JPH07278768A - Method for decreasing hydrogen embrittlement - Google Patents

Method for decreasing hydrogen embrittlement

Info

Publication number
JPH07278768A
JPH07278768A JP6070654A JP7065494A JPH07278768A JP H07278768 A JPH07278768 A JP H07278768A JP 6070654 A JP6070654 A JP 6070654A JP 7065494 A JP7065494 A JP 7065494A JP H07278768 A JPH07278768 A JP H07278768A
Authority
JP
Japan
Prior art keywords
hydrogen embrittlement
alloy member
hydrogen
solution
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6070654A
Other languages
Japanese (ja)
Inventor
Yasumasa Nakanishi
保正 中西
Ryoichi Katsuya
涼一 勝谷
Masahiro Yuki
正弘 結城
Kenji Matsui
健治 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP6070654A priority Critical patent/JPH07278768A/en
Publication of JPH07278768A publication Critical patent/JPH07278768A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To effectively decrease and prevent the hydrogen embrittlement of an alloy member. CONSTITUTION:The alloy member 5 subjected to an aging treatment over the entire part is prepd. The surface of the alloy member 5 is irradiated with a laser beam 8 and the surface of this irradiated part 9 is heated to a temp. above the solid soln. temp., by which the precipitate formed by the aging treatment in the alloy member 5 is solutionized and is dispersed into the structure. The irradiated part 9 is thereafter rapidly cooled at a solutionizing rate intrinsic to the material of the alloy member 5, by which the hydrogen embrittlement resistant part having the uniform structure without contg. the precipitate is formed on the surface of the irradiated part 9. As a result, the alloy member 5 having low hydrogen embrittlement sensitivity is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素脆化低減方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reducing hydrogen embrittlement.

【0002】[0002]

【従来の技術】例えば、ロケットエンジンやジェットエ
ンジンなどの水素を燃料とするエンジンなどでは、高温
強度の高いニッケル基超合金などの合金がタービンブレ
ード1(図7参照)や配管2(図8参照)その他の素材
として使用されているが、これらの合金部材3には、エ
ンジン内に存在する高温高圧の水素が表面に吸着浸透す
ることによって脆くなる、いわゆる水素脆化が生じるお
それがある。
2. Description of the Related Art For example, in an engine using hydrogen as a fuel such as a rocket engine or a jet engine, an alloy such as a nickel-base superalloy having high high temperature strength is used for a turbine blade 1 (see FIG. 7) and a pipe 2 (see FIG. 8). Although it is used as another material, there is a possibility that these alloy members 3 become brittle when hydrogen at high temperature and high pressure existing in the engine is adsorbed and permeated on the surface thereof, so that the alloy member 3 becomes brittle.

【0003】そこで、従来は、合金部材3の表面に、図
9に示すような、金メッキなどの水素透過防止膜4を形
成して、水素透過防止膜4により合金部材3の水素脆化
を防止させるようにしている。
Therefore, conventionally, a hydrogen permeation preventive film 4 such as gold plating is formed on the surface of the alloy member 3 as shown in FIG. 9, and the hydrogen permeation preventive film 4 prevents hydrogen embrittlement of the alloy member 3. I am trying to let you.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、合金部
材3の表面に金メッキなどの水素透過防止膜4を形成し
た場合でも長時間使用しているうちに水素は侵入し、さ
らに何らかの原因で水素透過防止膜4が破れるなどした
時に、破れた部分から水素が入り込んで水素脆化を引起
こしてしまうことなるので、水素透過防止膜4では水素
脆化防止機能に対する信頼性が低いという問題があっ
た。
However, even when the hydrogen permeation preventive film 4 such as gold plating is formed on the surface of the alloy member 3, hydrogen invades during long-term use and further prevents hydrogen permeation for some reason. When the film 4 is broken, hydrogen enters from the broken part and causes hydrogen embrittlement. Therefore, the hydrogen permeation prevention film 4 has a problem that the hydrogen embrittlement prevention function has low reliability.

【0005】本発明は、上述の実情に鑑み、合金部材の
水素脆化を有効に低減・防止し得るようにした水素脆化
低減方法を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for reducing hydrogen embrittlement that can effectively reduce and prevent hydrogen embrittlement of an alloy member.

