃焼室に吸入されるまでにも遅れがある。従って、排
気還流制御を精度良く行うためには、実際に燃焼室に吸
入される排気ガスの還流率(以下『正味還流率』と言
う)を正確に推定する必要がある。尚、ここで「リフ
ト」なる語は、排気還流弁の開口面積を示す意味で使用
する。
In the exhaust gas recirculation control, the lift command value of the exhaust gas recirculation valve is determined from the engine speed and the engine load, but as shown in FIG. 9, the actual lift has a delay with respect to the command value. The delay time is constant in the electric exhaust gas recirculation valve, but the delay time changes in the negative pressure type exhaust gas recirculation valve according to the operating state. Further, there is a delay before the exhaust gas recirculation gas is sucked into the combustion chamber according to the valve opening operation. Therefore, in order to accurately perform the exhaust gas recirculation control, it is necessary to accurately estimate the recirculation ratio of the exhaust gas actually sucked into the combustion chamber (hereinafter referred to as "net recirculation ratio"). The term "lift" is used here to mean the opening area of the exhaust gas recirculation valve.

【0004】更に、この排気還流量は内燃機関の空燃比
を制御するときに外乱となるので、特開昭60−169
641号公報記載の技術の如く、排気還流率に応じて補
正係数KEGRを求め、基本燃料噴射量を減少補正する
ことが提案されている。この従来技術にあっては、負圧
式の排気還流弁では遅れ時間が運転状態に応じて変化す
ることを考慮して補正係数KEGRの切り換えを所定時
間遅らせると共に、その遅延時間を運転状態に応じて設
定している。また、特開昭59−192838号公報記
載の技術においては、補正係数KEGRの値を徐々に変
化させることが提案されている。
Further, this exhaust gas recirculation amount becomes a disturbance when controlling the air-fuel ratio of the internal combustion engine, so that it is disclosed in JP-A-60-169.
It has been proposed that the correction coefficient KEGR be obtained according to the exhaust gas recirculation rate and the basic fuel injection amount be reduced and corrected as in the technique described in Japanese Patent No. 641. In this conventional technique, the switching of the correction coefficient KEGR is delayed for a predetermined time in consideration of the fact that the delay time of the negative pressure type exhaust gas recirculation valve changes according to the operating state, and the delay time is changed according to the operating state. It is set. Further, in the technique described in Japanese Patent Laid-Open No. 59-192838, it is proposed to gradually change the value of the correction coefficient KEGR.

【0005】しかしながら、排気ガスの挙動はもっと複
雑であることから、本出願人は特開平5−118239
号において、リフト指令値による排気還流ガスの挙動を
モデル化し、数式で表現して正味還流率を求める手法を
提案している。具体的にはある制御サイクルnにおい
て、排気還流弁を通過した排気還流ガスの量に対し、そ
の制御サイクルn中に燃焼室に吸入された排気還流ガス
量の占める割合を直接率とし、前制御サイクルn−1以
前に排気還流弁を通過して燃焼室までの空間部位に滞留
していた還流ガスの量に対し、その制御サイクルn中に
燃焼室に吸入された排気還流ガス量の占める割合を持ち
去り率とし、それらを排気還流弁のリフト指令値から同
定している。
However, since the behavior of the exhaust gas is more complicated, the applicant of the present invention has filed Japanese Patent Application Laid-Open No. 5-118239.
In this issue, we propose a method of modeling the behavior of the exhaust gas recirculation gas by the lift command value and expressing it by a mathematical expression to obtain the net recirculation rate. Specifically, in a certain control cycle n, the ratio of the amount of exhaust gas recirculation gas sucked into the combustion chamber during the control cycle n to the amount of exhaust gas recirculation gas that has passed through the exhaust gas recirculation valve is taken as a direct ratio, and the pre-control is performed. Percentage of the amount of exhaust gas recirculated into the combustion chamber during the control cycle n with respect to the amount of recirculation gas that has accumulated in the space up to the combustion chamber after passing through the exhaust gas recirculation valve before cycle n-1. Are taken away, and they are identified from the lift command value of the exhaust gas recirculation valve.

【0006】即ち、直接率と持ち去り率を介してリフト
指令値から正味還流率を求めるようにしている。これに
より、排気ガスの挙動をより正確に把握することは可能
となったが、リフト指令値から排気還流弁を通過するガ
ス量を求め、通過ガス量から燃焼室に吸入される排気還
流ガス量を求めていたため、構成が複雑化するのは避け
られなかった。
That is, the net recirculation rate is obtained from the lift command value via the direct rate and the take-away rate. This made it possible to grasp the behavior of the exhaust gas more accurately, but calculate the amount of gas that passes through the exhaust gas recirculation valve from the lift command value, and then from the amount of passing gas, the amount of exhaust gas recirculation gas that is drawn into the combustion chamber. However, it was inevitable that the configuration would become complicated.

【0007】[0007]

【発明が解決しようとする課題】更に、本出願人は別
途、特願平5−296409号において正味還流率を、
正味還流率=定常時の還流率×(実リフト/リフト指令
値)で求める技術を提案している。この手法において
は、正味還流率を実リフトとリフト指令値の比を利用し
て求めているため、先に提案した特開平5−11823
9号に比較すると簡易な構成となっている。
Further, the applicant of the present invention separately described the net reflux rate in Japanese Patent Application No. 5-296409.
We propose a technique to obtain the net return rate = return rate in steady state x (actual lift / lift command value). In this method, the net recirculation rate is obtained by using the ratio of the actual lift and the lift command value, and therefore the previously proposed Japanese Patent Laid-Open No. 5-11823.
It has a simpler structure than No. 9.

【0008】このように、特願平5−296409号提
案の手法は、先に提案した特開平5−118239号に
比較すると構成が簡易である利点を備えるが、他方、排
気還流弁を通過する排気還流ガス量は、リフト量のみな
らず、そのときの運転状態にも影響されるため、換言す
れば同一リフト量であっても運転状態に応じて異なるこ
とがあるため、正味還流率の推定精度が必ずしも良好で
はなかった。従って、燃料噴射制御を行うときも、正味
還流率に基づいて決定される燃料噴射量の補正係数の算
出が必ずしも的確ではなかった。
As described above, the method proposed in Japanese Patent Application No. 5-296409 has an advantage that the structure is simple as compared with the previously proposed Japanese Patent Application Laid-Open No. 5-118239, but on the other hand, it passes through the exhaust gas recirculation valve. Since the exhaust gas recirculation gas amount is affected not only by the lift amount but also by the operating state at that time, in other words, even the same lift amount may differ depending on the operating state. The accuracy was not always good. Therefore, even when the fuel injection control is performed, the calculation of the correction coefficient of the fuel injection amount determined based on the net recirculation rate is not always accurate.

【0009】従って、この発明の第1の目的は、簡易な
構成でありながら、実際に燃焼室に吸入される排気ガス
の還流率(正味還流率)を正確に推定するようにし、よ
って排気ガスの還流率(正味還流率)に応じて行われる
各種の制御の制御精度を向上させるようにした内燃機関
の排気還流率推定装置を提供することにある。
Therefore, a first object of the present invention is to accurately estimate the recirculation rate (net recirculation rate) of the exhaust gas that is actually sucked into the combustion chamber, even though it has a simple structure. It is an object of the present invention to provide an exhaust gas recirculation rate estimation device for an internal combustion engine, which is configured to improve the control accuracy of various controls performed according to the recirculation rate (net recirculation rate).

【0010】更に、この発明の第2の目的は、実際に燃
焼室に吸入される排気ガスの還流率(正味還流率)を正
確に推定して燃料噴射制御を行うとき、その制御精度を
向上させるようにした内燃機関の排気還流率推定装置を
提供することにある。
Further, the second object of the present invention is to improve the control accuracy when the fuel injection control is performed by accurately estimating the recirculation rate (net recirculation rate) of the exhaust gas actually sucked into the combustion chamber. Another object of the present invention is to provide an exhaust gas recirculation rate estimation device for an internal combustion engine.

【0011】更に、排気還流動作を中止するときも、排
気還流弁のリフト指令値が零になっても弁の動特性には
遅れがあることから、実リフトは直ちに零にならない。
その間にも排気ガスはわずかながらも還流する。更に、
リフト指令値が零になると演算にも支障を生じる場合が
ある。
Further, even when the exhaust gas recirculation operation is stopped, even if the lift command value of the exhaust gas recirculation valve becomes zero, the actual lift does not become zero immediately because the valve dynamic characteristics are delayed.
In the meantime, the exhaust gas recirculates slightly. Furthermore,
When the lift command value becomes zero, calculation may be hindered.

【0012】従って、この発明の第3の目的は、実際に
燃焼室に吸入される排気ガスの還流率(正味還流率)を
推定するにリフト指令値が零になったときの排気還流弁
の動特性の遅れをも吸収できると共に、演算にも支障が
ないようにした内燃機関の排気還流率推定装置を提供す
ることにある。
Therefore, a third object of the present invention is to estimate the recirculation rate (net recirculation rate) of the exhaust gas that is actually taken into the combustion chamber when the lift command value becomes zero. An object of the present invention is to provide an exhaust gas recirculation rate estimation device for an internal combustion engine that can absorb a delay in dynamic characteristics and that does not hinder the calculation.

【0013】更に、この発明の第4の目的は、排気還流
通路と吸気通路側の開口端と機関燃焼室との距離が比較
的長い機関構造などにおいて、還流ガスの輸送遅れなど
が生じるときも精度良く実際に燃焼室に吸入される排気
ガスの還流率(正味還流率)を推定するようにした内燃
機関の排気還流率推定装置を提供することにある。
Further, a fourth object of the present invention is to provide a structure in which the distance between the exhaust gas recirculation passage, the opening end on the intake passage side, and the engine combustion chamber is relatively long, and the recirculation gas is delayed in transportation. (EN) An exhaust gas recirculation rate estimation device for an internal combustion engine, which accurately estimates the recirculation rate (net recirculation rate) of exhaust gas that is actually taken into a combustion chamber.

