JPH07278660A - Manufacture of steel plate for line pipe excellent in low temperature toughness and co2 corrosion resistance - Google Patents

Manufacture of steel plate for line pipe excellent in low temperature toughness and co2 corrosion resistance

Info

Publication number
JPH07278660A
JPH07278660A JP7491394A JP7491394A JPH07278660A JP H07278660 A JPH07278660 A JP H07278660A JP 7491394 A JP7491394 A JP 7491394A JP 7491394 A JP7491394 A JP 7491394A JP H07278660 A JPH07278660 A JP H07278660A
Authority
JP
Japan
Prior art keywords
temperature
rolling
less
steel
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7491394A
Other languages
Japanese (ja)
Inventor
Hajime Ishikawa
川 肇 石
Akihiko Kojima
島 明 彦 児
Rikio Chijiiwa
力 雄 千々岩
Hiroshi Tamehiro
広 博 為
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7491394A priority Critical patent/JPH07278660A/en
Publication of JPH07278660A publication Critical patent/JPH07278660A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide a manufacturing method of the high tensile steel plate for the line pipe which is used for petroleum and natural gas containing CO2 and excellent in the CO2 corrosion. CONSTITUTION:The steel containing, by weight, 0.01-0.09% C, 0.5-1.2% Cr and Nb-Ti, is heated to the temperature of 1100-1250 deg.C after casting, the rolling is started after pulling-out, and the rolling is once stopped at the surface temperature of >=900 deg.C, Then, the steel is water cooled at the cooling speed of 5-40 deg.C-/sec until the surface temperature reaches <=700 deg.C, and air-cooled until the surface temperature is below Ac3 and the temperature of the thickness center is <=950 deg.C. The rolling reduction is successively executed where the accumulated draft is >=60% and the rolling true strain per mean pass is <=0.2, and the rolling is completed when the mean temperature of the plate is above Ar3. The steel is immediately cooled at the cooling speed of 5-40 deg.C/sec until the mean temperature of the plate is 350-500 deg.C, and then, air-cooled. This constitution manufactures the steel plate excellent in the low temperature toughness and the CO2 corrosion resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、COを含んだ石油、
天然ガスに用いる耐CO腐食性に優れたラインパイプ
用高張力鋼板(引張強さ:500MPa以上、板厚40
mm以下)の鋼板の製造方法に関するものである。ま
た、本発明の鋼は、低温靭性及び現地溶接性にも優れて
いるので、寒冷地やオフショアに仕様可能である。鉄鋼
業においては、厚板ミルに適用することが最も好ましい
が、ホットコイルにも適用できる。また、この方法で製
造した鋼板は、低温靭性、現地溶接性にも優れているた
め寒冷地やオフショアにおける使用に最も適する。
FIELD OF THE INVENTION The present invention relates to petroleum containing CO 2 .
High-strength steel sheet for line pipes with excellent CO 2 corrosion resistance used in natural gas (tensile strength: 500 MPa or more, sheet thickness 40
mm or less). Further, since the steel of the present invention is excellent in low temperature toughness and field weldability, it can be used in cold regions and offshore. In the steel industry, it is most preferable to apply it to thick plate mills, but it can also be applied to hot coils. The steel sheet produced by this method is also excellent in low-temperature toughness and field weldability, and is most suitable for use in cold regions and offshore.

【0002】[0002]

【従来の技術】寒冷地やオフショアにおける石油、ガス
輸送用大径ラインパイプに対しては高強度とともに優れ
た低温靭性が要求される。さらに、近年、原油の2次、
3次回収におけるCO注入や深井戸化によるインヒビ
ター効果の低下によって、COガスによるラインパイ
プの腐食が大きな問題となり、耐CO腐食性が要求さ
れるようになった。
2. Description of the Related Art High-strength and excellent low-temperature toughness are required for large-diameter line pipes for oil and gas transportation in cold regions and offshore. Furthermore, in recent years,
Due to the decrease in the inhibitor effect due to the injection of CO 2 and the deep well formation in the third recovery, the corrosion of the line pipe due to the CO 2 gas became a big problem, and the CO 2 corrosion resistance became required.

【0003】Crの多量添加は溶接性を阻害するので、
現地溶接時に溶接割れ防止の観点から高温での予熱、後
熱処理が必須となり、施工能率を著しく低下させる。ま
た、多量のCr添加は、母材、溶接熱影響部(HAZ)
の靭性を劣化させる。このため、耐CO腐食性が優
れ、かつ良好な低温靭性、現地溶接性を有するラインパ
イプ用鋼板の開発が強く望まれている。
Since addition of a large amount of Cr hinders weldability,
Pre-heating at high temperature and post-heat treatment are indispensable from the viewpoint of welding crack prevention during on-site welding, which significantly reduces the work efficiency. In addition, if a large amount of Cr is added, the base metal and welding heat affected zone (HAZ)
Deteriorates toughness. Therefore, development of a steel sheet for a line pipe having excellent CO 2 corrosion resistance, good low temperature toughness, and field weldability is strongly desired.