【0006】[0006]

【課題を解決するための手段】本発明は、全体を時効処
理された合金部材の表面に、レーザービームを照射し
て、照射部分の表面を固溶温度以上に加熱することによ
り、合金部材中の時効処理による析出物を固溶させ、そ
の後、照射部分を急冷することにより、照射部分の表面
に析出物がなく組織が均一な耐水素脆化部を形成するこ
とを特徴とする水素脆化低減方法にかかるものである。
According to the present invention, the surface of an alloy member which has been aged as a whole is irradiated with a laser beam to heat the surface of the irradiated portion to a temperature not lower than the solid solution temperature. The hydrogen embrittlement is characterized by forming a solid solution of precipitates by the aging treatment, and then rapidly cooling the irradiated part to form a hydrogen embrittlement resistant part with a uniform structure and no precipitate on the surface of the irradiated part. This is a reduction method.

【0007】[0007]

【作用】本発明の作用は以下の通りである。The operation of the present invention is as follows.

【0008】全体を時効処理された合金部材の表面に、
レーザービームを照射して、照射部分の表面を固溶温度
以上に加熱することにより、合金部材中の時効処理によ
る析出物が固溶される。
The entire surface of the alloy member that has been aged is
By irradiating a laser beam and heating the surface of the irradiated portion to a temperature above the solid solution temperature, precipitates due to the aging treatment in the alloy member are solid-dissolved.

【0009】その後、照射部分を急冷することにより、
照射された表面に耐水素脆化部が形成される。
After that, by rapidly cooling the irradiated part,
A hydrogen embrittlement resistant portion is formed on the irradiated surface.

【0010】このようにして形成された、耐水素脆化部
は、時効材に比べて延性が高くなり、初期の微小亀裂が
発生し難くなるため、水素脆化に対して強くなる。
The hydrogen embrittlement resistant portion formed in this manner has higher ductility than the aged material and is less likely to cause initial microcracks, and is therefore resistant to hydrogen embrittlement.

【0011】又、レーザー照射の影響を受けていない内
部は全体が時効材で、表面のみが溶体化されているた
め、強度が高く、且つ、水素脆化の少ない理想的な部材
構造となる。
Further, since the inside which is not affected by laser irradiation is an aging material as a whole and only the surface is solutionized, an ideal member structure having high strength and little hydrogen embrittlement is obtained.

【0012】[0012]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1・図2は、本発明の一実施例である。1 and 2 show an embodiment of the present invention.

【0014】又、図1中、5はロケットエンジンやジェ
ットエンジンなどの水素を燃料とするエンジンなどに用
いられているタービンブレードなどの合金部材、図2
中、6は前記タービンブレードと同様、ロケットエンジ
ンやジェットエンジンなどの水素を燃料とするエンジン
などに用いられている配管などの合金部材であり、これ
らの合金部材5,6はニッケル基超合金などの合金で構
成されており、又、全体を予め溶体化処理後に時効処理
されている。
Further, in FIG. 1, reference numeral 5 denotes an alloy member such as a turbine blade used in a hydrogen fueled engine such as a rocket engine or a jet engine, and FIG.
Like the turbine blade, 6 is an alloy member such as a pipe used in a hydrogen-fueled engine such as a rocket engine or a jet engine. These alloy members 5 and 6 are nickel-base superalloys or the like. The alloy is made of the above alloy, and the whole is pre-solution-treated and then aged.

【0015】ここで、時効処理とは、熱処理を行った後
に、時間の経過による析出硬化などによって、材料の強
度を次第に上昇させる処理をいう。
Here, the aging treatment means a treatment for gradually increasing the strength of a material after heat treatment by precipitation hardening or the like with the passage of time.

【0016】そして、特に、ニッケル基超合金などのあ
る種の合金には、温度降下による溶解度の激減に伴い、
結晶組織の間に炭化物などの過飽和元素が析出して、強
度などの物理的特性が向上する性質があるので、通常、
上記した合金部材5,6では、時効処理を人為的に施す
ことにより、強度などの物理的特性の高い部材として使
用している。
And, in particular, in some alloys such as nickel-base superalloys, due to a drastic decrease in solubility due to temperature drop,
Since supersaturated elements such as carbides are precipitated between the crystal structures, physical properties such as strength are improved.
The alloy members 5 and 6 described above are used as members having high physical properties such as strength by artificially performing aging treatment.