【0014】更に、この発明の第5の目的は、排気還流
通路と吸気通路側の開口端と機関燃焼室との距離が比較
的長い機関構造などにおいて、還流ガスの輸送遅れなど
が生じるときも精度良く実際に燃焼室に吸入される排気
ガスの還流率(正味還流率)を推定し、燃料噴射制御を
行うとき、その制御精度を向上させるようにした内燃機
関の排気還流率推定装置を提供することにある。
Further, a fifth object of the present invention is to provide a structure in which the distance between the exhaust gas recirculation passage, the opening end on the intake passage side, and the engine combustion chamber is relatively long, and when the transportation delay of the recirculation gas occurs. Provided is an exhaust gas recirculation rate estimation device for an internal combustion engine, which accurately estimates the recirculation rate (net recirculation rate) of exhaust gas sucked into a combustion chamber and improves the control accuracy when performing fuel injection control. To do.

【0015】[0015]

【課題を解決するための手段】第1の目的を達成するた
めに、この発明は請求項1項で、内燃機関の排気通路と
吸気通路とを接続して排気ガスの少なくとも一部を前記
吸気通路に還流する排気還流通路と、該排気還流通路を
開閉する排気還流弁とを備えてなる内燃機関の排気還流
率を推定する装置において、少なくとも機関回転数と機
関負荷とから基本排気還流率を決定する基本排気還流率
決定手段、前記排気還流弁の流量特性に基づき、前記排
気還流弁の開口面積に応じて前記排気還流弁を通過する
排気ガス量QACTを推定する第1の推定手段、前記流
量特性に基づいて、前記排気還流弁の開口面積指令値に
応じて前記排気還流弁を通過する排気ガス量QCMDを
推定する第2の推定手段、および前記排気ガス量QAC
T,QCMDに応じて実際に燃焼室に吸入される正味排
気還流率を推定する正味排気還流率推定手段、とからな
る如く構成した。
In order to achieve the first object of the present invention, according to the present invention, the exhaust passage and the intake passage of an internal combustion engine are connected to each other by connecting at least a part of the exhaust gas to the intake air. In an apparatus for estimating the exhaust gas recirculation rate of an internal combustion engine, which comprises an exhaust gas recirculation passage that recirculates into the passage and an exhaust gas recirculation valve that opens and closes the exhaust gas recirculation passage, a basic exhaust gas recirculation rate is calculated from at least the engine speed and the engine load. Basic exhaust gas recirculation rate determining means for determining, first estimating means for estimating the exhaust gas amount QACT passing through the exhaust gas recirculation valve according to the opening area of the exhaust gas recirculation valve based on the flow rate characteristic of the exhaust gas recirculation valve, Second estimating means for estimating the exhaust gas amount QCMD passing through the exhaust gas recirculation valve according to the opening area command value of the exhaust gas recirculation valve based on the flow rate characteristic, and the exhaust gas amount QAC
And a net exhaust gas recirculation rate estimating means for estimating a net exhaust gas recirculation rate actually sucked into the combustion chamber according to T and QCMD.

【0016】第2の目的を達成するために、この発明は
請求項2項で、前記正味排気還流率推定手段は、前記正
味排気還流率に基づいて補正係数を求め、それに基づい
て前記燃焼室に供給されるべき燃料噴射量を補正する手
段を含む如く構成した。
According to a second aspect of the present invention, the net exhaust gas recirculation rate estimating means obtains a correction coefficient based on the net exhaust gas recirculation rate, and the combustion chamber is based on the correction coefficient. It is configured to include means for correcting the fuel injection amount to be supplied to.

【0017】第1および第2の目的を達成するために、
請求項3項でより具体的には、前記流量特性は、少なく
とも前記排気還流弁の上下流の圧力比と開口面積とから
決定される如く構成した。
In order to achieve the first and second objects,
More specifically, in the third aspect, the flow rate characteristic is configured to be determined at least from an upstream / downstream pressure ratio of the exhaust gas recirculation valve and an opening area.

【0018】請求項4項でより具体的には、前記圧力比
が、前記吸気通路の圧力と大気圧もしくは排気圧力との
比である如く構成した。
More specifically, the pressure ratio is the ratio of the pressure in the intake passage to the atmospheric pressure or the exhaust pressure.

【0019】請求項5項でより具体的には、前記正味排
気還流率推定手段は、前記排気ガス量QACT,QCM
Dの比QACT/QCMDを演算して正味排気還流率を
推定する如く構成した。
More specifically, in the fifth aspect, the net exhaust gas recirculation rate estimating means is configured to make the exhaust gas amounts QACT, QCM.
The ratio QACT / QCMD of D is calculated to estimate the net exhaust gas recirculation rate.

【0020】前記第3の目的を達成するために、請求項
6項で、前記正味排気還流率推定手段は、前記開口面積
指令値と排気ガス量QCMDの少なくともいずれかを閾
値と比較し、閾値以下と判断されるとき、前記開口面積
指令値と排気ガス量QCMDの少なくとも一方と、基本
排気還流率補正係数とを所定値にホールドする如く構成
した。
In order to achieve the third object, in claim 6, the net exhaust gas recirculation rate estimation means compares at least one of the opening area command value and the exhaust gas amount QCMD with a threshold value, When it is judged to be below, at least one of the opening area command value and the exhaust gas amount QCMD and the basic exhaust gas recirculation rate correction coefficient are held at predetermined values.

【0021】第4の目的を達成するために、この発明は
請求項7項で、前記正味排気還流率推定手段は、ある期
間tに前記排気還流弁を通過した排気ガス量gtに対
し、該期間t内に燃焼室に吸入される排気ガス量の比を
示す直接率EAを決定する直接率決定手段、前記期間t
以前に前記排気還流弁を通過した排気ガスのうち、燃焼
室以外の部位に滞留している量gc(t−1)に対し、
該期間t内に燃焼室に吸入される排気ガス量の比を示す
持ち去り率EBを決定する持ち去り率決定手段、とを含
み、前記直接率EAと持ち去り率EBとから該期間t中
に燃焼室に吸入される排気ガス量ginを求め、それに
応じて前記正味排気還流率を推定する如く構成した。
According to a seventh aspect of the present invention, in order to achieve a fourth object, the net exhaust gas recirculation rate estimating means sets the net exhaust gas recirculation rate estimation means for the exhaust gas amount gt that has passed through the exhaust gas recirculation valve in a certain period t. A direct ratio determining means for determining a direct ratio EA indicating a ratio of the amount of exhaust gas sucked into the combustion chamber within the period t, the period t
Of the exhaust gas that has previously passed through the exhaust gas recirculation valve, with respect to the amount gc (t-1) that has accumulated in a site other than the combustion chamber,
A take-away rate determining means for determining a take-away rate EB indicating a ratio of the amount of exhaust gas sucked into the combustion chamber within the period t, and during the period t from the direct rate EA and the take-away rate EB. The exhaust gas amount gin sucked into the combustion chamber is obtained, and the net exhaust gas recirculation rate is estimated accordingly.

【0022】第5の目的を達成するために、この発明は
請求項8項で、前記正味排気還流率推定手段は、前記正
味排気還流率に基づいて補正係数を求め、それに基づい
て前記燃焼室に供給されるべき燃料噴射量を補正する手
段を含む如く構成した。
In order to achieve a fifth object, according to the present invention, in claim 8, the net exhaust gas recirculation rate estimating means obtains a correction coefficient based on the net exhaust gas recirculation rate, and the combustion chamber is based on the correction coefficient. It is configured to include means for correcting the fuel injection amount to be supplied to.

【0023】[0023]

【作用】請求項1項にあっては、排気還流弁の流量特性
を決定し、その流量特性に基づき、排気還流弁の開口面
積と開口面積指令値とに応じて前記排気還流弁を通過す
る排気ガス量QACT,QCMDを推定し、それに応じ
て実際に燃焼室に吸入される正味排気還流率を推定する
ようにしたので、換言すれば排気還流弁の流量特性から
排気還流ガスの挙動を把握するので、実際に燃焼室に吸
入される正味の排気還流率を的確に推定することができ
る。
According to the present invention, the flow rate characteristic of the exhaust gas recirculation valve is determined, and the exhaust gas recirculation valve passes through the exhaust gas recirculation valve according to the opening area and the opening area command value of the exhaust gas recirculation valve based on the flow rate characteristic. Since the exhaust gas amounts QACT and QCMD are estimated and the net exhaust gas recirculation rate actually sucked into the combustion chamber is estimated accordingly, in other words, the behavior of the exhaust gas recirculation gas is grasped from the flow rate characteristics of the exhaust gas recirculation valve. Therefore, the net exhaust gas recirculation rate actually sucked into the combustion chamber can be accurately estimated.

【0024】請求項2項にあっては、前記正味排気還流
弁推定手段は、正味排気還流率に基づいて補正係数を求
め、それに基づいて前記燃焼室に供給されるべき燃料噴
射量を補正する手段を含む如く構成したので、燃料噴射
を制御するときの制御精度が向上し、リーンスパイクな
いしはリッチスパイクなどが生じることがない。
In the second aspect, the net exhaust gas recirculation valve estimating means obtains a correction coefficient based on the net exhaust gas recirculation rate, and corrects the fuel injection amount to be supplied to the combustion chamber based on the correction coefficient. Since it is configured to include the means, the control accuracy when controlling the fuel injection is improved, and no lean spike or rich spike occurs.

【0025】請求項3項にあっては、前記流量特性は、
少なくとも排気還流弁の上下流の圧力比と開口面積とか
ら決定する如く構成したので、請求項1項または2項と
同様の作用効果を有する。
In the third aspect, the flow rate characteristic is
Since it is configured to be determined at least from the upstream / downstream pressure ratio of the exhaust gas recirculation valve and the opening area, the same operational effect as in claim 1 or 2 is obtained.