【0004】特開平03−211230号公報には耐C
腐食性、低温靭性および現地溶接性に優れた低温用
耐CO腐食性ラインパイプ用鋼が開示されている。し
かし、COを含有する環境においてCr1.2%以下
ではCrによる不働態域の形成はできないため、10%
NaCl+1atmCO(pH5,80℃)で0.5
mm/yの確保がやっとである。そこで組織上での耐C
腐食ラインパイプ用鋼の開発が望まれる。
In Japanese Patent Laid-Open No. 03-212130, there is a C resistance.
A low-temperature CO 2 corrosion resistant line pipe steel excellent in O 2 corrosion resistance, low temperature toughness and field weldability is disclosed. However, in an environment containing CO 2 , if the Cr content is 1.2% or less, the passive state region cannot be formed by Cr, so that the Cr content is 10%.
0.5 at NaCl + 1 atmCO 2 (pH 5, 80 ° C.)
It is finally possible to secure mm / y. Therefore, C resistance in the organization
Development of steel for O 2 corrosion line pipe is desired.

【0005】[0005]

【発明が解決しようとする課題】本発明は、耐CO
食および低温靭性の優れたラインパイプ用鋼板の製造方
法を提供することを目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing a steel sheet for line pipes having excellent CO 2 corrosion resistance and low temperature toughness.

【0006】[0006]

【課題を解決するための手段】本発明は、下記の事項を
その要旨としている。 重量%で、C:0.01〜0.09%、Si:0.
5%以下、Mn:0.7〜1.5%、P:0.03%以
下、S:0.005%以下、Nb:0.01〜0.06
%、Cr:0.5〜1.2%、Ti:0.005〜0.
03%、Al:0.05%以下、N:0.001〜0.
005%を含有し、かつ0.35≦C+Mn/6+(Cr+
V)/5+(Ni+Cu)/15≦0.48を満足する残部
Feおよび不可避不純物からなる鋼、あるいは 前記の合金組成に、さらに、V:0.005〜
0.060%、Ni:0.05〜1.0%、Cu:0.
05〜1.0%、Mo:0.05〜0.30%、Ca:
0.001〜0.005%、Zr:0.005〜0.0
25%、REM:0.0008〜0.01%のうち1種
類以上含有し、かつ、 0.35≦C+Mn/6+(Cr+V)/5+(Ni+C
u)/15≦0.48 を満足する残留部Feおよび不可避不純物からなる鋼
を、鋳造後、冷片にすることなく或は、冷片を1100
〜1250℃の温度に加熱し、抽出後圧延を開始して表
面温度が700℃以下になるまで水冷した後、表面温度
がAc以下、板厚中心部温度が950℃以下になるま
で放冷し、しかる後に累積圧下率が60%以上でかつ平
均1パス当りの圧延真歪が0.2以下となる圧下を加
え、板厚平均温度がAr以上で圧延を終了し、直ちに
5〜40℃/sの冷却速度で板厚平均温度が350〜5
00℃となるまで冷却し、その後空冷する、ことを特徴
とする低温靭性および耐CO腐食性にすぐれた鋼板の
製造方法。
The gist of the present invention is as follows. % By weight, C: 0.01 to 0.09%, Si: 0.
5% or less, Mn: 0.7 to 1.5%, P: 0.03% or less, S: 0.005% or less, Nb: 0.01 to 0.06.
%, Cr: 0.5 to 1.2%, Ti: 0.005 to 0.
03%, Al: 0.05% or less, N: 0.001 to 0.
005% and contains 0.35 ≦ C + Mn / 6 + (Cr +
V) / 5 + (Ni + Cu) /15≦0.48, steel consisting of balance Fe and unavoidable impurities, or the above alloy composition, and further V: 0.005
0.060%, Ni: 0.05 to 1.0%, Cu: 0.
05-1.0%, Mo: 0.05-0.30%, Ca:
0.001-0.005%, Zr: 0.005-0.0
25%, REM: One or more of 0.0008 to 0.01%, and 0.35 ≦ C + Mn / 6 + (Cr + V) / 5 + (Ni + C
u) /15≦0.48, steel made of residual Fe and unavoidable impurities is not cast into cold pieces or 1100 cold pieces after casting.
After heating to a temperature of ~ 1250 ° C, starting the rolling after extraction and cooling with water until the surface temperature becomes 700 ° C or less, the surface temperature is allowed to cool to Ac 3 or less and the plate thickness center temperature becomes 950 ° C or less. Then, the rolling reduction is applied so that the cumulative rolling reduction is 60% or more and the rolling true strain per average pass is 0.2 or less, and the rolling is finished at the sheet thickness average temperature of Ar 3 or more, and immediately after 5 to 40 The average temperature of the plate thickness is 350 to 5 at the cooling rate of ° C / s.
A method for producing a steel sheet excellent in low temperature toughness and CO 2 corrosion resistance, which comprises cooling to 00 ° C. and then air cooling.