【0017】又、図中、7はレーザートーチ、8はレー
ザートーチ7から合金部材5,6へ照射されるレーザー
ビーム、9はレーザービーム8の合金部材5,6への照
射部分である。
In the figure, 7 is a laser torch, 8 is a laser beam emitted from the laser torch 7 to the alloy members 5 and 6, and 9 is a portion where the laser beam 8 is emitted to the alloy members 5 and 6.

【0018】そして、本発明では、全体を溶体化処理後
に時効処理された合金部材5,6における応力集中部な
どの表面に、レーザートーチ7からレーザービーム8を
局部的に照射して、照射部分9の表面を固溶温度以上の
温度に加熱する。
In the present invention, the laser beam 8 is locally irradiated from the laser torch 7 to the surface of the stress-concentrated portions of the alloy members 5 and 6 which have been aged after the solution heat treatment, and the irradiated portions are irradiated. The surface of 9 is heated to a temperature not lower than the solid solution temperature.

【0019】ここで、固溶温度とは、合金部材5,6の
内部で元素の拡散や分散が生じる温度であり、固溶温度
以上の温度には、溶融温度をも含むものとする。
Here, the solid solution temperature is a temperature at which elements diffuse or disperse inside the alloy members 5 and 6, and the temperature above the solid solution temperature includes the melting temperature.

【0020】そして、照射部分9の温度を固溶温度以上
の温度で一定時間保持して、照射部分9に析出している
炭化物などの析出物を充分に固溶或いは溶融(以下、固
溶等という)させる。
Then, the temperature of the irradiated portion 9 is maintained at a temperature not lower than the solid solution temperature for a certain period of time to sufficiently dissolve or melt precipitates such as carbides deposited on the irradiated portion 9 (hereinafter referred to as solid solution etc.). To)

【0021】その後、固溶等した照射部分9を、合金部
材5,6に固有の冷却速度にて急冷し、溶体化組織を得
る。
Thereafter, the irradiated portion 9 that has been solid-soluted or the like is rapidly cooled at a cooling rate specific to the alloy members 5 and 6 to obtain a solution structure.

【0022】冷却手段は、任意であるが、一般に、合金
部材5,6が小さいものの場合には水冷で強制的に行わ
せる必要があり、合金部材5,6が大きいものの場合に
は空冷で充分である。
The cooling means is optional, but in general, when the alloy members 5 and 6 are small, it is necessary to force the cooling with water, and when the alloy members 5 and 6 are large, air cooling is sufficient. Is.

【0023】すると、照射部分9は、急冷されることに
より、固溶等された析出物が再び析出されることが防止
されるので、析出物のない均一な組織が形成されること
となり、照射部分9の表面が耐水素脆化部となる(溶体
化処理)。
Then, the irradiated portion 9 is rapidly cooled to prevent precipitation of solid solution and the like from being precipitated again, so that a uniform structure without precipitate is formed. The surface of the portion 9 becomes a hydrogen embrittlement resistant portion (solution treatment).

【0024】こうして溶体化された耐水素脆化部は、強
度は時効処理のままの部分(時効材)よりは劣るもの
の、延性が向上し、以下の理由で、水素脆化に対して強
い構造を持つようになる。
Although the strength of the solution-immobilized hydrogen embrittlement resistant portion is inferior to that of the as-aged portion (age-treated material), the ductility is improved, and the structure is resistant to hydrogen embrittlement for the following reasons. To have.

【0025】即ち、一般に水素中では、合金部材5,6
は、内部に析出物が存在しているため、合金部材5に応
力が発生して、該応力又はひずみが限界値を越えた時
に、析出物が破断して微小亀裂が生じる。すると、該微
小亀裂に水素が入り込むことによって亀裂が助長され、
該亀裂が急速に進展して、最終的に破断に至ることにな
る。時効材は溶体化のままと比べて水素中の亀裂発生限
界ひずみが小さいため、延性が低くなる。
That is, generally in hydrogen, the alloy members 5, 6 are
Since the precipitate exists inside the alloy member, stress is generated in the alloy member 5, and when the stress or strain exceeds the limit value, the precipitate breaks and a microcrack occurs. Then, the cracks are promoted by the entry of hydrogen into the microcracks,
The crack propagates rapidly and eventually leads to fracture. Since the aging material has a smaller critical strain for crack initiation in hydrogen as compared with the solution as it is, the ductility becomes low.