【0026】請求項4項にあっては、前記圧力比が、前
記吸気通路の圧力と大気圧もしくは排気圧力との比であ
る如く構成したので、請求項1項または2項と同様の作
用効果を有する。
According to the fourth aspect of the present invention, the pressure ratio is the ratio of the pressure in the intake passage to the atmospheric pressure or the exhaust pressure. Therefore, the same effect as that of the first or second aspect. Have.

【0027】請求項5項にあっては、前記正味排気還流
率推定手段は、前記排気ガス量QACT,QCMDの比
QACT/QCMDを演算して正味排気還流率を推定す
る如く構成したので、請求項1項または2項と同様の作
用効果を有する。
In the present invention, the net exhaust gas recirculation rate estimating means is configured to calculate the ratio QACT / QCMD of the exhaust gas amounts QACT and QCMD to estimate the net exhaust gas recirculation rate. It has the same effect as the item 1 or 2.

【0028】請求項6項にあっては、前記正味排気還流
率推定手段は、前記開口面積指令値と排気ガス量QCM
Dの少なくともいずれかを閾値と比較し、閾値以下と判
断されるとき、前記開口面積指令値と排気ガス量QCM
Dの少なくとも一方と、基本排気還流率補正係数とを所
定値にホールドする如く構成したので、排気還流を停止
して排気還流弁の開口面積指令値ないしは排気ガス量Q
CMDが零になっても、所定値にホールドされるので、
弁の動特性の遅れを吸収できると共に、零割りなどを生
じることがなくて演算が不能になるなどの不都合が生じ
ることがないので、常に還流率を推定することができ
る。また閾値以下と判断されるとき基本排気還流率補正
係数を所定値に置き換えることにより、例えば1から基
本排気還流率補正係数を減算した値を基本排気還流率と
するとき、当該運転状態で補正係数が1になって基本排
気還流率が0となる不都合が生じることがない。尚、こ
こで、所定値は例えば前回値とする。
According to a sixth aspect of the present invention, the net exhaust gas recirculation rate estimating means is configured to set the opening area command value and the exhaust gas amount QCM.
At least one of D is compared with a threshold value, and when it is determined that it is less than or equal to the threshold value, the opening area command value and the exhaust gas amount QCM
Since at least one of D and the basic exhaust gas recirculation ratio correction coefficient is held at a predetermined value, the exhaust gas recirculation is stopped and the opening area command value of the exhaust gas recirculation valve or the exhaust gas amount Q
Even if the CMD becomes zero, it is held at a predetermined value, so
Since the delay in the dynamic characteristics of the valve can be absorbed and the inconvenience such as the inability to calculate due to the zero division does not occur, the recirculation rate can be always estimated. When it is determined that the basic exhaust gas recirculation rate correction coefficient is equal to or less than the threshold value, the basic exhaust gas recirculation rate correction coefficient is replaced with a predetermined value. Does not occur and the basic exhaust gas recirculation rate becomes 0. Here, the predetermined value is, for example, the previous value.

【0029】請求項7項にあっては、前記正味排気還流
率推定手段は、ある期間tに前記排気還流弁を通過した
排気ガス量gtに対し、該期間t内に燃焼室に吸入され
る排気ガス量の比を示す直接率EAを決定する直接率決
定手段、前記期間t以前に前記排気還流弁を通過した排
気ガスのうち、燃焼室以外の部位に滞留している量gc
(t−1)に対し、該期間t内に燃焼室に吸入される排
気ガス量の比を示す持ち去り率EBを決定する持ち去り
率決定手段、とを含み、前記直接率EAと持ち去り率E
Bとから該期間t中に燃焼室に吸入される排気ガス量g
inを求め、それに応じて前記正味排気還流率を推定す
る如く構成したので、還流ガスの輸送遅れが生じたとき
も、正味排気還流率を精度良く推定することができる。
尚、ここで期間tは、詳細な説明で触れる制御サイクル
nと同義である。
According to a seventh aspect of the present invention, the net exhaust gas recirculation rate estimating means is sucked into the combustion chamber within the period t with respect to the exhaust gas amount gt that has passed through the exhaust gas recirculation valve during the period t. Direct rate determining means for determining the direct rate EA indicating the ratio of the exhaust gas amount, the amount gc of the exhaust gas that has passed through the exhaust gas recirculation valve before the period t, and is retained in a portion other than the combustion chamber.
A take-away rate determining means for determining a take-away rate EB indicating a ratio of the amount of exhaust gas sucked into the combustion chamber within the period t, with respect to (t-1), and the direct rate EA and the take-away rate. Rate E
Exhaust gas amount g sucked into the combustion chamber during the period t from B
Since in is calculated and the net exhaust gas recirculation rate is estimated in accordance therewith, the net exhaust gas recirculation rate can be accurately estimated even when the transportation delay of the recirculation gas occurs.
The period t has the same meaning as the control cycle n mentioned in the detailed description.

【0030】請求項8項にあっては、前記正味排気還流
率推定手段は、前記正味排気還流率に基づいて補正係数
を求め、それに基づいて前記燃焼室に供給されるべき燃
料噴射量を補正する手段を含む如く構成したので、還流
ガスの輸送遅れが生じたときも、燃料噴射制御の制御精
度を向上させることができる。
According to the present invention, the net exhaust gas recirculation rate estimating means obtains a correction coefficient based on the net exhaust gas recirculation rate, and corrects the fuel injection amount to be supplied to the combustion chamber based on the correction coefficient. Since it is configured so as to include the means for controlling, the control accuracy of the fuel injection control can be improved even when the transportation delay of the recirculation gas occurs.

【0031】[0031]

【実施例】以下、添付図面に即してこの発明の実施例を
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0032】図1はこの発明に係る内燃機関の排気還流
率推定装置を含む、燃料制御装置を示す全体構成図であ
る。内燃機関は例えば4気筒の内燃機関であり、機関本
体1の吸気管(吸気通路)2の途中にはスロットル弁3
が設けられる。スロットル弁3にはスロットル位置θT
Hを検出するスロットル位置センサ(θTHで示す)4
が連結され、出力を電子制御ユニット(以下「ECU」
と言う)5に供給する。
FIG. 1 is an overall configuration diagram showing a fuel control system including an exhaust gas recirculation rate estimation system for an internal combustion engine according to the present invention. The internal combustion engine is, for example, a 4-cylinder internal combustion engine, and a throttle valve 3 is provided in the middle of an intake pipe (intake passage) 2 of the engine body 1.
Is provided. The throttle valve 3 has a throttle position θT.
Throttle position sensor for detecting H (indicated by θTH) 4
Are connected to the electronic control unit (hereinafter "ECU").
To say 5).

【0033】ECU5はスロットル位置センサ4および
後述のセンサ群からの入力信号波形を整形し、電圧レベ
ルを所定レベルに修正し、アナログ信号をデジタル信号
値に変換するなどの機能を有する入力回路5a、CPU
5b、CPU5bで実行される各種演算プログラムおよ
び演算結果などを記憶する記憶手段5c、および出力回
路5dなどからなり、後で述べるように還流率推定など
を行う。
The ECU 5 shapes the input signal waveforms from the throttle position sensor 4 and a sensor group described later, corrects the voltage level to a predetermined level, and converts the analog signal into a digital signal value. CPU
5b, a storage means 5c for storing various calculation programs and calculation results executed by the CPU 5b, an output circuit 5d, etc., and performs a reflux rate estimation and the like as described later.

【0034】燃料噴射弁6は機関本体1とスロットル弁
3との間で、かつ燃焼室(図示せず)の吸気ポート(図
示せず)の上流側に気筒ごとに設けられる。燃料噴射弁
6は燃料ポンプ(図示せず)に接続されると共に、EC
U5に電気的に接続されて開弁時間(燃料噴射量)が制
御される。一方、スロットル弁3の下流には吸気管内圧
力PBAを絶対圧力で検出する絶対圧センサ(PBAで
示す)7が設けられると共に、その下流には吸気温TA
を検出する吸気温センサ(TAで示す)8が設けられ
る。これらセンサの出力もECU5に送出される。
The fuel injection valve 6 is provided for each cylinder between the engine body 1 and the throttle valve 3 and upstream of the intake port (not shown) of the combustion chamber (not shown). The fuel injection valve 6 is connected to a fuel pump (not shown), and EC
The valve opening time (fuel injection amount) is controlled by being electrically connected to U5. On the other hand, an absolute pressure sensor (indicated by PBA) 7 for detecting the intake pipe internal pressure PBA by absolute pressure is provided downstream of the throttle valve 3, and the intake air temperature TA is provided downstream thereof.
An intake air temperature sensor (indicated by TA) 8 for detecting The outputs of these sensors are also sent to the ECU 5.

【0035】また機関本体1には機関冷却水温TWを検
出する水温センサ(TWで示す)9が設けられると共
に、クランク軸ないしはカム軸(共に図示せず)にはT
DC位置を含む所定のクランク角度CRKを検出するク
ランク角センサ(CRKで示す)10と、特定気筒の所
定クランク角度CYLを検出する気筒判別センサ(CY
Lで示す)11が設けられる。これらセンサの出力もE
CU5に送出され、カウンタ(図示せず)を介してクラ
ンク角センサ出力をカウントして機関回転数NEを検出
する。
Further, the engine body 1 is provided with a water temperature sensor (shown by TW) 9 for detecting the engine cooling water temperature TW, and a crankshaft or a camshaft (both not shown) is provided with T.
A crank angle sensor (denoted by CRK) 10 for detecting a predetermined crank angle CRK including a DC position, and a cylinder discrimination sensor (CY) for detecting a predetermined crank angle CYL of a specific cylinder.
11) is provided. The output of these sensors is also E
It is sent to the CU 5, and the output of the crank angle sensor is counted through a counter (not shown) to detect the engine speed NE.