【0007】以下に、本発明を詳細に説明する。本発明
者らは、耐CO腐食性に及ぼす不均一腐食の影響を主
に化学成分、組織に関して詳しく検討した結果、以下の
ような事実が判明した。 Cr添加により耐CO腐食性が向上するととも
に、不均一な腐食を抑制する。しかし、過量のCr添加
は低温靭性、現地溶接性を劣化させる。 板表面の組織が非常に微細なフェライトでかつCの
微細分散された組織では、従来の制御圧延+制御冷却の
表面組織(フェライトとベイナイト等のバンド組織にな
りやすい)と比較して浸漬電位で20mV程度上昇し、
耐CO腐食性は向上する。
The present invention will be described in detail below. The present inventors have made detailed investigations mainly on the chemical composition and structure of the effect of non-uniform corrosion on CO 2 corrosion resistance, and as a result, the following facts have been found. Addition of Cr improves CO 2 corrosion resistance and suppresses uneven corrosion. However, addition of an excessive amount of Cr deteriorates low temperature toughness and field weldability. When the structure of the plate surface is a very fine ferrite and the structure of C is finely dispersed, the immersion potential is higher than that of the conventional controlled rolling + controlled cooling surface structure (which tends to be a band structure such as ferrite and bainite). 20mV rise,
CO 2 corrosion resistance is improved.

【0008】つまり、CO腐食に関しては、Cr添加
が有効であるが、過量のCr添加は低温靭性、現地溶接
性の劣化を引き起こす。これに対し、Cr量の上限値を
規制した上で、さらに表面組織を非常に微細なフェライ
トでかつCの微細分散された組織にすることにより有効
カソードサイトを低減することができ、耐CO性が向
上する。
That is, regarding CO 2 corrosion, Cr addition is effective, but addition of an excessive amount of Cr causes deterioration of low temperature toughness and field weldability. In contrast, after regulating the upper limit of the Cr content, it is possible to reduce the effective cathode site by a further surface tissue is very fine ferrite a and C of finely dispersed tissue, resistance to CO 2 The property is improved.

【0009】Ar以上の高温圧延が低温靭性の向上に
とって有効であることを、以下に述べる。一般に高温か
らの冷却による降温過程で生じる変態温度域と、低温か
らの加熱による昇温過程で生じる変態温度域との間には
100〜200℃程度の温度差があり、昇温過程で生じ
る変態温度域の方が高い。そのため、図1に示すよう
に、厚鋼板を適切な温度域まで一度冷却した後に復熱さ
せる過程においては、板厚表層部は昇温中にフェライト
からオーステナイトへ変態するが、板厚中心部は依然と
してフェライト変態が開始せずにオーステナイト単相の
状態である。
It will be described below that high temperature rolling of Ar 3 or more is effective for improving low temperature toughness. Generally, there is a temperature difference of about 100 to 200 ° C. between the transformation temperature range generated in the temperature lowering process by cooling from high temperature and the transformation temperature region generated in the temperature rising process by heating from low temperature, and the transformation generated in the temperature rising process. The temperature range is higher. Therefore, as shown in FIG. 1, in the process in which the thick steel plate is once cooled to an appropriate temperature range and then reheated, the surface layer part of the plate thickness transforms from ferrite to austenite during temperature rise, but the central part of the plate thickness is The ferrite transformation has not yet started and the austenite single phase is still present.

【0010】復熱がある過度進行して両者の温度差が少
なくなった時点でも、板厚表層部ではフェライト主体の
金属組織を有し、板厚中心部ではオーステナイト主体の
金属組織を有するので、両者の間には大きな変形抵抗差
が生じ、板厚表層部の変形抵抗が極めて大きい。これ
は、図2に示すように、フェライト主体の金属組織とオ
ーステナイト主体の金属組織とではその応力−歪関係が
異なり、圧延真歪で0.2以下の範囲ではフェライト主
体の金属組織の方が同じ歪を与えた場合の変形抵抗が大
きいためである。
Even when the temperature difference between the two is reduced due to excessive progress of recuperation, the surface metal part of the plate thickness has a metal structure mainly composed of ferrite, and the center part of the plate thickness has a metal structure mainly composed of austenite. A large difference in deformation resistance occurs between the two, and the deformation resistance of the surface layer portion of the plate thickness is extremely large. This is because, as shown in FIG. 2, the stress-strain relationship is different between the metal structure mainly composed of ferrite and the metal structure mainly composed of austenite, and the metal structure mainly composed of ferrite is more preferable in the range of rolling true strain of 0.2 or less. This is because the deformation resistance is large when the same strain is applied.

【0011】本発明では板厚方向に故意に温度差をつけ
た状態で圧下を加え、板厚中心部より板厚表層部を硬化
させ、板厚方向の変形抵抗差を増加させることにより板
厚中心部を強厚下し、低温靭性の向上をはかるものであ
る。
In the present invention, a reduction is applied with a temperature difference intentionally applied in the plate thickness direction to cure the plate thickness surface layer from the center of the plate thickness to increase the deformation resistance difference in the plate thickness direction. The central part is strongly thickened to improve the low temperature toughness.

