JPH07278702A - High strength and high electrical conductivity material - Google Patents

High strength and high electrical conductivity material

Info

Publication number
JPH07278702A
JPH07278702A JP7190194A JP7190194A JPH07278702A JP H07278702 A JPH07278702 A JP H07278702A JP 7190194 A JP7190194 A JP 7190194A JP 7190194 A JP7190194 A JP 7190194A JP H07278702 A JPH07278702 A JP H07278702A
Authority
JP
Japan
Prior art keywords
strength
electrical conductivity
molten metal
phase
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7190194A
Other languages
Japanese (ja)
Inventor
Yuichi Taniguchi
口 裕 一 谷
Takahide Ono
野 恭 秀 大
Michio Endo
藤 道 雄 遠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7190194A priority Critical patent/JPH07278702A/en
Publication of JPH07278702A publication Critical patent/JPH07278702A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce a material having both electrical conductivity and strength by independently controlling an iron phase and a copper phase. CONSTITUTION:This high strength and high electrical conductivity material is formed by atomizing and mixing a molten metal consisting of 0.2-3wt.% Al and the balance Cu and a molten metal consisting of 3-8wt.% Al, 5-20wt.% Cr and the balance Fe, and contains one or two or more of Mn, Si and Zn each by 0.1-3wt.% as alloy components. In this way, a material having both electrical conductivity and strength is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機械的強度と電気伝導
性の双方にすぐれた特性を有する材料に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material having excellent mechanical strength and electrical conductivity.

【0002】[0002]

【従来の技術】近年、リードフレーム、バネ接点材料な
どの電子部品の小型化に伴って、一層の強度と高電気伝
導度とを併せもつ材料が望まれている。従来、これらの
材料として一般には、リン青銅や洋白といったCuを主
成分とするCu系材料と、42合金(42%Ni−F
e)やコバール金属といったFeを主成分とするFe系
材料とに二分される。前者は主に導電性を重視する用
途、後者は強度を重視する用途に適応される。しかし、
本来、電気伝導度と強度を合せもつ材料があれば望まし
い事は言うまでもない。特にCuを主体としたバネ接点
材料は、電気抵抗は良好ではあるが強度が乏しいため強
度向上が求められている。
2. Description of the Related Art In recent years, with the miniaturization of electronic parts such as lead frames and spring contact materials, materials having both higher strength and higher electrical conductivity have been demanded. Conventionally, Cu-based materials containing Cu as a main component, such as phosphor bronze and nickel silver, and 42 alloy (42% Ni-F) have been conventionally used as these materials.
e) and Fe-based materials containing Fe as a main component such as Kovar metal. The former is mainly applied to applications where importance is attached to conductivity, and the latter is applied to applications where importance is attached to strength. But,
Needless to say, it is desirable to have a material that has both electrical conductivity and strength. In particular, the spring contact material mainly composed of Cu has good electric resistance but is poor in strength, and therefore, improvement in strength is required.

【0003】電気伝導度を向上するには添加元素を少な
くし、限りなく純Cuに近づける事が望ましい。一方、
強度向上のためには、マトリックスに歪を与えたり、転
移の動きを抑えるために、種々の元素を添加して合金化
する必要がある。このように、電気伝導と強度という2
つの特性を得ることは相反する方法をとることとなり、
両方を改善するのは非常に困難である。事実、バネ接点
材料の強度と、電気伝導度の関係は通常、負の相関にな
る。
In order to improve the electric conductivity, it is desirable to reduce the number of additive elements and bring it as close as possible to pure Cu. on the other hand,
In order to improve the strength, it is necessary to add various elements to form an alloy in order to give strain to the matrix and suppress the movement of dislocation. In this way, there are two
Obtaining one property is a contradictory method,
It is very difficult to improve both. In fact, the relationship between the strength of the spring contact material and the electrical conductivity is usually a negative correlation.

【0004】これを解決するため、本発明者らは、電気
伝導度の良い相と強度の高い相の2層からなる合金を作
成する事に着眼し、バネ接点材料の特許出願としてすで
に提案している。この材料はCu−Fe系の合金であ
り、FeとCuは二相分離をおこす事を利用したもので
ある。バネ接点材料として利用していたが、さらに高強
度高導電性材料がユーザーより要望されてきた。
In order to solve this problem, the present inventors have focused their attention on producing an alloy composed of two layers of a phase having good electric conductivity and a phase having high strength, and have already proposed it as a patent application for a spring contact material. ing. This material is a Cu-Fe-based alloy and utilizes the fact that Fe and Cu cause two-phase separation. Although it has been used as a spring contact material, users have demanded higher strength and higher conductivity materials.