【0026】このような現象が、水素脆化であるが、表
面のみに溶体化処理を行われた場合には、初期の微小亀
裂発生の原因となる析出物がなく組織が均一であり、水
素中でも時効材に比べて延性(変形能)が高いため、水
素脆化に対して強くなる。
Although such a phenomenon is hydrogen embrittlement, when the solution treatment is performed only on the surface, there is no precipitate that causes the initial generation of microcracks, and the structure is uniform. Above all, the ductility (deformability) is higher than that of the aged material, so that it becomes stronger against hydrogen embrittlement.

【0027】このように本発明によれば、合金部材5,
6は、内部を強度の高い時効材としたまま、表面のみ
を、水素脆化に強い溶体化組織とすることができるの
で、理想的な部材とすることができる。
As described above, according to the present invention, the alloy member 5,
No. 6 can be an ideal member because it can be made into a solution-structured structure that is strong against hydrogen embrittlement while only the surface is made an aging material having high strength.

【0028】又、合金部材5,6は表面の組織自体を改
善しているので、合金部材3の表面に金メッキなどの水
素透過防止膜4を形成した場合のように、水素透過防止
膜4の破れによる水素脆化の発生などの問題がなく、水
素脆化防止機能を安定して発揮させることができる。
Further, since the alloy members 5 and 6 improve the surface texture themselves, the hydrogen permeation preventive film 4 is formed as in the case where the hydrogen permeation preventive film 4 such as gold plating is formed on the surface of the alloy member 3. There is no problem such as hydrogen embrittlement due to breakage, and the hydrogen embrittlement prevention function can be stably exhibited.

【0029】尚、合金部材5,6の強度低下を招かずに
水素脆化防止機能を発揮させるためには、耐水素脆化部
は、合金部材5,6の極く表面に限るのが好ましく、し
かも、水素脆化は応力集中部に集中的に発生するので、
応力集中部に限定して耐水素脆化部を形成すれば充分で
ある。従って、本実施例を実施するためには、炉による
全体熱処理では照射範囲や照射深さを高精度で制御する
ことができる制御性の高いレーザービーム8が不可欠と
なる。
In order to exert the function of preventing hydrogen embrittlement without lowering the strength of the alloy members 5 and 6, it is preferable that the hydrogen embrittlement resistant portion is limited to the very surface of the alloy members 5 and 6. Moreover, since hydrogen embrittlement occurs intensively in the stress concentration part,
It is sufficient to form the hydrogen embrittlement resistant portion only in the stress concentration portion. Therefore, in order to carry out the present embodiment, the laser beam 8 with high controllability that can control the irradiation range and the irradiation depth with high accuracy is indispensable in the overall heat treatment by the furnace.

【0030】以下に本発明の具体例を示す。Specific examples of the present invention are shown below.

【0031】図3(a)(b)は、材料(いわゆる、I
nconel 718材)の温度と時間との関係を示す
グラフであり、図3(a)は、材料を時効処理する場合
を表わし、図3(b)は、材料を溶体化処理する場合を
表わしている。
FIGS. 3A and 3B show materials (so-called I
nconel 718 material) is a graph showing the relationship between temperature and time. FIG. 3 (a) shows the case of aging the material, and FIG. 3 (b) shows the case of the solution treatment of the material. There is.

【0032】図3(a)では、材料全体を、図示しない
炉などで993Kまで加熱し、28.8ks(8時間)
の間保持した後、0.015K/sの速度で893Kま
で冷却し、更に、893Kで28.8ks(8時間)の
間保持し、その後、空冷でゆっくり自然放熱することに
より、時効材を得ている。
In FIG. 3 (a), the entire material is heated to 993K in a furnace (not shown) for 28.8 ks (8 hours).
After holding for a period of time, it is cooled to 893K at a rate of 0.015K / s, further held at 893K for 28.8ks (8 hours), and then naturally cooled by air cooling to obtain an aging material. ing.