【0012】本発明において化学成分を限定した理由
は、次の通りである。 C :C量の下限を0.01%としたのは、母材および
溶接部の強度の確保ならびにNb、V等の添加時に、こ
れらの硬化を発揮させるための最小量である。しかし、
Cが多すぎるとHAZ靭性に悪影響をおよぼすだけでな
く、母材靭性、溶接性を劣化させるので、上限を0.0
9%とした。C量が多いとマルテンサイトが生成し、低
温靭性を著しく劣化する。過量のC添加は耐CO腐食
の防止の観点からは炭化物などのカソードサイトを生成
するので、C量は低い方が望ましい。
The reason for limiting the chemical components in the present invention is as follows. C: The lower limit of the amount of C is 0.01%, which is the minimum amount for ensuring the strength of the base material and the welded portion and for exerting hardening of Nb, V and the like when added. But,
If the amount of C is too large, not only the HAZ toughness is adversely affected, but also the base metal toughness and weldability are deteriorated, so the upper limit is 0.0.
It was set to 9%. When the amount of C is large, martensite is generated, and the low temperature toughness is significantly deteriorated. From the viewpoint of preventing CO 2 corrosion resistance, excessive addition of C produces cathode sites such as carbides, so a lower C content is desirable.

【0013】Si:脱酸上、0.05%以上鋼に必要で
あるが、多く添加すると溶接性および溶接部の靭性が劣
化するので上限を0.5%とした。 Mn:強度、靭性を確保する上で不可欠な元素であり、
その下限は0.7%である。HAZ靭性を改善するに
は、γ粒界に精製する粗大な初折フェライトを防止する
必要があるが、Mn添加は、これを抑制する硬化があ
る。しかし、Mnが多すぎると焼入性が増加して、溶接
性、HAZ靭性を劣化させるだけでなく、スラブのMn
S等の中心偏折を助長して、耐HIC性を劣化させるの
で、Mn添加の上限を1.5%とした。
Si: 0.05% or more is necessary for steel in terms of deoxidation, but if a large amount is added, the weldability and the toughness of the weld will deteriorate, so the upper limit was made 0.5%. Mn: an element essential for ensuring strength and toughness,
The lower limit is 0.7%. In order to improve the HAZ toughness, it is necessary to prevent the coarse first-order ferrite that is refined to the γ grain boundary, but addition of Mn has hardening that suppresses this. However, if the Mn content is too large, the hardenability increases, which not only deteriorates the weldability and HAZ toughness, but also increases the Mn content of the slab.
Since the center deviation of S and the like is promoted to deteriorate the HIC resistance, the upper limit of Mn addition is set to 1.5%.

【0014】P :本発明においては不純物であるPを
0.03%以下とした。これは、母材、HAZの低温靭
性をより一層向上させ、スラブの中心偏折を軽減するた
めである。P量の低減は、HAZにおける粒界破壊傾向
を減少せる傾向がある。好ましくはP量は0.01%以
下である。 S :S量を上限の0.05%以上にすると、MnSに
より低温靭性が劣化する。従って、本発明ではS量を
0.05%以下とした。 Nb:高強度鋼においてはNbを添加することなく優れ
たHAZ靭性を得ることは困難である。Nbはγ粒界に
精製するフェライトを抑制し結晶粒を微細化し鋼を高靭
化する。この効果を得るためには最低0.02%のNb
量が必要である。しかしながら、Nb量が多すぎると、
逆に微細組織の生成が妨げられるので、その上限を0.
06%とした。
P: In the present invention, P as an impurity is set to 0.03% or less. This is to further improve the low temperature toughness of the base material and HAZ and reduce the center deviation of the slab. Reduction of the amount of P tends to reduce the tendency of intergranular fracture in HAZ. Preferably, the P amount is 0.01% or less. S: If the amount of S is set to 0.05% or more of the upper limit, MnS deteriorates the low temperature toughness. Therefore, in the present invention, the amount of S is set to 0.05% or less. Nb: In high strength steel, it is difficult to obtain excellent HAZ toughness without adding Nb. Nb suppresses the refined ferrite at the γ grain boundary, refines the crystal grains, and strengthens the steel. To obtain this effect, at least 0.02% Nb
Quantity is needed. However, if the amount of Nb is too large,
On the contrary, since the formation of a fine structure is hindered, its upper limit is set to 0.
It was set to 06%.