【0036】また機関本体1の排気管(排気通路)13
には触媒コンバータ14が配置されており、排気ガス中
のHC,CO,NOx成分などを浄化する。触媒コンバ
ータ14の上流には排気ガス中の酸素濃度O2 を検出す
る酸素濃度センサ(O2 で示す)15が装着され、出力
をECU5に供給する。更に、機関本体1の付近には大
気圧PAを検出する大気圧センサ(PAで示す)16が
設けられると共に、吸気ポート付近の吸気管2の壁面に
はその壁温TCを検出する壁温センサ(TCで示す)1
7が設けられる。これらセンサの出力も、ECU5に供
給される。
Further, the exhaust pipe (exhaust passage) 13 of the engine body 1
A catalytic converter 14 is disposed in the exhaust gas, and purifies HC, CO, NOx components, etc. in the exhaust gas. An oxygen concentration sensor (indicated by O 2 ) 15 that detects the oxygen concentration O 2 in the exhaust gas is mounted upstream of the catalytic converter 14 and supplies an output to the ECU 5. Further, an atmospheric pressure sensor (indicated by PA) 16 for detecting the atmospheric pressure PA is provided near the engine body 1, and a wall temperature sensor for detecting the wall temperature TC is provided on the wall surface of the intake pipe 2 near the intake port. (Indicated by TC) 1
7 is provided. The outputs of these sensors are also supplied to the ECU 5.

【0037】次に、排気還流機構25について説明す
る。
Next, the exhaust gas recirculation mechanism 25 will be described.

【0038】排気還流通路25は、排気管13を吸気管
2に接続する排気還流通路18を備える(符号18a
は、吸気管側の開口端を示す)。排気還流通路18の途
中には排気還流弁(EGR弁)19が設けられる。排気
還流弁19は負圧応動式であって、主として、通路18
を開閉できるように配置された弁体19aと、弁体19
aに連結されて後述の電磁弁22を介して導入される負
圧により作動するダイアフラム19bと、ダイアフラム
19bを閉弁方向に付勢するばね19cとから構成され
る。
The exhaust gas recirculation passage 25 includes an exhaust gas recirculation passage 18 for connecting the exhaust pipe 13 to the intake pipe 2 (reference numeral 18a).
Indicates the open end on the intake pipe side). An exhaust gas recirculation valve (EGR valve) 19 is provided in the exhaust gas recirculation passage 18. The exhaust gas recirculation valve 19 is of a negative pressure responsive type and mainly includes the passage 18
A valve body 19a arranged to open and close the valve body, and a valve body 19a
It is composed of a diaphragm 19b which is connected to a and operates by a negative pressure introduced through a solenoid valve 22 described later, and a spring 19c which biases the diaphragm 19b in a valve closing direction.

【0039】ダイアフラム19bにより画成される負圧
室19dには連通路20が接続され、吸気管2内の負圧
が該連通路20の途中に設けられた常閉型電磁弁22を
介して導入されるように構成される。大気室19eは、
大気に連通している。更に、連通路20には電磁弁22
の下流で大気連通路23が接続され、該連通路23の途
中に設けられたオリフィス21を介して大気圧が連通路
20に、次いで前記負圧室19dに導入されるように構
成される。
A communication passage 20 is connected to the negative pressure chamber 19d defined by the diaphragm 19b, and the negative pressure in the intake pipe 2 is passed through a normally closed solenoid valve 22 provided in the middle of the communication passage 20. Configured to be introduced. The atmosphere chamber 19e is
It communicates with the atmosphere. Further, the communication passage 20 has a solenoid valve 22.
The atmosphere communication passage 23 is connected downstream of the communication passage 23, and atmospheric pressure is introduced into the communication passage 20 and then into the negative pressure chamber 19d through an orifice 21 provided in the communication passage 23.

【0040】前記電磁弁22はECU5に接続され、E
CU5からの駆動信号によって作動し、排気還流弁19
の弁体19aのリフト動作(開弁動作)およびその速度
を制御する。排気還流弁19にはリフトセンサ24が設
けられており、弁体19aの作動量(リフト量)を検出
し、出力をECU5に送出する。
The solenoid valve 22 is connected to the ECU 5,
It operates by the drive signal from CU5, and exhaust gas recirculation valve 19
The lift operation (valve opening operation) of the valve body 19a and its speed are controlled. The exhaust gas recirculation valve 19 is provided with a lift sensor 24, which detects the operation amount (lift amount) of the valve body 19a and sends the output to the ECU 5.

【0041】図2は、この発明に係る内燃機関の排気還
流率推定装置の動作を説明するフロー・チャートであ
る。同図の説明に入る前に、図3以下を参照してこの発
明に係る推定手法のアルゴリズムを説明する。
FIG. 2 is a flow chart for explaining the operation of the exhaust gas recirculation rate estimating apparatus for an internal combustion engine according to the present invention. Before starting the description of the figure, an algorithm of the estimation method according to the present invention will be described with reference to FIG.

【0042】排気還流弁を通過するガス量は、弁単体と
してみると、弁の開口面積と弁前後の圧力比、即ち、流
量特性(設計諸元)によって決定される。即ち、弁の開
口面積、即ち、リフト量と弁の上下流圧力の比から求め
られると考えられる。
The amount of gas passing through the exhaust gas recirculation valve is determined by the valve opening area and the pressure ratio before and after the valve, that is, the flow rate characteristics (design specifications), when viewed as a single valve. That is, it is considered that it is obtained from the opening area of the valve, that is, the ratio of the lift amount and the upstream and downstream pressure of the valve.

【0043】実機においても図3に示すように、還流ガ
ス量は、弁のリフト量と、前記大気連通路23を介して
作用する大気圧PAと吸気管2の吸気圧力PBAとの比
を求めることにより、ある程度まで推定可能と考えられ
た(実際は排気圧力や排気温度により流量特性が若干変
化するが、その特定の変化は後述の如くガス量割合を用
いることでかなりの程度まで吸収できると考えられ
た)。この発明は、この点に着目し、流量特性に基づい
て還流率を求めるようにした。尚、開口面積はリフト量
から求めているが、これはリフト量が開口面積に対応す
る構造の弁を使用したためである。従って、リニヤソレ
ノイドなど別の構造のものを使用するときは、別のパラ
メータから開口面積を求めることになる。
Also in the actual machine, as shown in FIG. 3, the recirculation gas amount is obtained by calculating the valve lift amount and the ratio between the atmospheric pressure PA acting through the atmosphere communication passage 23 and the intake pressure PBA of the intake pipe 2. It was thought that it was possible to estimate to a certain degree (actually, the flow rate characteristics slightly change depending on the exhaust pressure and exhaust temperature, but it is possible to absorb that specific change to a considerable extent by using the gas amount ratio as described later. Was). In the present invention, focusing on this point, the reflux rate is obtained based on the flow rate characteristic. The opening area is obtained from the lift amount because the valve having a structure in which the lift amount corresponds to the opening area is used. Therefore, when using another structure such as a linear solenoid, the opening area is obtained from another parameter.

【0044】ところで、還流率には定常時の還流率と過
渡時の還流率とがあるが、そのうち定常時の還流率とは
リフト指令値が実リフトと等しい状態の値であり、過渡
時の還流率とはリフト指令値が実リフトと等しくない状
態の値である。そして、この発明に係るアルゴリズムで
は、過渡時の差異は、図3に示すように、還流率がそれ
に対応するガス量割合分だけ、定常時の還流率からずれ
ることによって生じた、と考えた。
By the way, the return flow rate includes a return flow rate in a steady state and a return flow rate in a transient state. Among them, the return rate in a steady state is a value in a state where the lift command value is equal to the actual lift, The recirculation rate is a value when the lift command value is not equal to the actual lift. Then, in the algorithm according to the present invention, it was considered that the difference at the time of transition was caused by the deviation of the reflux rate from the steady-state reflux rate by the corresponding gas amount ratio, as shown in FIG.

【0045】具体的には、定常時では リフト指令値=実リフト、ガス量割合=1 即ち、 還流率=定常時の還流率Specifically, in the steady state, the lift command value = actual lift, the gas amount ratio = 1, that is, the recirculation rate = the recirculation rate in the steady state.

【0046】過渡時では リフト指令値≠実リフト、ガス量割合≠1 即ち、 還流率=定常時の還流率(マップ検索値)×ガス量割合 となる。In the transient state, the lift command value ≠ actual lift, the gas amount ratio ≠ 1, that is, the reflux ratio = the steady-state reflux ratio (map search value) × gas ratio.

【0047】このように、両ガス量の割合を定常時の還
流率に乗じることで、正味の還流率が求められると考え
た。式で示すと、以下の如くになる。 還流率=(定常時の還流率)×(実リフトと弁前後の圧
力比より求まるガス量QACT)/(リフト指令値と弁
前後の圧力比より求まるガス量QCMD)
As described above, it was considered that the net reflux rate can be obtained by multiplying the steady-state reflux rate by the ratio of both gas amounts. The formula is as follows. Reflux rate = (recirculation rate in steady state) x (gas amount QACT obtained from actual lift and pressure ratio before and after valve) / (gas amount QCMD obtained from lift command value and pressure ratio before and after valve)

【0048】ここで、定常時の還流率は、還流率補正係
数を求め、それを1から減算することで求める。即ち、
定常時の還流率補正係数をKEGRMAPと称すると、
定常時の還流率=(1−KEGRMAP)で求める。
尚、この明細書では定常時の還流率ないし定常時の還流
率補正係数を基本排気還流率ないし基本排気還流率補正
係数とも称する。また、定常時の還流率補正係数KEG
RMAPは、機関回転数NEと吸気圧力PBAとから予
め実験で求めて図4に示すようにマップとして設定して
おき、それを検索して求めるようにした。
Here, the return rate in the steady state is obtained by obtaining a return rate correction coefficient and subtracting it from 1. That is,
When the constant return rate correction coefficient is called KEGRMAP,
It is determined by the constant reflux rate = (1-KEGRMAP).
In this specification, the steady-state recirculation rate or the steady-state recirculation rate correction coefficient is also referred to as a basic exhaust gas recirculation rate or a basic exhaust gas recirculation rate correction coefficient. In addition, the return rate correction coefficient KEG in the steady state
The RMAP is experimentally obtained from the engine speed NE and the intake pressure PBA in advance and set as a map as shown in FIG. 4, and the map is searched and obtained.