【0033】こうしてできた時効材の丸棒につき、大気
中で静的引張試験を行ったところ、降伏応力が1040
MPa、引張強さが1360MPa、硬さが420Hv
と、非常に高強度の部材になることが確認された。
When a static tensile test was performed on the round bar of the aging material thus produced in the atmosphere, the yield stress was 1040.
MPa, tensile strength 1360 MPa, hardness 420 Hv
Then, it was confirmed that it would be a very high strength member.

【0034】又、大気中における延性については、延び
が32%、絞りが41%という結果が得られた。
Further, regarding the ductility in the atmosphere, the result was that the elongation was 32% and the diaphragm was 41%.

【0035】図3(b)では、材料全体を、図示しない
炉などで1223Kの固溶温度に加熱し、3.6ks
(1時間)の間保持した後、ほぼ283.3K/sの冷
却速度(950度から100度以下へ落とすのにほぼ3
秒の速度)で373K以下まで急激に冷却することによ
り、溶体化材を得ている。
In FIG. 3 (b), the entire material is heated to a solid solution temperature of 1223 K in a furnace (not shown) or the like, and 3.6 ks is applied.
After holding for 1 hour, the cooling rate is about 283.3K / s (about 3 to decrease from 950 degrees to 100 degrees or less).
The solution heat treatment material is obtained by rapidly cooling to 373 K or less at a speed of 2 seconds.

【0036】通常は溶体化処理後時効処理を行って使用
するが、こうしてできた溶体化のままの丸棒につき、大
気中で静的引張試験を行ったところ、降伏応力が745
MPa、引張強さが1150MPa、硬さが310Hv
と、時効材に比べて強度が僅かに低いという結果が得ら
れた。
Normally, the solution is subjected to an aging treatment after the solution treatment and used. However, a static tensile test was carried out in the atmosphere with respect to the thus-obtained solution-treated round bar, and the yield stress was 745.
MPa, tensile strength 1150 MPa, hardness 310 Hv
As a result, the strength was slightly lower than that of the aged material.

【0037】しかし、大気中における延性については、
延びが38%、絞りが45%と、時効材の場合よりも向
上していることが確認された。
However, regarding ductility in the atmosphere,
It was confirmed that the elongation was 38% and the drawing was 45%, which was improved compared with the case of the aged material.

【0038】そして、本発明の効果を調べるため、図3
(a)の方法で作成した時効材の丸棒と、図3(b)の
方法で作成した溶体化材の丸棒につき、300kgf/
cm 2の高圧水素雰囲気中で、0.1mm/minの速
度で静的引張試験を行ったところ、図4に示す結果が得
られた。
Then, in order to examine the effect of the present invention, FIG.
The round bar of aging material created by the method of (a) and
300 kgf / per round bar of solution heat-treated material created by the method
cm 2In a high-pressure hydrogen atmosphere at 0.1 mm / min
When a static tensile test was conducted at various degrees, the results shown in Fig. 4 were obtained.
Was given.

【0039】ここで、図4は、水素脆化量と温度との関
係を現わすグラフであって、大気中と比べた延性の低下
割合を示している。ここで、水素脆化量とは、{(大気
中の延び又は絞り)−(水素中の延び又は絞り)}/
(大気中の延び又は絞り)×100%で示す。そのため
水素脆化量が少ないことになる。図中実線イが溶体化材
の延びに対する脆化量、実線ロが溶体化材の絞りに対す
る脆化量、又、破線ハが時効材の延びに対する脆化量、
破線ニが時効材の絞りに対する脆化量である。
Here, FIG. 4 is a graph showing the relationship between the amount of hydrogen embrittlement and the temperature, and shows the rate of decrease in ductility compared to the atmosphere. Here, the hydrogen embrittlement amount is {(extension or restriction in the atmosphere)-(extension or restriction in hydrogen)} /
(Extension or squeezing in the atmosphere) × 100%. Therefore, the amount of hydrogen embrittlement is small. In the figure, the solid line (a) is the amount of embrittlement with respect to the elongation of the solution-treated material, the solid line (b) is the amount of embrittlement with respect to the drawing of the solution-treated material, and the broken line (c) is the amount of embrittlement with respect to the extension of the aged material,
The broken line D is the amount of embrittlement of the aged material against drawing.