【0015】Cr:耐CO腐食防止の観点から重要な
元素である。下限値0.5%は耐CO腐食性の効果を
得る最小値であるが、多すぎると現地溶接性やHAZ靭
性を劣化させるので上限を1.2%とした。 Ti:TiNを形成して、HAZ組織を微細化し、HA
Z靭性を向上させる。下限の0.005%は、この効果
を得るための最小量であり、また、上限の0.03%は
TiC形成によるHAZ塑性劣化を防止するためであ
る。 Al:一般に脱酸上鋼に含まれる元素であるが、過量の
添加は鋼清浄度が損なわれるため、その上限を0.05
%とした。 N :TiN等によるHAZ靭性を確保するためには
0.001%以上必要である。また、0.005%を越
えると耐HIC性が劣化するので、上限を0.005%
とした。
Cr: An important element from the viewpoint of preventing CO 2 corrosion resistance. The lower limit value of 0.5% is the minimum value for obtaining the effect of CO 2 corrosion resistance, but if it is too large, the field weldability and HAZ toughness deteriorate, so the upper limit was made 1.2%. Ti: TiN is formed, the HAZ structure is refined, and HA
Improves Z toughness. The lower limit of 0.005% is the minimum amount for obtaining this effect, and the upper limit of 0.03% is for preventing HAZ plastic deterioration due to TiC formation. Al: An element generally contained in deoxidized upper steel, but addition of an excessive amount impairs steel cleanliness, so its upper limit is 0.05.
%. N: 0.001% or more is necessary to secure HAZ toughness due to TiN or the like. Further, if it exceeds 0.005%, the HIC resistance deteriorates, so the upper limit is 0.005%.
And

【0016】本発明においては、所望によりさらに強度
調整元素として、V、Ni、Cu、Mo、Ca、Zr、
REMの少なくとも1種類以上を添加する。 V :Nbとほぼ同じ効果を持つ元素であるが、0.0
05%以下では効果がなく、上限は0.060%まで許
容できる。 Ni:0.05%以上の添加により、溶接性、HAZ靭
性に悪影響をおよぼすことなく、母材の強度、靭性を向
上させる。一方、1.0%を越えると経済性の貼で好ま
しくないため、その上限を1.0%とした。 Cu:Niとほぼ同様な効果が0.05%以上の添加に
よって得られる。しかし、1.0%以上添加すると熱間
圧延時にCu−クラックが発生し製造困難となので、上
限を1.0%とした。
In the present invention, if desired, V, Ni, Cu, Mo, Ca, Zr, and
At least one kind of REM is added. V: An element having almost the same effect as Nb, but 0.0
If it is less than 05%, there is no effect, and the upper limit is acceptable up to 0.060%. Addition of Ni: 0.05% or more improves the strength and toughness of the base metal without adversely affecting the weldability and HAZ toughness. On the other hand, if it exceeds 1.0%, it is not preferable for economical sticking, so the upper limit was made 1.0%. Almost the same effect as Cu: Ni can be obtained by adding 0.05% or more. However, if 1.0% or more is added, Cu-cracks are generated during hot rolling, which makes manufacturing difficult, so the upper limit was made 1.0%.

【0017】Mo:0.05%以上の添加により、母材
の強度、靭性を向上させる元素であるが、多すぎると母
材、HAZ靭性、溶接性の劣化を招き好ましくない。そ
の上限は0.40%である。 Ca:硫化物(MnS)の形態を制御し、低温靭性をさ
せる。Ca量が0.001%以下では実用上効果がな
く、また0.005%を越えて添加するとCaO、Ca
Sが多量に生成して大介在物となり、鋼の清浄度を害す
るばかりでなく靭性、現地溶接性に悪影響を及ぼす。 Zr:ほぼTiと同様の効果を持つ元素である。その上
下限値は、0.01%と0.005%である。 REM:ほぼTiと同様の効果を持つ元素であり、その
上下限値は、0.025%と0.005%である。
Mo: An element that improves the strength and toughness of the base material by adding 0.05% or more, but if it is too large, it deteriorates the base material, HAZ toughness, and weldability, which is not preferable. The upper limit is 0.40%. Ca: Controls the morphology of sulfides (MnS) to provide low temperature toughness. If the amount of Ca is less than 0.001%, it has no practical effect, and if added over 0.005%, CaO, Ca
A large amount of S is generated and becomes large inclusions, which not only impairs the cleanliness of steel but also adversely affects toughness and field weldability. Zr: An element having almost the same effect as Ti. The upper and lower limits are 0.01% and 0.005%. REM: An element having almost the same effect as Ti, and its upper and lower limit values are 0.025% and 0.005%.

【0018】しかし、個々の元素の量を限定するだけで
は不十分であり、下記の式 0.35≦C+(Mn+Cr+V)/5+(Ni+Cu)/
15≦0.48 を満足しなければならない。これは低温靭性や現地溶接
性がCrを含めた化学成分の全量で決まるからである。
下限の0.35%は必要な母材、溶接部の強度を得るた
めの最小量であり、0.48%は優れた低温靭性、溶接
性を得るための上限である。
However, it is not sufficient to limit the amount of each element, and the following formula 0.35≤C + (Mn + Cr + V) / 5 + (Ni + Cu) /
It must satisfy 15 ≦ 0.48. This is because the low temperature toughness and field weldability are determined by the total amount of chemical components including Cr.
The lower limit of 0.35% is the minimum amount for obtaining the necessary strength of the base material and the welded portion, and 0.48% is the upper limit for obtaining excellent low temperature toughness and weldability.