【0049】以下、図2フロー・チャートに従って説明
する。尚、このフロー・チャートに示されるプログラム
は、10msなどの所定時間ごとに起動される。
Hereinafter, description will be given according to the flow chart of FIG. The program shown in this flow chart is started every predetermined time such as 10 ms.

【0050】先ずS10で機関回転数NE、吸気圧力P
BA、大気圧PA、実リフトLACT(リフトセンサ2
4の出力)などを読み込み、S12に進んで機関回転数
NEと吸気圧力PBAとからリフト指令値LCMDを検
索する。ここでリフト指令値LCMDは、図5に示す如
き、予め特性を定めて設定しておいたマップを検索して
求める。続いてS14に進んで機関回転数NEと吸気圧
力PBAとから前記した図4に示すマップを検索して基
本排気還流率補正係数KEGRMAPを検索する。
First, in S10, the engine speed NE and the intake pressure P
BA, atmospheric pressure PA, actual lift LACT (lift sensor 2
(Output of 4) is read, and the process proceeds to S12 to search for the lift command value LCMD from the engine speed NE and the intake pressure PBA. Here, the lift command value LCMD is obtained by searching a map in which the characteristics are set in advance as shown in FIG. Subsequently, the program proceeds to S14, in which the map shown in FIG. 4 is searched from the engine speed NE and the intake pressure PBA to search the basic exhaust gas recirculation ratio correction coefficient KEGRMAP.

【0051】次いでS16に進んで検出した実リフトL
ACTが零ではないことを確認し、即ち、排気還流弁1
9が開弁していることを確認してS18に進み、検索し
たリフト指令値LCMDを所定の下限値LCMDLL(微
小値)と比較する。S18で検索値が下限値以下ではな
いと判断されるときはS20に進み、そこで吸気圧力P
BAと大気圧PAとの比PBA/PAを求め、それと検
索したリフト指令値LCMDとから、図3に示す特性を
マップ化したもの(図示せず)を検索してガス量QCM
Dを求める。これは先の数式に言う「リフト指令値と弁
前後の圧力比より求まるガス量」である。
Next, in S16, the actual lift L detected is detected.
Confirm that ACT is not zero, that is, exhaust gas recirculation valve 1
After confirming that the valve 9 is opened, the process proceeds to S18, and the lift command value LCMD retrieved is compared with a predetermined lower limit value LCMDLL (minute value). When it is determined in S18 that the search value is not less than or equal to the lower limit value, the process proceeds to S20, where the intake pressure P
The ratio PBA / PA between BA and atmospheric pressure PA is obtained, and a map (not shown) of the characteristics shown in FIG. 3 is searched from the found lift command value LCMD and the gas amount QCM is searched.
Find D. This is the “gas amount obtained from the lift command value and the pressure ratio before and after the valve” in the above formula.

【0052】続いてS22に進み、同様の比PBA/P
Aと検出した実リフトLACTとから同様に図3に示す
特性をマップ化したものを検索してガス量QACTを求
める。これは先の数式で言う「実リフトと弁前後の圧力
比より求まるガス量」に相当する。
Then, in S22, the same ratio PBA / P is obtained.
Similarly, a map of the characteristics shown in FIG. 3 is searched from A and the detected actual lift LACT to obtain the gas amount QACT. This corresponds to the “gas amount obtained from the actual lift and the pressure ratio before and after the valve” in the above formula.

【0053】続いてS24に進んで検索した基本排気還
流率補正係数KEGRMAPを1から減算して得た値を
定常還流率(基本排気還流率ないし定常時の還流率)と
する。ここで、定常時の還流率とは前記の如く、排気還
流動作が安定している際の還流率、即ち、排気還流動作
が開始される、ないしは停止される際などの過渡的な状
態にないときの還流率を意味する。続いてS26に進
み、図示の如く、定常還流率に値QACT,QCMDの
比QACT/QCMDを乗じて正味還流率を求める。
Subsequently, the routine proceeds to S24, where the value obtained by subtracting the retrieved basic exhaust gas recirculation ratio correction coefficient KEGRMAP from 1 is set as the steady recirculation ratio (basic exhaust gas recirculation ratio or steady recirculation ratio). Here, the steady-state recirculation rate is, as described above, the recirculation rate when the exhaust gas recirculation operation is stable, that is, the exhaust gas recirculation operation is not in a transient state such as when the exhaust gas recirculation operation is started or stopped. Means the reflux rate at that time. Then, in S26, the steady return rate is multiplied by the ratio QACT / QCMD of the values QACT and QCMD to obtain the net return rate as shown in the figure.

【0054】続いて、S28に進んで燃料噴射補正係数
KEGRNを演算する。図6はその作業を示すサブルー
チン・フロー・チャートであり、そのS100において
正味還流率(図2のS26で求めたもの)を1から減算
した値を燃料噴射補正係数KEGRNとする。尚、燃料
噴射量の補正は、機関回転数と機関負荷とから求めた基
本燃料噴射量Timに補正係数KEGRNを乗じて出力
燃料噴射量Toutを求めることで行う。尚、これ自体
は公知なので、この程度の説明に止める。
Subsequently, the routine proceeds to S28, where the fuel injection correction coefficient KEGRN is calculated. FIG. 6 is a subroutine flow chart showing the operation. In S100, a value obtained by subtracting the net recirculation rate (obtained in S26 of FIG. 2) from 1 is set as the fuel injection correction coefficient KEGRN. The fuel injection amount is corrected by multiplying the basic fuel injection amount Tim obtained from the engine speed and the engine load by the correction coefficient KEGRN to obtain the output fuel injection amount Tout. Since this is known per se, the description will be limited to this degree.

【0055】尚、S16で実リフトLACTが零と判断
されるときは排気還流が行われていないので、直ちにプ
ログラムを終了する。また、S18でリフト指令値LC
MDが下限値LCMDLL以下と判断されるときはS30
に進み、リフト指令値LCMDは前回値LCMDn−1
をそのまま保持する(簡略化のため、このフロー・チャ
ートで今回値にnを付すのは省略した)。
When it is determined in S16 that the actual lift LACT is zero, exhaust gas recirculation has not been performed, so the program is immediately terminated. Further, at S18, the lift command value LC
When it is determined that MD is less than or equal to the lower limit value LCMDLL, S30
And the lift command value LCMD is the previous value LCMDn-1.
Is kept as it is (for simplification, adding n to the value this time is omitted in this flow chart).

【0056】これは前述の如く、排気還流を実行する領
域から実行しない領域へ移行した際、リフト指令値LC
MDが零になっても、排気還流弁19の動特性に遅れが
あるため、実リフトLACTは直ちに零にならない。そ
こで、リフト指令値LCMDが下限値(閾値)LCMD
LL以下の場合にはリフト指令値LCMDを前回値LCM
Dn−1(前回制御サイクル時n−1のときの値)にホ
ールドするようにした。この前回値ホールドは、S16
で実リフトLACTが零になったことが確認されるまで
行われる。
As described above, this means that the lift command value LC is set when the region where exhaust gas recirculation is executed is changed to the region where exhaust gas recirculation is not executed.
Even if MD becomes zero, the actual lift LACT does not immediately become zero because the dynamic characteristics of the exhaust gas recirculation valve 19 are delayed. Therefore, the lift command value LCMD is the lower limit value (threshold value) LCMD.
If it is less than LL, lift command value LCMD is changed to previous value LCM.
Dn-1 (value at the time of n-1 in the previous control cycle) is held. This previous value hold is S16.
The process is repeated until it is confirmed that the actual lift LACT has become zero.

【0057】また、リフト指令値LCMDが下限値LC
MDLL以下のときはリフト指令値LCMDが零である場
合もあり、その際にはS20でのQCMD検索値も零と
なってS26の演算で零割りが生じて演算不能となる。
しかし、上記の如く前回値をホールドすることにより、
演算不能となる恐れはない。尚、下限値LCMDLLは微
小値としたが、零でも良い。
Further, the lift command value LCMD is the lower limit value LC
When it is equal to or lower than MDLL, the lift command value LCMD may be zero, and in that case, the QCMD search value in S20 is also zero, and the operation in S26 is divided by zero, which makes the operation impossible.
However, by holding the previous value as described above,
There is no fear of becoming inoperable. Although the lower limit value LCMDLL is a minute value, it may be zero.

【0058】続いてS32に進み、基本排気還流率補正
係数KEGRMAPのマップ検索値(S14で検索)を
前回検索値KEGRMAPn−1に置き換える。これ
は、S12で検索されたリフト指令値LCMDが下限値
以下と判断される運転状態においては、S14で検索さ
れる基本排気還流率補正係数KEGRMAPが、この実
施例で予定する特性では1に設定される。その結果、S
24の演算において定常還流率が0となる恐れがある。
S32はその不都合を解消するようにした。
Next, in S32, the map search value of the basic exhaust gas recirculation rate correction coefficient KEGRMAP (search in S14) is replaced with the previous search value KEGRMAPn-1. This is because the basic exhaust gas recirculation ratio correction coefficient KEGRMAP searched in S14 is set to 1 in the characteristic planned in this embodiment in the operating state in which the lift command value LCMD searched in S12 is determined to be less than or equal to the lower limit value. To be done. As a result, S
In the calculation of 24, the steady reflux rate may be zero.
S32 is designed to eliminate the inconvenience.