【0005】電気伝導度は銅相で、強度は鉄相で確保す
るのであるから、本来個別に最適な成分が存在するはず
である。しかし、現在までの本発明者らの製造方法は、
単純に全成分を溶解、凝固するものであり、AlやCr
等の添加元素は固溶限度内では、Cu相とFe相では同
じ濃度になってしまう。すなわち、単純に平均化した組
成を溶解鍋に装入し、溶解した後、鋳型に注入して凝固
する従来の方法だと、AlやNiなどの元素が両相に均
等に固溶し、電気伝導率が低下し、強度もやや低下する
のである。
Since the electric conductivity is ensured by the copper phase and the strength is ensured by the iron phase, the optimum components should originally exist individually. However, the manufacturing method of the present inventors up to now is
It simply melts and solidifies all components, and Al and Cr
Within the solid solution limit, additional elements such as Cu have the same concentration in the Cu phase and the Fe phase. That is, according to the conventional method in which a composition obtained by simply averaging is charged in a melting pot, melted, and then poured into a mold to solidify, elements such as Al and Ni are uniformly dissolved in both phases, resulting in electric The conductivity decreases and the strength also decreases slightly.

【0006】[0006]

【発明が解決しようとする課題】本発明は、電気伝導度
と強度の2つの特性を同時に有する高強度電気伝導性材
料を提供することを目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a high-strength electrically conductive material which has two characteristics of electrical conductivity and strength at the same time.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するためのものであって、次のような構成をその要旨
としている。 重量%でAl:0.2〜3%、残部がCuからなる
溶湯と、Al:3〜8%、Cr:5〜20%、残部がF
eからなる溶湯とを、それぞれ粉霧状にして混合し凝固
し、Cu相の組成比が30〜70%である高強度高電気
伝導性材料。
SUMMARY OF THE INVENTION The present invention is intended to achieve the above object and has the following structure. Al: 0.2 to 3% by weight, molten metal consisting of Cu in the balance, Al: 3 to 8%, Cr: 5 to 20%, balance in F
A high-strength and high-electrical conductivity material having a Cu phase composition ratio of 30 to 70%, which is obtained by atomizing and mixing with a molten metal consisting of e.

【0008】 合金成分として、さらにMn、Siも
しくはZnの1種または2種以上を0.1%〜3%含む
請求項1に記載の高強度高電気伝導性材料。
The high strength and high electrical conductivity material according to claim 1, further comprising 0.1% to 3% of one or more of Mn, Si or Zn as an alloy component.

【0009】以下に、本発明を詳細に説明する。電気伝
導度を上げるためには銅相の電気伝導度をさらに上げる
必要があり、強度を増すためには鉄相の強度をさらに上
昇する必要がある。このためには、それぞれの成分を独
立に制御しなければならない。しかし、通常の製造方法
は、単純に全成分を溶解、凝固するものであり、添加元
素は固溶限度内では、両相に同じ成分とけ込んでしま
う。例えば、AlやNiは両相で同じ濃度になってしま
う。
The present invention will be described in detail below. In order to increase the electric conductivity, it is necessary to further increase the electric conductivity of the copper phase, and to increase the strength, it is necessary to further increase the strength of the iron phase. For this purpose, each component must be controlled independently. However, in the usual production method, all the components are simply dissolved and solidified, and the additive element mixes with the same component in both phases within the solid solution limit. For example, Al and Ni have the same concentration in both phases.

【0010】しかしながら、電気伝導度の観点からは、
銅相のAlやNi濃度は低ければ低いほど望ましく、ま
た鉄相にはAlやNiが多く含まれるほど望ましい。そ
こで本発明者らは、それぞれの相を最適な成分にするた
めに独立に制御することを種々検討した。すなわち、両
相の溶湯をそれぞれ最適に成分調整した後、大気中もし
くは真空中で微細に分散した後、半凝固状態で堆積さ
せ、各々の組成を保ったまま凝固したのである。
However, from the viewpoint of electrical conductivity,
The lower the Al and Ni concentrations in the copper phase, the more desirable, and the more the Al and Ni contents in the iron phase, the more desirable. Therefore, the present inventors have made various studies on independent control in order to make each phase an optimum component. That is, the melts of both phases were adjusted to the optimum components, finely dispersed in the atmosphere or in vacuum, and then deposited in a semi-solidified state, and solidified while maintaining their respective compositions.