【0019】次に、本発明の製造条件について説明す
る。鋳造後のスラブ加熱温度は、1000〜1250℃
の範囲があるが、これは母材の強度、低温靭性を確保す
るために必要である。加熱温度が1000℃未満になる
とNb、V、Ti等の固溶が不十分となり、良好な強
度、靭性が得られない。しかし再加熱温度が1250℃
を越えると、オーステナイト粒が粗大化するため低温靭
性が劣化する。なお、鋳造後、鋳片を冷片にすることな
く直接圧延してもよい。
Next, the manufacturing conditions of the present invention will be described. The slab heating temperature after casting is 1000 to 1250 ° C.
However, this is necessary to secure the strength and low temperature toughness of the base material. If the heating temperature is less than 1000 ° C., solid solution of Nb, V, Ti, etc. becomes insufficient, and good strength and toughness cannot be obtained. However, the reheating temperature is 1250 ° C
If it exceeds, the austenite grains become coarse and the low temperature toughness deteriorates. After casting, the slab may be directly rolled without forming a cold piece.

【0020】また、加熱後、圧延を行い表面温度が90
0℃以上で圧延を一旦中断し、5〜40℃/sの冷却速
度で表面温度が700℃以下になるまで冷却する必要が
ある。粗圧延を必要とするのはオーステナイト再結晶域
での圧延によって、組織の微細化と均一化を図るためで
ある。スラブの表面温度が900℃未満から冷却する
と、鋼板中心部の温度も低下するために圧延終了時に板
厚平均温度をAr以上に確保することが困難となる。
After heating, rolling is carried out to bring the surface temperature to 90
It is necessary to suspend the rolling once at 0 ° C or higher and cool it at a cooling rate of 5 to 40 ° C / s until the surface temperature becomes 700 ° C or lower. Rough rolling is required in order to make the structure finer and more uniform by rolling in the austenite recrystallization region. If the surface temperature of the slab is cooled from less than 900 ° C., the temperature of the central portion of the steel plate will also decrease, and it will be difficult to secure the plate thickness average temperature at Ar 3 or higher at the end of rolling.

【0021】冷却による到達温度域を表面温度で700
℃以下とした理由は、700℃を越える温度では板厚中
心部の温度が復熱過程で未再結晶温度域まで下がらない
からである。冷却速度が小さ過ぎると板厚表層部でのα
へ変態量が小さくなり、板厚中心部での強圧下ができな
くなるため5℃/sとした。冷却速度が大き過ぎると板
厚平均温度が低下して、圧延終了時に板厚平均温度をA
以上に確保できないため上限を40℃/sとした。
The temperature range reached by cooling is 700 at the surface temperature.
The reason why the temperature is not more than 700 ° C. is that at a temperature exceeding 700 ° C., the temperature in the central portion of the plate thickness does not fall to the non-recrystallized temperature range in the recuperation process. If the cooling rate is too low, α
The amount of transformation into a small amount becomes so small that it is impossible to carry out a strong reduction in the center of the plate thickness, so it was set to 5 ° C / s. If the cooling rate is too high, the sheet thickness average temperature decreases, and at the end of rolling, the sheet thickness average temperature becomes A
The upper limit was set to 40 ° C./s because it cannot be secured to r 3 or more.

【0022】また、冷却後、表面温度がAr以下、板
厚中心部温度が950℃以下の温度域になるまで放置
し、その後累積圧下率で60%以上で、かつ平均1パス
当りの圧延真歪が0.2以下となるように圧下を加える
必要がある。冷却後の圧延開始時の表面温度がAc
下である理由は、Acを越えてしまうと板圧表層部の
αがγへ逆変態してしまい、αとγとの変形抵抗差によ
る靭性改善が困難となるからである。
After cooling, it is left standing until the surface temperature is Ar 3 or less and the plate thickness center temperature is 950 ° C. or less, and then the rolling reduction is 60% or more and the average rolling per pass. It is necessary to apply a reduction so that the true strain becomes 0.2 or less. The reason why the surface temperature at the start of rolling after cooling is Ac 3 or less is that when Ac 3 is exceeded, α in the surface layer portion of the plate pressure undergoes reverse transformation to γ, and the toughness due to the difference in deformation resistance between α and γ It is difficult to improve.