【0059】この実施例は上記の如く、排気還流弁の流
量特性に着目し、過渡時の還流率と定常時のそれの偏差
はガス量割合であることに着目して正味還流率を推定す
るようにしたので、先に提案した特開平5─11823
9号の手法に比べて簡易な構成でありながら、排気ガス
の挙動を正確に把握することができる。また、別に提案
した特願平5−296049号の手法、即ち、 と比較しても、排気還流弁の流量特性から排気ガスの挙
動を表現したことでより正確に正味還流率を求めること
ができる。
As described above, this embodiment pays attention to the flow rate characteristic of the exhaust gas recirculation valve, and estimates the net recirculation rate by paying attention to the fact that the difference between the recirculation rate in the transient state and that in the steady state is the gas amount ratio. As a result, the previously proposed Japanese Patent Laid-Open No. 5-11823
Although the configuration is simpler than that of the method of No. 9, the behavior of exhaust gas can be accurately grasped. In addition, the method of Japanese Patent Application No. 5-296049 proposed separately, that is, Even when compared with, the net recirculation rate can be obtained more accurately by expressing the behavior of the exhaust gas from the flow rate characteristic of the exhaust recirculation valve.

【0060】更に、ガス量割合を用いているため、ガス
量に対する排気温度や排圧の影響をかなりの程度まで吸
収することができ、その意味でも推定精度が向上してい
る。更に、排気還流が中止されてリフト指令値が零にな
るときも、実リフトが零になるまで前回値をホールドす
ることから、弁の動特性の遅れを吸収することができて
適正に排気還流率を推定することができ、また演算で不
都合が生じることがない。
Further, since the gas amount ratio is used, the influence of exhaust temperature and exhaust pressure on the gas amount can be absorbed to a considerable extent, and in that sense, the estimation accuracy is improved. Further, even when the exhaust gas recirculation is stopped and the lift command value becomes zero, the previous value is held until the actual lift becomes zero, so the delay in the dynamic characteristics of the valve can be absorbed and the exhaust gas recirculation can be properly performed. The rate can be estimated and no inconvenience occurs in the calculation.

【0061】また、続いて行った燃料噴射量の補正にお
いて、補正係数KEGRNが還流ガスの挙動を正確に把
握する正味還流率に基づいて求められるので、結果的
に、燃料噴射量を排気還流分だけ正確に減少補正するこ
とができ、空燃比を目標値に精度良く制御することがで
き、リーンスパイクないしはリッチスパイクの発生を防
止することができる。
Further, in the subsequent correction of the fuel injection amount, the correction coefficient KEGRN is obtained based on the net recirculation rate that accurately grasps the behavior of the recirculation gas. Therefore, the air-fuel ratio can be accurately controlled to the target value, and the occurrence of lean spikes or rich spikes can be prevented.

【0062】図7はこの発明の第2実施例を示すフロー
・チャートで、前記した先願の特開平5−118239
号の手法で提案した還流ガスの輸送遅れを補正する手法
を部分的に用いる手法である。即ち、従前の実施例では
図1において排気還流通路18の吸気管2側の開口端1
8aと燃焼室との距離が比較的短く、還流ガスの輸送遅
れが無視できる場合であることを前提とするが、第2実
施例ではその輸送遅れを考慮した。より具体的には、燃
料噴射補正係数の演算を相違させるようにした。
FIG. 7 is a flow chart showing a second embodiment of the present invention, which is the aforementioned Japanese Patent Application Laid-Open No. 5-118239.
This is a method that partially uses the method for correcting the transport delay of the reflux gas that was proposed in No. That is, in the previous embodiment, the open end 1 of the exhaust gas recirculation passage 18 on the intake pipe 2 side in FIG.
It is premised that the distance between 8a and the combustion chamber is relatively short and the transport delay of the reflux gas can be ignored, but the transport delay was taken into consideration in the second embodiment. More specifically, the calculation of the fuel injection correction coefficient is made different.

【0063】図7を参照して説明すると、S200にお
いて機関回転数と機関負荷とから求めた基本燃料噴射量
Timに正味還流率(図2のS26で求めたもの)を乗
じて要求還流ガス量(見掛け上、排気還流弁19を通過
した還流ガス量)gt(n)を求める。ここで、nはあ
る制御サイクル、より具体的には図2フロー・チャート
のプログラムの起動サイクル(請求項7項で記載した時
刻tに同じ)を意味する。続いてS202に進み、その
制御サイクルnにおいて燃焼室に吸入される真の還流ガ
ス量gin(n)を図示の如く推定する。
Referring to FIG. 7, the required recirculation gas amount is obtained by multiplying the basic fuel injection amount Tim obtained from the engine speed and the engine load in S200 by the net recirculation rate (obtained in S26 of FIG. 2). (Apparently, the amount of recirculation gas that has passed through the exhaust gas recirculation valve 19) gt (n) is determined. Here, n means a certain control cycle, more specifically, a program activation cycle of the flow chart of FIG. 2 (same as time t described in claim 7). Next, in S202, the true recirculation gas amount gin (n) drawn into the combustion chamber in the control cycle n is estimated as shown in the figure.

【0064】ここで、gtは上に説明したが、その他
は、 EA...直接率(ある制御サイクルnにおいて排気還
流弁19を通過した還流ガスgtのうち、その制御サイ
クルn中に燃焼室に吸入されるガスの割合を示す値)、 EB...持ち去り率(前の制御サイクルn─1までに
排気還流弁19を通過し、排気還流弁19から燃焼室ま
での間に滞留している還流ガス量gc(n−1)のう
ち、制御サイクルnに燃焼室に吸入されるガスの割合を
示す値)、である。
Here, although gt has been described above, the others are described in EA. . . Direct ratio (a value indicating the ratio of the gas sucked into the combustion chamber during the control cycle n among the recirculation gas gt that has passed through the exhaust gas recirculation valve 19 in a certain control cycle n), EB. . . Carry-out rate (of the recirculation gas amount gc (n-1) that has passed through the exhaust gas recirculation valve 19 by the previous control cycle n-1 and has accumulated between the exhaust gas recirculation valve 19 and the combustion chamber, the control cycle n is a value indicating the ratio of the gas sucked into the combustion chamber).

【0065】即ち、要求還流ガス量gtに直接率EAを
乗じてその制御サイクルn中に排気還流弁19を通過し
て燃焼室に吸入されたガス量を求め、滞留ガス量gcに
持ち去り率EBを乗じて以前n−1から滞留していてそ
の制御サイクルn中に燃焼室に吸入されたガス量を求
め、両者を合算してその制御サイクルnに燃焼室に吸入
されたと推定される真の還流ガス量gin(n)を求め
る。
That is, the required recirculation gas amount gt is multiplied by the direct ratio EA to obtain the amount of gas sucked into the combustion chamber through the exhaust gas recirculation valve 19 during the control cycle n, and the retained gas amount gc is taken away. It is presumed that the amount of gas that was previously accumulated from n-1 multiplied by EB and was sucked into the combustion chamber during the control cycle n is summed up, and the two are summed up to be taken into the combustion chamber during the control cycle n. The reflux gas amount gin (n) of is calculated.

【0066】続いてS204に進み、真の還流ガス量g
in(n)を基本燃料噴射量Timで除算した値を1か
ら減算して燃料噴射補正係数KEGRNを求める。続い
てS206に進み、次回のプログラム起動時の演算のた
め、滞留ガス量gc(n)を更新しておく。次回のプロ
グラム起動時にはS206で求めたgc(n)がS20
2でgc(n−1)と置き換えられ、そこで真の要求ガ
ス量gin(n)が算出される。尚、この輸送遅れ補償
の詳細は前記した先願特開平5−118239号の5頁
以降に述べられているので、説明はこの程度に止める。
Next, in S204, the true recirculation gas amount g
A value obtained by dividing in (n) by the basic fuel injection amount Tim is subtracted from 1 to obtain the fuel injection correction coefficient KEGRN. Then, the process proceeds to S206, and the amount of staying gas gc (n) is updated for the calculation at the next program startup. When the program is started next time, gc (n) obtained in S206 is S20.
2 is replaced with gc (n-1), and the true required gas amount gin (n) is calculated there. The details of this transportation delay compensation are described on page 5 and after of the above-mentioned Japanese Patent Application Laid-Open No. 5-118239, so the description will be limited to this extent.

【0067】第2実施例は上記の如く構成したので、還
流ガスの輸送遅れが無視し難い場合でも、的確に燃料噴
射量を補正することができる。
Since the second embodiment is configured as described above, the fuel injection amount can be accurately corrected even when the transport delay of the reflux gas is hard to ignore.

【0068】尚、第2実施例では先願で用いた手法から
輸送遅れを推定したが、単に輸送遅れを一次遅れとして
単純化しても良い。
In the second embodiment, the transportation delay is estimated from the method used in the prior application, but the transportation delay may be simplified to be a primary delay.

【0069】更に、第2実施例では、求めた正味還流率
で、前記した先願特開平5−118239号で提案した
ように、燃料の輸送遅れに係るパラメータを補正しても
良い。
Further, in the second embodiment, the parameter relating to the fuel transportation delay may be corrected by the obtained net reflux rate, as proposed in the above-mentioned Japanese Patent Application Laid-Open No. 5-118239.

【0070】図8はこの発明の第3実施例を示す、図2
の部分フロー・チャートである。第3実施例の場合、S
16で実リフトLACTが零でないことを確認してS1
60に進み、そこでリフト指令値QCMDを検索した後
S162に進んでリフト指令値QCMDを所定値(閾
値)QCMDLL(微小値)と比較する。そして、所定値
以下と判断されるときはS300に進んで前回値QCM
Dn−1をホールドする。残余の構成は第1実施例と同
様であり、効果も異ならない。
FIG. 8 shows a third embodiment of the present invention, FIG.
3 is a partial flow chart of FIG. In the case of the third embodiment, S
After confirming that the actual lift LACT is not zero at 16, S1
In step S60, the lift command value QCMD is retrieved, and then in step S162, the lift command value QCMD is compared with a predetermined value (threshold value) QCMDLL (minute value). When it is determined that the value is equal to or less than the predetermined value, the process proceeds to S300 and the previous value QCM
Hold Dn-1. The rest of the configuration is the same as that of the first embodiment, and the effect is not different.