【0040】図4の結果から、溶体化材は時効材に比べ
て延びも絞りも低下が少なく、水素脆化感受性が低いこ
とが実際に確認された。
From the results shown in FIG. 4, it was actually confirmed that the solution heat-treated material showed less decrease in elongation and drawing than the aged material, and the hydrogen embrittlement susceptibility was low.

【0041】又、上記は、溶体化材と時効材とを単純に
比較したものであるが、時効材に局部的に表面のみの溶
体化処理を施した場合の効果について、更に実験した
所、図5(a)(b)に示す結果が得られた。
Further, the above is a simple comparison between the solution heat treated material and the aging material, but further experiments were conducted on the effect of locally subjecting the aging material to the solution heat treatment. The results shown in FIGS. 5A and 5B were obtained.

【0042】即ち、レーザービーム8を、それぞれ1m
/minと、1.5m/minと、2m/minの速度
で照射することにより表面を溶体化処理された時効材
と、溶体化材と、時効材の5種類の丸棒につき、300
kgf/cm2の高圧水素雰囲気中で、0.1mm/m
inの速度で静的引張試験を行った。
That is, the laser beam 8 is 1 m
/ Min, 1.5 m / min, and 2 m / min, the surface of the aging material solution treated by irradiation, the solution-treated material, and the aging material five types of round bar 300
0.1 mm / m in a high pressure hydrogen atmosphere of kgf / cm 2.
A static tensile test was performed at a speed of in.

【0043】その結果、絞りに関しては、図5(a)に
示すように、表面を溶体化処理した時効材は、溶体化材
の1倍(レーザー速度2m/min及び1.5m/mi
nの場合)〜1.3倍(レーザー速度1m/minの場
合)もの延性が得られた。
As a result, as for the diaphragm, as shown in FIG. 5 (a), the aging material having the surface subjected to the solution treatment is 1 times as much as the solution treatment material (laser speed 2 m / min and 1.5 m / mi).
In the case of n), the ductility of 1.3 times (when the laser speed is 1 m / min) was obtained.

【0044】又、引張強さに関しては、図5(b)に示
すように、溶体化材は時効材の56%の強度であるのに
対し、表面を溶体化処理した時効材では時効材の69%
(レーザー速度1m/minの場合)〜84%(レーザ
ー速度2m/minの場合)もの強度が確保された。
Regarding the tensile strength, as shown in FIG. 5 (b), the solution-treated material has a strength of 56% of that of the aging material, while the solution-treated surface of the aging material shows that of the aging material. 69%
The strength (when the laser speed was 1 m / min) to 84% (when the laser speed was 2 m / min) was secured.

【0045】従って、表面のみを溶体化処理した時効材
は、時効材単独の場合よりも水素脆化感受性が低く、し
かも溶体化材単独の場合と同等以上の低い水素脆化感受
性が得られ、且つ、時効材単独の場合に近い強度を得る
ことができることが実際に確認された。
Therefore, the aging material having only the surface subjected to the solution treatment has lower hydrogen embrittlement susceptibility than the case of the aging material alone, and further, the hydrogen embrittlement susceptibility equal to or higher than that of the case of the solution heat treatment alone can be obtained. In addition, it was actually confirmed that it is possible to obtain strength close to that of the case of the aging material alone.

【0046】尚、上記とは別に、溶体化の際の熱処理温
度について、実験した結果を図6に示す。
In addition to the above, the results of experiments on the heat treatment temperature during solution treatment are shown in FIG.

【0047】図6は溶体化温度を2種類変化させ、然る
後に時効処理した材料の室温・水素中の引張試験結果で
求めた延性を示すグラフであって、上記材料を1243
Kと、1338Kで溶体化処理し、その後に時効処理し
た場合につき、それぞれ、右側に延びを左側に絞りを示
している。
FIG. 6 is a graph showing the ductility of the material, which was subjected to two kinds of solution heat treatments and then aged, at room temperature and in a tensile test in hydrogen.
In the case of solution treatment with K and 1338K, and then the case of aging treatment, the extension is shown on the right side and the drawing is shown on the left side.