【0023】冷却終了後の板圧中心部の温度が950℃
以下の温度域に低下するまで放置するのは、板圧中心部
の温度をオーステナイト未再結晶温度域に低下させた
後、圧下を加えるためである。冷却後の圧延の累積圧下
率が60%未満では、板厚表層部(α)と板厚中心部
(γ)の変形抵抗差による強圧下の効果は小さく、板厚
中心部へ導入される加工歪量が少ないため、累積圧下率
を60%以上とした。平均1パス当りの圧延真歪が0.
2を越えると、図2に示すように、板厚中心部と板厚表
層部の変形抵抗差が逆転してしまうので、圧延真歪を
0.2以下に制御した。
After cooling, the temperature at the center of the plate pressure is 950 ° C.
The reason for allowing the temperature to fall to the following temperature range is to reduce the temperature of the central part of the plate pressure to the austenite unrecrystallized temperature range and then apply the reduction. If the cumulative rolling reduction after cooling is less than 60%, the effect of strong reduction due to the difference in deformation resistance between the plate thickness surface layer part (α) and the plate thickness center part (γ) is small, and the processing introduced into the plate thickness center part Since the amount of strain is small, the cumulative rolling reduction was set to 60% or more. The true rolling strain per pass is 0.
If it exceeds 2, as shown in FIG. 2, the difference in deformation resistance between the center part of the plate thickness and the surface layer part of the plate thickness is reversed. Therefore, the true rolling strain is controlled to 0.2 or less.

【0024】さらに、冷却後の圧延は板厚平均温度がA
以上で終了し、その後直ちに5〜40℃/sの冷却
速度で板厚平均が350〜550℃となるまで加速冷却
し、その後冷却する。冷却後の圧延は、板厚平均温度が
Ar未満で終了すると、MnS系介在物が残存した
場合、延伸化しやすい、またMn等の偏折によって周
囲よりもArの低下している中心偏折部へγ−α変態
に伴なうCの濃化が起こり、中心偏折部にMA(高C島
状マルテンサイト)等の硬化組織が形成されるので低温
靭性が低下する。
Further, the rolling after cooling has a sheet thickness average temperature of A
It is completed at r 3 or more, and immediately thereafter, accelerated cooling is performed at a cooling rate of 5 to 40 ° C./s until the plate thickness average becomes 350 to 550 ° C., and then cooled. When the rolling after cooling is completed when the sheet thickness average temperature is less than Ar 3 , if the MnS-based inclusions remain, it is easy to stretch, and due to the deviation of Mn, the central deviation of Ar 3 is lower than that of the surroundings. Concentration of C due to the γ-α transformation occurs in the folded portion, and a hardened structure such as MA (high C island martensite) is formed in the central bent portion, so that the low temperature toughness decreases.

【0025】圧延終了後の加速冷却+放冷は、良好な強
度、靭性を確保するために実施するものである。加速度
冷却において、5℃/s以下の冷却速度または550℃
を越える冷却開始温度にするとγ−α変態にともなうC
の濃化が起こり、中心偏折部にMA等の硬化組織が形成
されるため低温靭性が低下する。40℃/s以上の冷却
速度、また、350℃未満の冷却開始温度では焼入れ性
が高いマルテンサイト等の硬化組織が形成され、低温靭
性の確保が困難になる。加速冷却後の空冷は焼戻の効果
があり、高強度化、高靭化がはかれる。
Accelerated cooling + cooling after completion of rolling are carried out in order to secure good strength and toughness. In acceleration cooling, cooling rate of 5 ℃ / s or less or 550 ℃
When the cooling start temperature exceeds the range, C accompanying the γ-α transformation
Occurs, and a hardened structure such as MA is formed in the centrally bent portion, so that the low temperature toughness decreases. At a cooling rate of 40 ° C./s or more and at a cooling start temperature of less than 350 ° C., a hardened structure such as martensite having high hardenability is formed, and it becomes difficult to secure low temperature toughness. Air cooling after accelerated cooling has the effect of tempering, and can achieve high strength and high toughness.

【0026】[0026]

【実施例】以下に、本発明を実施例に基づいてさらに説
明する。表1に示す化学成分の供試鋼を使い、CCスラ
ブを、表2に示すような製造条件で再加熱、熱間圧延し
て、次いで加速冷却を行った。それによって得られた鋼
板の機械的性質、耐CO腐食性を、表3に示す。試験
片の採取状況の概略図を、図3に示す。シャルビー試験
片は、板厚1/2tより採取した。また、CO腐食試
験片は、表層部より採取した。
EXAMPLES The present invention will be further described below based on examples. Using the test steels having the chemical components shown in Table 1, CC slabs were reheated and hot-rolled under the production conditions shown in Table 2, and then accelerated cooling was performed. Table 3 shows the mechanical properties and CO 2 corrosion resistance of the steel sheet thus obtained. FIG. 3 shows a schematic view of the sampling situation of the test piece. The Charby test piece was sampled from a plate thickness of 1/2 t. The CO 2 corrosion test piece was collected from the surface layer.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】表1〜表3に示された結果から、下記のこ
とが分かる。鋼11〜24は、本発明の範囲内の適切な
製造条件ではないので、低温靭性および耐CO腐食性
が劣化している。
From the results shown in Tables 1 to 3, the following can be seen. Steels 11 to 24 are not suitable manufacturing conditions within the scope of the present invention, and thus low temperature toughness and CO 2 corrosion resistance are deteriorated.