【0071】尚、上記した第1、第2、第3実施例にお
いて、図2のS12,S20,S22などで大気圧を用
いたが、それに代えて排気圧力を用いても良い。
In the first, second and third embodiments described above, the atmospheric pressure is used in S12, S20, S22, etc. of FIG. 2, but the exhaust pressure may be used instead.

【0072】尚、上記において、値LCMD、KEGR
MAP、QCMD、QACTをマップ値として設定して
おいたが、その都度演算で求めても良い。
In the above, the values LCMD, KEGR
Although MAP, QCMD, and QACT have been set as map values, they may be calculated each time.

【0073】尚、上記において、排気還流弁として負圧
式のものを用いたが、電気式であっても良い。
In the above description, the exhaust gas recirculation valve is of the negative pressure type, but may be of the electric type.

【0074】更に、機関負荷を示すパラメータとして吸
気圧力を用いたが、吸入空気量、スロットル開度などを
用いても良い。
Further, although the intake pressure is used as the parameter indicating the engine load, the intake air amount, throttle opening, etc. may be used.

【0075】[0075]

【発明の効果】請求項1項にあっては、実際に燃焼室に
吸入される正味の排気還流率を的確に推定することがで
きる。
According to the first aspect of the present invention, the net exhaust gas recirculation rate actually sucked into the combustion chamber can be accurately estimated.

【0076】請求項2項にあっては、空燃比を制御する
ときの制御精度が向上し、リーンスパイクないしはリッ
チスパイクなどが生じることがない。
According to the second aspect of the present invention, the control accuracy when controlling the air-fuel ratio is improved, and no lean spike or rich spike occurs.

【0077】請求項3項にあっては、請求項2項と同様
の作用効果を有する。
The third aspect has the same effect as the second aspect.

【0078】請求項4項にあっては、請求項2項ないし
3項と同様の作用効果を有する。
According to the fourth aspect, the same operation and effect as those of the second to third aspects are obtained.

【0079】請求項5項にあっては、請求項1項または
2項と同様の作用効果を有する。
The fifth aspect has the same operational effect as the first or second aspect.

【0080】請求項6項にあっては、排気還流弁の動特
性の遅れを吸収できると共に、演算が不能になるなどの
不都合が生じることがない。
According to the sixth aspect, it is possible to absorb the delay in the dynamic characteristics of the exhaust gas recirculation valve, and there is no inconvenience such as the inability to calculate.

【0081】請求項7項にあっては、還流ガスの輸送遅
れが生じたときも、正味の排気還流率を精度良く推定す
ることができる。
According to the seventh aspect, the net exhaust gas recirculation rate can be accurately estimated even when the transportation delay of the recirculation gas occurs.

【0082】請求項8項にあっては、還流ガスの輸送遅
れが生じたときも、空燃比の制御精度を向上させること
ができる。
According to the eighth aspect, the control accuracy of the air-fuel ratio can be improved even when the transportation of the recirculated gas is delayed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る内燃機関の排気還流率推定装置
を全体的に示すブロック図である。
FIG. 1 is a block diagram generally showing an exhaust gas recirculation rate estimation device for an internal combustion engine according to the present invention.

【図2】図1の内燃機関の排気還流率推定装置の動作を
示すフロー・チャートである。
2 is a flow chart showing the operation of the exhaust gas recirculation rate estimation device for an internal combustion engine of FIG. 1. FIG.

【図3】この発明に係る排気還流率推定の基本アルゴリ
ズムを示す説明図で、図2フロー・チャートの演算に使
用される排気還流率のリフト量に対するガス量の特性を
示す説明図である。
FIG. 3 is an explanatory diagram showing a basic algorithm for estimating an exhaust gas recirculation rate according to the present invention, and is an explanatory diagram showing a characteristic of a gas amount with respect to a lift amount of an exhaust gas recirculation rate used in the calculation of the flow chart of FIG. 2;

【図4】図2フロー・チャートの演算に使用される定常
時の排気還流率補正係数(基本排気還流率補正係数)の
マップ特性を示す説明図である。
FIG. 4 is an explanatory diagram showing map characteristics of an exhaust gas recirculation ratio correction coefficient (basic exhaust gas recirculation ratio correction coefficient) in a steady state used in the calculation of the flow chart of FIG. 2;

【図5】図2フロー・チャートの演算に使用されるリフ
ト指令値のマップ特性を示す説明図である。
FIG. 5 is an explanatory diagram showing a map characteristic of a lift command value used in the calculation of the flow chart of FIG.

【図6】図2フロー・チャートの燃料噴射補正係数の算
出作業を示すサブルーチン・フロー・チャートである。
FIG. 6 is a subroutine flow chart showing the operation of calculating the fuel injection correction coefficient in the flow chart of FIG.

【図7】この発明の第2実施例を示すフロー・チャート
で、図2フロー・チャートの燃料噴射補正係数の算出作
業を示すサブルーチン・フロー・チャートである。
FIG. 7 is a flow chart showing a second embodiment of the present invention, and is a subroutine flow chart showing the operation of calculating the fuel injection correction coefficient in the flow chart of FIG.

【図8】この発明の第3実施例を示す、図2フロー・チ
ャートの要部フロー・チャートである。
FIG. 8 is a main part flow chart of the flow chart of FIG. 2 showing a third embodiment of the present invention.

【図9】排気還流率の動作特性を一般的に示すタイミン
グ・チャートである。
FIG. 9 is a timing chart generally showing operating characteristics of exhaust gas recirculation rate.

【符号の説明】[Explanation of symbols]

1 内燃機関本体 2 吸気管 5 電子制御ユニット(ECU) 7 絶対圧センサ 10 クランク角センサ 16 大気圧センサ 18 排気還流通路 19 排気還流弁 25 排気還流機構 DESCRIPTION OF SYMBOLS 1 Internal combustion engine main body 2 Intake pipe 5 Electronic control unit (ECU) 7 Absolute pressure sensor 10 Crank angle sensor 16 Atmospheric pressure sensor 18 Exhaust gas recirculation passage 19 Exhaust gas recirculation valve 25 Exhaust gas recirculation mechanism