【0048】図6によると、溶体化処理温度が高くなる
程、延び及び絞りが大きくなり、水素脆化感受性が低く
なることが確認された。
According to FIG. 6, it has been confirmed that the higher the solution treatment temperature, the larger the elongation and the reduction in size, and the lower the hydrogen embrittlement susceptibility.

【0049】従って、表面処理温度に際しては、溶体化
温度以上であれば良いが、合金部材5,6の使用目的に
応じて適宜選定すれば良い。
Therefore, the surface treatment temperature may be higher than the solutionizing temperature, but may be appropriately selected according to the purpose of use of the alloy members 5 and 6.

【0050】尚、本発明は、上述の実施例にのみ限定さ
れるものではなく、耐水素脆化部の上から、従来の水素
脆化防止膜を施しても良いこと、その他、本発明の要旨
を逸脱しない範囲内において種々変更を加え得ることは
勿論である。
The present invention is not limited to the above-mentioned embodiments, and a conventional hydrogen embrittlement preventing film may be applied on the hydrogen embrittlement resistant portion, and other aspects of the present invention. Of course, various changes can be made without departing from the scope of the invention.

【0051】[0051]

【発明の効果】以上説明したように、本発明の水素脆化
低減方法によれば、合金部材の水素脆化を有効に低減・
防止することができるという優れた効果を奏し得る。
As described above, according to the method for reducing hydrogen embrittlement of the present invention, hydrogen embrittlement of alloy members can be effectively reduced.
It is possible to exert an excellent effect that it can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例にかかるタービンブレードな
どの合金部材を示す斜視図である。
FIG. 1 is a perspective view showing an alloy member such as a turbine blade according to an embodiment of the present invention.

【図2】本発明の一実施例にかかる配管などの合金部材
を示す斜視図である。
FIG. 2 is a perspective view showing an alloy member such as a pipe according to an embodiment of the present invention.

【図3】(a)は時効処理を行う場合の材料の温度と時
間との関係を示すグラフである。(b)は溶体化処理を
行う場合の材料の温度と時間との関係を示すグラフであ
る。
FIG. 3A is a graph showing the relationship between the temperature of the material and the time when the aging treatment is performed. (B) is a graph showing the relationship between the temperature of the material and the time when the solution treatment is performed.

【図4】熱処理条件の違いによる、水素脆化量と温度と
の関係を現わすグラフである。
FIG. 4 is a graph showing the relationship between hydrogen embrittlement amount and temperature depending on the heat treatment conditions.

【図5】(a)は水素中での各材料の絞りを示すグラフ
である。(b)は水素中での各材料の引張強さを示すグ
ラフである。
FIG. 5A is a graph showing the reduction of each material in hydrogen. (B) is a graph showing the tensile strength of each material in hydrogen.

【図6】溶体化温度の違いによる、水素中での溶体化材
の延性を示すグラフである。
FIG. 6 is a graph showing the ductility of the solution heat-treated material in hydrogen depending on the difference in solution heat treatment temperature.

【図7】従来例に係るタービンブレードなどの合金部材
を示す斜視図である。
FIG. 7 is a perspective view showing an alloy member such as a turbine blade according to a conventional example.

【図8】従来例に係る配管などの合金部材を示す斜視図
である。
FIG. 8 is a perspective view showing an alloy member such as a pipe according to a conventional example.

【図9】図7のタービンブレードや図8の配管の表面に
水素脆化防止膜を取付けた状態を示す断面図である。
9 is a cross-sectional view showing a state in which a hydrogen embrittlement prevention film is attached to the surface of the turbine blade of FIG. 7 or the pipe of FIG.