【0011】本発明の材料の製造方法について述べる。
溶湯は2種類になるので溶湯鍋は2つ必要となる。1つ
の鍋には、重量%で、Al:0.2〜3%、残部がCu
からなる溶湯を入れ、もう一方の鍋には、Al:3〜8
%、Cr:5〜20%、残部がFeからなる溶湯を入れ
る。それぞれの溶湯をスプレー化して、チャンバー内に
放出する。チャンバー内雰囲気は、大気もしくは真空、
非酸化ガス雰囲気が可能である。銅相は1200℃程
度、鉄相は1400℃〜1600℃に昇温する。スプレ
ー化するためには、ノズルから出た溶湯をエアーやAr
ガスで吹き飛ばすガスアトマイズ法でもいいし、微小ノ
ズルから高速で吹き飛ばし霧散させる方法でもよい。
A method for producing the material of the present invention will be described.
Since there are two types of molten metal, two molten metal pots are required. In one pot, the weight% is Al: 0.2 to 3%, and the balance is Cu.
In the other pot, Al: 3-8
%, Cr: 5 to 20%, and the balance is Fe. Each molten metal is sprayed and discharged into the chamber. The atmosphere in the chamber is atmospheric or vacuum,
A non-oxidizing gas atmosphere is possible. The copper phase is heated to about 1200 ° C, and the iron phase is heated to 1400 ° C to 1600 ° C. In order to make it into a spray, the molten metal discharged from the nozzle is blown with air or Ar.
A gas atomization method of blowing off with a gas may be used, or a method of blowing off at a high speed from a fine nozzle to cause atomization may be used.

【0012】スプレー化後、空中で半凝固状態になるよ
うにガス量や溶湯吹き出し量を調整する。落下後、それ
ぞれの粒は表面のみ拡散し、接合する。冷却後、800
℃以上で間圧延を行い、板状にする。数mm程度の板に
圧延後、冷間圧延を行い、その後所定の幅にスリット切
断を行う。
After spraying, the amount of gas and the amount of molten metal blown out are adjusted so that a semi-solidified state is achieved in the air. After dropping, each grain diffuses only on the surface and joins. After cooling 800
Rolling is carried out at a temperature of ℃ or above to form a plate. After rolling to a plate of about several mm, cold rolling is performed, and then slit cutting is performed to a predetermined width.

【0013】次に、本発明の材料の銅相、鉄相および各
元素の適性組成範囲について述べる。銅相に関しては、
電気伝導度が要求されるのでCu3%が上限である。ま
た、Al濃度が3%を越えるとハンダ濡れ性がわるくな
り不良率が多くなるが、耐酸化性の観点から0.2%が
下限値である。
Next, the appropriate composition range of the copper phase, iron phase and each element of the material of the present invention will be described. Regarding the copper phase,
Since electric conductivity is required, Cu3% is the upper limit. Further, when the Al concentration exceeds 3%, the solder wettability becomes poor and the defective rate increases, but from the viewpoint of oxidation resistance, 0.2% is the lower limit value.

【0014】鉄相に関しては、加工性改善にはAlの添
加が非常に有効である。Alを2%以上添加するとオー
ステナイト変態が抑制され、これが、熱間加工性を向上
させる。しかし、8%を越えるとFe3 Alの金属間化
合物を形成し、加工性が悪化するのでこの値が上限であ
る。Crは、耐錆性を向上し、かつAlと同様、高温で
の耐酸化性に寄与する。濃度範囲は、5%以下であり、
これ以下だとこの効果が薄い。一方、上限濃度に関して
は、Crが20%を越えると金属間化合物CrFeが析
出するため加工性が低減する。Mn、Si、Znは、ハ
ンダ濡れ性に寄与し、また、耐酸化性に寄与する。これ
は銅相、鉄相双方に寄与する。いずれも、0.1%以下
では効果がなく、また3%以上では、電気伝導度が低下
するため得策ではない。
Regarding the iron phase, addition of Al is very effective for improving workability. Addition of 2% or more of Al suppresses austenite transformation, which improves hot workability. However, if it exceeds 8%, an intermetallic compound of Fe 3 Al is formed and the workability is deteriorated, so this value is the upper limit. Cr improves rust resistance and, like Al, contributes to oxidation resistance at high temperatures. The concentration range is 5% or less,
Below this, this effect is weak. On the other hand, with regard to the upper limit concentration, when Cr exceeds 20%, the intermetallic compound CrFe precipitates, so that the workability decreases. Mn, Si, and Zn contribute to solder wettability and also contribute to oxidation resistance. This contributes to both the copper phase and the iron phase. In either case, if it is 0.1% or less, no effect is obtained, and if it is 3% or more, the electric conductivity decreases, which is not a good idea.