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路と吸気通路とを接続
して排気ガスの少なくとも一部を前記吸気通路に還流す
る排気還流通路と、該排気還流通路を開閉する排気還流
弁とを備えてなる内燃機関の排気還流率を推定する装置
において、 a.少なくとも機関回転数と機関負荷とから基本排気還
流率を決定する基本排気還流率決定手段、 b.前記排気還流弁の流量特性に基づき、前記排気還流
弁の開口面積に応じて前記排気還流弁を通過する排気ガ
ス量QACTを推定する第1の推定手段、 c.前記流量特性に基づいて、前記排気還流弁の開口面
積指令値に応じて前記排気還流弁を通過する排気ガス量
QCMDを推定する第2の推定手段、および d.前記排気ガス量QACT,QCMDに応じて実際に
燃焼室に吸入される正味排気還流率を推定する正味排気
還流率推定手段、 とからなることを特徴とする内燃機関の排気還流率推定
装置。
1. An exhaust gas recirculation passage that connects an exhaust passage and an intake passage of an internal combustion engine to recirculate at least a part of exhaust gas to the intake passage, and an exhaust recirculation valve that opens and closes the exhaust recirculation passage. For estimating the exhaust gas recirculation rate of another internal combustion engine, comprising: a. Basic exhaust gas recirculation rate determining means for determining the basic exhaust gas recirculation rate from at least the engine speed and the engine load, b. First estimating means for estimating the exhaust gas amount QACT passing through the exhaust gas recirculation valve according to the opening area of the exhaust gas recirculation valve based on the flow rate characteristic of the exhaust gas recirculation valve, c. Second estimating means for estimating the exhaust gas amount QCMD passing through the exhaust gas recirculation valve according to the opening area command value of the exhaust gas recirculation valve based on the flow rate characteristic; and d. An exhaust gas recirculation rate estimating device for an internal combustion engine, comprising: net exhaust gas recirculation rate estimating means for estimating a net exhaust gas recirculation rate actually sucked into a combustion chamber according to the exhaust gas amounts QACT and QCMD.
【請求項2】 前記正味排気還流率推定手段は、前記正
味排気還流率に基づいて補正係数を求め、それに基づい
て前記燃焼室に供給されるべき燃料噴射量を補正する手
段を含むことを特徴とする請求項1項記載の内燃機関の
排気還流率推定装置。
2. The net exhaust gas recirculation rate estimating means includes means for obtaining a correction coefficient based on the net exhaust gas recirculation rate and correcting the fuel injection amount to be supplied to the combustion chamber based on the correction coefficient. The exhaust gas recirculation rate estimation device for an internal combustion engine according to claim 1.
【請求項3】 前記流量特性は、少なくとも前記排気還
流弁の上下流の圧力比と開口面積とから決定されること
を特徴とする請求項1項または2項記載の内燃機関の排
気還流率推定装置。
3. The exhaust gas recirculation rate estimation of an internal combustion engine according to claim 1, wherein the flow rate characteristic is determined at least from a pressure ratio upstream and downstream of the exhaust gas recirculation valve and an opening area. apparatus.
【請求項4】 前記圧力比が、前記吸気通路の圧力と大
気圧もしくは排気圧力との比であることを特徴とする請
求項3項記載の内燃機関の排気還流率推定装置。
4. The exhaust gas recirculation rate estimating apparatus for an internal combustion engine according to claim 3, wherein the pressure ratio is a ratio of the pressure in the intake passage to the atmospheric pressure or the exhaust pressure.
【請求項5】 前記正味排気還流率推定手段は、前記排
気ガス量QACT,QCMDの比QACT/QCMDを
演算して正味排気還流率を推定することを特徴とする請
求項1項ないし4項のいずれかに記載の内燃機関の排気
還流率推定装置。
5. The net exhaust gas recirculation rate estimating means calculates the ratio QACT / QCMD of the exhaust gas amounts QACT, QCMD to estimate the net exhaust gas recirculation rate. An exhaust gas recirculation rate estimation device for an internal combustion engine according to any one of claims.
【請求項6】 前記正味排気還流率推定手段は、前記開
口面積指令値と排気ガス量QCMDの少なくともいずれ
かを閾値と比較し、閾値以下と判断されるとき、前記開
口面積指令値と排気ガス量QCMDの少なくとも一方
と、基本排気還流率補正係数とを所定値にホールドする
ことを特徴とする請求項1項ないし5項のいずれかに記
載の内燃機関の排気還流率推定装置。
6. The net exhaust gas recirculation rate estimating means compares at least one of the opening area command value and the exhaust gas amount QCMD with a threshold value, and when it is determined that the opening area command value and the exhaust gas amount are equal to or less than a threshold value. 6. The exhaust gas recirculation rate estimation device for an internal combustion engine according to claim 1, wherein at least one of the quantity QCMD and the basic exhaust gas recirculation rate correction coefficient are held at predetermined values.
【請求項7】 前記正味排気還流率推定手段は、 e.ある期間tに前記排気還流弁を通過した排気ガス量
gtに対し、該期間t内に燃焼室に吸入される排気ガス
量の比を示す直接率EAを決定する直接率決定手段、 f.前記期間t以前に前記排気還流弁を通過した排気ガ
スのうち、燃焼室以外の部位に滞留している量gc(t
−1)に対し、該期間t内に燃焼室に吸入される排気ガ
ス量の比を示す持ち去り率EBを決定する持ち去り率決
定手段、とを含み、前記直接率EAと持ち去り率EBと
から該期間t中に燃焼室に吸入される排気ガス量gin
を求め、それに応じて前記正味排気還流率を推定するこ
とを特徴とする請求項1項ないし6項のいずれかに記載
の内燃機関の排気還流率推定装置。
7. The net exhaust gas recirculation rate estimating means comprises: e. A direct rate determining means for determining a direct rate EA indicating a ratio of the exhaust gas amount gt that has passed through the exhaust gas recirculation valve in a certain period t to the exhaust gas amount in the period t, f. Of the exhaust gas that has passed through the exhaust gas recirculation valve before the period t, the amount gc (t
-1), a take-away rate determining means for determining a take-away rate EB indicating a ratio of the amount of exhaust gas sucked into the combustion chamber within the period t, and the direct rate EA and the take-away rate EB. And the exhaust gas amount gin that is taken into the combustion chamber during the period t
7. The exhaust gas recirculation rate estimation device for an internal combustion engine according to claim 1, wherein the net exhaust gas recirculation rate is estimated according to the above equation.
【請求項8】 前記正味排気還流率推定手段は、前記正
味排気還流率に基づいて補正係数を求め、それに基づい
て前記燃焼室に供給されるべき燃料噴射量を補正する手
段を含むことを特徴とする請求項7項記載の内燃機関の
排気還流率推定装置。
8. The net exhaust gas recirculation rate estimating means includes means for obtaining a correction coefficient based on the net exhaust gas recirculation rate and correcting the fuel injection amount to be supplied to the combustion chamber based on the correction coefficient. The exhaust gas recirculation rate estimation device for an internal combustion engine according to claim 7.
JP10055794A 1994-04-14 1994-04-14 Exhaust gas recirculation rate estimation device for internal combustion engine Expired - Lifetime JP3307770B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10055794A JP3307770B2 (en) 1994-04-14 1994-04-14 Exhaust gas recirculation rate estimation device for internal combustion engine
US08/421,181 US5505174A (en) 1994-04-14 1995-04-13 EGR rate estimation system for internal combustion engine
EP95105659A EP0677651B1 (en) 1994-04-14 1995-04-13 EGR rate estimation system for internal combustion engine
DE69530721T DE69530721T2 (en) 1994-04-14 1995-04-13 System for estimating the exhaust gas recirculation rate for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10055794A JP3307770B2 (en) 1994-04-14 1994-04-14 Exhaust gas recirculation rate estimation device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH07279774A true JPH07279774A (en) 1995-10-27
JP3307770B2 JP3307770B2 (en) 2002-07-24

Family

ID=14277241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10055794A Expired - Lifetime JP3307770B2 (en) 1994-04-14 1994-04-14 Exhaust gas recirculation rate estimation device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3307770B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657736A (en) * 1994-12-30 1997-08-19 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5657735A (en) * 1994-12-30 1997-08-19 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5758308A (en) * 1994-12-30 1998-05-26 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5755094A (en) * 1994-12-30 1998-05-26 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5758490A (en) * 1994-12-30 1998-06-02 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5806012A (en) * 1994-12-30 1998-09-08 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5908463A (en) * 1995-02-25 1999-06-01 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
DE102013222497A1 (en) 2013-03-18 2014-09-18 Mitsubishi Electric Corporation Control device for an internal combustion engine
DE102014201757A1 (en) 2013-07-12 2015-01-15 Mitsubishi Electric Corp. Internal combustion engine control device
DE102015200432A1 (en) 2014-09-10 2016-03-10 Mitsubishi Electric Corporation Internal combustion engine EGR flow rate estimating device and internal combustion engine control device
US10138831B2 (en) 2017-03-08 2018-11-27 Mitsubishi Electric Corporation Controller and control method for internal combustion engine
JP2019007437A (en) * 2017-06-27 2019-01-17 三菱電機株式会社 Control device and control method of internal combustion engine

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657736A (en) * 1994-12-30 1997-08-19 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5657735A (en) * 1994-12-30 1997-08-19 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5758308A (en) * 1994-12-30 1998-05-26 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5755094A (en) * 1994-12-30 1998-05-26 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5758490A (en) * 1994-12-30 1998-06-02 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5806012A (en) * 1994-12-30 1998-09-08 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
US5908463A (en) * 1995-02-25 1999-06-01 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine
DE102013222497A1 (en) 2013-03-18 2014-09-18 Mitsubishi Electric Corporation Control device for an internal combustion engine
JP2014181561A (en) * 2013-03-18 2014-09-29 Mitsubishi Electric Corp Control device for internal combustion engine
US9784197B2 (en) 2013-03-18 2017-10-10 Mitsubishi Electric Corporation Internal combustion engine control apparatus
JP2015017569A (en) * 2013-07-12 2015-01-29 三菱電機株式会社 Control device of internal combustion engine
US9341135B2 (en) 2013-07-12 2016-05-17 Mitsubishi Electric Corporation Internal combustion engine control apparatus
DE102014201757A1 (en) 2013-07-12 2015-01-15 Mitsubishi Electric Corp. Internal combustion engine control device
DE102014201757B4 (en) * 2013-07-12 2019-10-24 Mitsubishi Electric Corp. Engine control device
DE102015200432A1 (en) 2014-09-10 2016-03-10 Mitsubishi Electric Corporation Internal combustion engine EGR flow rate estimating device and internal combustion engine control device
US10125703B2 (en) 2014-09-10 2018-11-13 Mitsubishi Electric Corporation Internal combustion engine EGR flow rate estimation apparatus and internal combustion engine control apparatus
DE102015200432B4 (en) 2014-09-10 2022-07-14 Mitsubishi Electric Corporation Internal combustion engine EGR flow rate estimation device and internal combustion engine control device
US10138831B2 (en) 2017-03-08 2018-11-27 Mitsubishi Electric Corporation Controller and control method for internal combustion engine
DE102017214423B4 (en) * 2017-03-08 2021-02-11 Mitsubishi Electric Corporation CONTROL AND CONTROL PROCEDURES FOR COMBUSTION ENGINE
JP2019007437A (en) * 2017-06-27 2019-01-17 三菱電機株式会社 Control device and control method of internal combustion engine

Also Published As

Publication number Publication date
JP3307770B2 (en) 2002-07-24

Similar Documents

Publication Publication Date Title
US5505174A (en) EGR rate estimation system for internal combustion engine
JP4414377B2 (en) Control device for internal combustion engine
KR100684249B1 (en) Internal egr parameter estimating device for internal combustion engine
KR100649403B1 (en) Device and method for estimating occlusion amount of ??? occlusion catalyst
JP3771454B2 (en) Control device for internal combustion engine
US6196197B1 (en) Engine control apparatus and method having cylinder-charged air quantity correction by intake/exhaust valve operation
JP3307770B2 (en) Exhaust gas recirculation rate estimation device for internal combustion engine
US20050066937A1 (en) Control apparatus for controlling the amount of intake air into an engine
US7769531B2 (en) Control device of internal combustion engine
KR100284376B1 (en) Exhaust Recirculation Control Device of Internal Combustion Engine
US20050234630A1 (en) Intake air parameter estimating device for internal combustion engine
EP1835157B1 (en) Air-fuel ratio control
JP2009047130A (en) Control device for internal combustion engine
JP3268143B2 (en) Exhaust gas recirculation rate estimation device for internal combustion engine
US6481405B2 (en) Fuel supply control system for internal combustion engine
US20120059568A1 (en) Engine fuel injection control apparatus
JP3303274B2 (en) Control device for electronically controlled throttle internal combustion engine
JP2000110647A (en) Control device for engine
JP2007303407A (en) Abnormality determination device for exhaust gas recirculation device
JPS63147953A (en) Method of controlling supply of fuel for internal combustion engine
JP3337339B2 (en) Apparatus for estimating intake air amount of internal combustion engine
JP4385542B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0746750Y2 (en) Air-fuel ratio controller for engine
JPH06173743A (en) Air-fuel ratio learning control method for internal combustion engine
JP3572767B2 (en) Diesel engine intake air amount detection device and fuel control device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130517

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130517

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140517

Year of fee payment: 12

EXPY Cancellation because of completion of term