【符号の説明】[Explanation of symbols]

5,6 合金部材 8 レーザービーム 9 照射部分(耐水素脆化部) 5,6 Alloy member 8 Laser beam 9 irradiation part (hydrogen embrittlement resistant part)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松井 健治 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenji Matsui Kenji Matsui, No. 1 Shin-Nakahara-cho, Isogo-ku, Yokohama-shi, Kanagawa Ishi Kawashima Harima Heavy Industries Ltd. Technical Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 全体を時効処理された合金部材の表面
に、レーザービームを照射して、照射部分の表面を固溶
温度以上に加熱することにより、合金部材中の時効処理
による析出物を固溶させ、その後、照射部分を急冷する
ことにより、照射部分の表面に析出物がなく組織が均一
な耐水素脆化部を形成することを特徴とする水素脆化低
減方法。
1. The surface of an alloy member that has been aged as a whole is irradiated with a laser beam to heat the surface of the irradiated portion to a temperature above the solid solution temperature, thereby solidifying precipitates due to the aging treatment in the alloy member. A method for reducing hydrogen embrittlement, which comprises forming a hydrogen embrittlement-resistant portion having a uniform structure with no precipitates on the surface of the irradiated portion by melting and then rapidly cooling the irradiated portion.
JP6070654A 1994-04-08 1994-04-08 Method for decreasing hydrogen embrittlement Pending JPH07278768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6070654A JPH07278768A (en) 1994-04-08 1994-04-08 Method for decreasing hydrogen embrittlement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6070654A JPH07278768A (en) 1994-04-08 1994-04-08 Method for decreasing hydrogen embrittlement

Publications (1)

Publication Number Publication Date
JPH07278768A true JPH07278768A (en) 1995-10-24

Family

ID=13437864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6070654A Pending JPH07278768A (en) 1994-04-08 1994-04-08 Method for decreasing hydrogen embrittlement

Country Status (1)

Country Link
JP (1) JPH07278768A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174360A (en) * 2009-02-02 2010-08-12 Hitachi Ltd Hydrogen embrittlement resistant material, and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174360A (en) * 2009-02-02 2010-08-12 Hitachi Ltd Hydrogen embrittlement resistant material, and method for producing the same

Similar Documents

Publication Publication Date Title
EP1602442B1 (en) Methods for repairing gas turbine engine components
US4543132A (en) Processing for titanium alloys
US5509980A (en) Cyclic overageing heat treatment for ductility and weldability improvement of nickel-based superalloys
US8721812B2 (en) Techniques for controlling precipitate phase domain size in an alloy
JP6312157B2 (en) Pre-weld heat treatment for nickel-base superalloys
Zhang et al. Effect of Nd: YAG pulsed laser welding process on the liquation and strain-age cracking in GTD-111 superalloy
KR101593299B1 (en) Method of heat treatment of fusion welds for excellent toughness in nickel-based superalloys containing niobium and superalloys with welds thereby
US6129795A (en) Metallurgical method for processing nickel- and iron-based superalloys
CA2735302A1 (en) Blade and method of repair and manufacturing the same
US6203633B1 (en) Laser peening at elevated temperatures
Walston et al. The Role of the γ/γeutectic and porosity on the tensile behavior of a single-crystal nickel-base superalloy
EP0079692B1 (en) Method of producing a single crystal article
CN114293120A (en) Pulse electric field auxiliary heat treatment method for improving plasticity and toughness of titanium alloy
JPH07278768A (en) Method for decreasing hydrogen embrittlement
Zhang et al. Characterization of the recasting-affected zone in the nickel-based superalloy upon single-pulse laser treatment
Tokaji et al. Fatigue behaviour of beta Ti-22V-4Al alloy subjected to surface-microstructural modification
US6471790B1 (en) Process for strengthening the grain boundaries of a component made from a Ni based superalloy
JP3914856B2 (en) Welding method for galvanized steel sheet to prevent plating cracking during welding
KR101626913B1 (en) Method of thermo-mechanical treatment of heat-resistant alloy containing tungsten for enhancement of creep resistance and heat-resistant alloy the same
WO2004046392A1 (en) Delayed fracture prevention method for steel structure and steel structure manufacturing method
US7074284B2 (en) Heat treatment method for bodies that comprise a nickel based superalloy
EP1889939B1 (en) An alloy and method of treating titanium aluminide
JPH04256577A (en) Prevention of delayed fracture for static load bolt
KR101593309B1 (en) Method of heat treatment of heat resistant alloy containing tungsten for excellent creep property and heat resistant alloy the same
JPS5925963A (en) Manufacture of hot rolled ti alloy plate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041102