【0015】両相の混合比は、電気伝導度が必要な場合
は銅のスプレーの噴出量を上げ、また強度が必要な場
合、鉄の溶湯噴出量を上げるなど目的に応じて変更でき
る。しかし、凝固後の銅相の組成比は、30〜70%が
望ましい。30%未満では、電気伝導度が実用的でな
く、また耐酸化性が劣化し、また、70%以上では、常
温および高温での強度が低下することに加えて、コスト
が上昇するからである。
The mixing ratio of the two phases can be changed according to the purpose, for example, by increasing the spray amount of copper spray when electrical conductivity is required, or by increasing the spray amount of molten iron when strength is required. However, the composition ratio of the copper phase after solidification is preferably 30 to 70%. If it is less than 30%, the electric conductivity is not practical and the oxidation resistance is deteriorated, and if it is 70% or more, the strength at room temperature and high temperature is lowered and the cost is increased. .

【0016】[0016]

【実施例】以下に、本発明を実施例に基づいてさらに説
明する。実施例1 表1に示す組成の各溶湯をガスアトマイズ法でスプレー
化し、その後凝固させた。凝固後の板の分析値を、表2
に示す。また比較例として、両溶湯をほぼ等量鍋内で通
常の方法で混合し、凝固した試料の化学成分も、表2に
示す。凝固してできた板を熱間加工し、これから、10
mm巾×100mm長さの試料を切り出し、引張強度や
電気伝導度などの各種特性を評価した。その結果を、表
3に示す。
EXAMPLES The present invention will be further described below based on examples. Example 1 Each molten metal having the composition shown in Table 1 was sprayed by a gas atomizing method and then solidified. Table 2 shows the analytical values of the plate after solidification.
Shown in. In addition, as a comparative example, Table 2 also shows the chemical composition of a sample obtained by mixing both melts in an approximately equal amount in a pan by a usual method and solidifying. Hot working the solidified plate,
A sample having a width of 100 mm and a length of 100 mm was cut out and various properties such as tensile strength and electric conductivity were evaluated. The results are shown in Table 3.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】実施例2 表4に示す組成の各溶湯をガスアトマイズ法でスプレー
化し、その後凝固させた。次いで熱間加工し、板を作成
し、これから、10mm幅×100mm長さの試料を切
り出した。この板の機械的特性値を、表3に示す。比較
例2として、それぞれの合金を等量溶融して凝固した試
料の特性値を同じく表3に示す。
Example 2 Each molten metal having the composition shown in Table 4 was sprayed by a gas atomizing method and then solidified. Then, hot working was performed to prepare a plate, and a sample having a width of 10 mm and a length of 100 mm was cut out from the plate. The mechanical property values of this plate are shown in Table 3. As Comparative Example 2, the characteristic values of a sample obtained by melting and solidifying each alloy in equal amounts are also shown in Table 3.

【0021】[0021]

【表4】 [Table 4]

【0022】実施例3 表5に示す組成の各溶湯をガスアトマイズ法でスプレー
化し、その後凝固させた。凝固板を熱間加工し、板を作
成し、これから10mm幅×100mm長さの試料を切
り出した。バネ限界値や強度等の各種特性を評価した結
果を、表3に示す。また比較例3は、表5の溶湯を50
%ずつ秤量し、るつぼで混合し、そのまま凝固させ材料
を評価したものである。
Example 3 Each molten metal having the composition shown in Table 5 was sprayed by a gas atomizing method and then solidified. The solidified plate was hot worked to form a plate, and a sample having a width of 10 mm and a length of 100 mm was cut out from the plate. Table 3 shows the results of evaluation of various characteristics such as the spring limit value and strength. In Comparative Example 3, the molten metal in Table 5 was 50
The material was evaluated by weighing each%, mixing in a crucible, solidifying the mixture as it is.

【0023】[0023]

【表5】 [Table 5]

【0024】表3から明らかなように、実施例1〜3の
本発明の材料は比較例に比べ、いずれも引張強度と電気
伝導度が優れていることがわかる。
As is apparent from Table 3, the materials of the present invention of Examples 1 to 3 are superior in tensile strength and electrical conductivity as compared with Comparative Examples.

【0025】[0025]

【発明の効果】以上説明した通り、本発明により、高強
度と高電気伝導度を併せもつ材料を提供することが可能
となった。
As described above, according to the present invention, it is possible to provide a material having both high strength and high electrical conductivity.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22F 1/08 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C22F 1/08 B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、Al:0.2〜3%、残部がC
uからなる溶湯と、Al:3〜8%、Cr:5〜20
%、残部がFeからなる溶湯とを、それぞれ粉霧状にし
て混合し、凝固し、Cu相の組成比が30〜70%であ
る高強度高電気伝導性材料。
1. By weight%, Al: 0.2-3%, balance C
molten metal consisting of u, Al: 3-8%, Cr: 5-20
%, And a molten metal with the balance being Fe, respectively, are mixed in the form of powder mist, are solidified, and have a Cu phase composition ratio of 30 to 70%.
【請求項2】合金成分として、さらにMn、Siもしく
はZnの1種または2種以上を0.1%〜3%含む請求
項1に記載の高強度高電気伝導性材料。
2. The high strength and high electrical conductivity material according to claim 1, further comprising 0.1% to 3% of one or more of Mn, Si or Zn as an alloy component.
JP7190194A 1994-04-11 1994-04-11 High strength and high electrical conductivity material Withdrawn JPH07278702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7190194A JPH07278702A (en) 1994-04-11 1994-04-11 High strength and high electrical conductivity material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7190194A JPH07278702A (en) 1994-04-11 1994-04-11 High strength and high electrical conductivity material

Publications (1)

Publication Number Publication Date
JPH07278702A true JPH07278702A (en) 1995-10-24

Family

ID=13473913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7190194A Withdrawn JPH07278702A (en) 1994-04-11 1994-04-11 High strength and high electrical conductivity material

Country Status (1)

Country Link
JP (1) JPH07278702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021790A1 (en) * 2018-07-25 2020-01-30 株式会社日立製作所 Composite metal material, method for producing same, and electronic device using composite metal material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021790A1 (en) * 2018-07-25 2020-01-30 株式会社日立製作所 Composite metal material, method for producing same, and electronic device using composite metal material
JP2020015948A (en) * 2018-07-25 2020-01-30 株式会社日立製作所 Composite metal material, method for producing the same, and electronic apparatus including composite metal material

Similar Documents

Publication Publication Date Title
US4732731A (en) Copper alloy for electronic instruments and method of manufacturing the same
CA1172473A (en) Copper alloys with small amounts of manganese and selenium
PL185531B1 (en) Copper alloy and method of obtaining same
JPS61149449A (en) Composite material for lead frame for semiconductor device and its production
US5041176A (en) Particle dispersion-strengthened copper alloy
US7335269B2 (en) Pb-free solder alloy compositions comprising essentially Tin(Sn), Silver(Ag), Copper(Cu), and Phosphorus(P)
US4347413A (en) Electrodes of vacuum circuit breaker
CN107604203A (en) The tin bronze alloys and its solid solution craft of a kind of high-strength high-elasticity
JPS63307232A (en) Copper alloy
US2180984A (en) Metal composition
CA2540486A1 (en) Pb-free solder alloy compositions comprising essentially tin (sn), silver (ag), copper (cu), nickel (ni), phosphorus (p) and/or rare earth: cerium (ce) or lanthanum (la)
WO2007014530A1 (en) Lead-free sn-ag-cu-ni-al system solder alloy
JPH07278702A (en) High strength and high electrical conductivity material
US4710349A (en) Highly conductive copper-based alloy
US3525609A (en) Copper alloy material
JP3090963B2 (en) Insert material for joining
JPS6335699B2 (en)
US4704253A (en) Copper alloy for a radiator fin
EP0137180B1 (en) Heat-resisting aluminium alloy
JPH01263238A (en) High strength and high electric conductive copper alloy
JPS6311418B2 (en)
JPH01165733A (en) High strength and high electric conductive copper alloy
JP2756021B2 (en) Copper alloy with low constant mass temperature coefficient of electrical resistance
JPH0222433A (en) Copper alloy for electronic equipment
JPH07207416A (en) Spring contact material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010703