【0032】鋼25〜30は、本発明の鋼の化学成分の
範囲ではないので、適切な機械的性質が得られていな
い。すなわち、鋼25は、Mn量が超であるため溶接部
の焼入性が増加して、靭性を低下している。鋼26およ
び鋼27は、それぞれNb、Tiが不足しているために
靭性が低下している。鋼28は、C量が多いため靭性が
低下するとともに、セメンタイト等のカソードサイトが
増加し、耐CO腐食性が劣化している。鋼29は、C
r量が低く、CO腐食環境下でカソード反応を抑制で
きず耐CO腐食性が劣化した。鋼30は、Cr量が多
く溶接部の靭性が低下している。
Steels 25 to 30 are not within the range of the chemical composition of the steel of the present invention, and thus have not obtained appropriate mechanical properties. That is, in Steel 25, since the Mn content is excessive, the hardenability of the welded portion is increased and the toughness is reduced. Steel 26 and steel 27 have a low toughness due to lack of Nb and Ti, respectively. Since the steel 28 has a large amount of C, its toughness decreases, and the number of cathode sites such as cementite increases, resulting in deterioration of CO 2 corrosion resistance. Steel 29 is C
r amount is low, resistance CO 2 corrosion resistance is deteriorated can not be suppressed cathode reaction under CO 2 corrosive environments. Steel 30 has a large amount of Cr and the toughness of the welded portion is reduced.

【0033】[0033]

【発明の効果】以上の通り、本発明によれば、CO
含有した環境における耐CO腐食性を改善し、特に母
材のみならず溶接部の靭性を適切に改善して、ラインパ
イプ用鋼管材としての特性を有効に高められる。
As described above, according to the present invention, according to the present invention, to improve the resistance to CO 2 corrosion in an environment containing CO 2, in particular properly improve toughness of the weld not only the base material, linepipe The characteristics as a steel pipe material for use can be effectively enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における圧延、水冷パターンを示す線図
である。
FIG. 1 is a diagram showing rolling and water cooling patterns in the present invention.

【図2】フェライトおよびオーステナイト主体組織での
圧延真歪と変形抵抗との関係を示した図である。
FIG. 2 is a diagram showing a relationship between rolling true strain and deformation resistance in a structure mainly composed of ferrite and austenite.

【図3】試験片の採取位置を示した概略図である。FIG. 3 is a schematic view showing a sampling position of a test piece.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 為 広 博 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hirohiro Hiroshi Kimitsu, Chiba Prefecture Kimitsu No. 1 Nippon Steel Corp. Kimitsu Works Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.01〜0.09%、S
i:0.5%以下、Mn:0.7〜1.5%、P:0.
03%以下、S:0.005%以下、Nb:0.01〜
0.06%、Cr:0.5〜1.2%、Ti:0.00
5〜0.03%、Al:0.05%以下、N:0.00
1〜0.005%を含有し、 かつ、下記の式 0.35≦C+Mn/6+(Cr+V)/5+(Ni+C
u)/15≦0.48 を満たす残部Feおよび不可避不純物からなる鋼を、 鋳造後、冷片にすることなく或は、冷片を1100〜1
250℃の温度に加熱し、抽出後圧延を開始して表面温
度が700℃以下になるまで水冷した後、表面温度がA
以下、板厚中心部温度が950℃以下になるまで放
冷し、しかる後に累積圧下率が60%以上でかつ平均1
パス当りの圧延真歪が0.2以下となる圧下を加え、板
厚平均温度がAr以上で圧延を終了し、直ちに5〜4
0℃/sの冷却速度で板厚平均温度が350〜500℃
となるまで冷却し、その後空冷する、 ことを特徴とする低温靭性および耐CO腐食性に優れ
た鋼板の製造方法。
1. C .: 0.01 to 0.09% by weight, S:
i: 0.5% or less, Mn: 0.7 to 1.5%, P: 0.
03% or less, S: 0.005% or less, Nb: 0.01 to
0.06%, Cr: 0.5-1.2%, Ti: 0.00
5 to 0.03%, Al: 0.05% or less, N: 0.00
1-0.005% and the following formula 0.35 ≦ C + Mn / 6 + (Cr + V) / 5 + (Ni + C
u) /15≦0.48, a steel consisting of balance Fe and unavoidable impurities is cast into a cold piece without casting, or a cold piece is made into 1100 to 1
After heating to a temperature of 250 ° C., starting the rolling after extraction and cooling with water until the surface temperature becomes 700 ° C. or less, the surface temperature is A
c 3 or less, and allowed to cool until the temperature at the center of the plate thickness became 950 ° C. or less, after which the cumulative rolling reduction was 60% or more and an average of 1
Rolling is finished when the true strain of rolling per pass is 0.2 or less, and the sheet thickness average temperature is Ar 3 or more.
Plate thickness average temperature is 350 to 500 ° C at a cooling rate of 0 ° C / s.
The method for producing a steel sheet excellent in low temperature toughness and CO 2 corrosion resistance, comprising:
【請求項2】重量%で、C:0.01〜0.09%、S
i:0.5%以下、Mn:0.7〜1.5%、P:0.
03%以下、S:0.005%以下、Nb:0.01〜
0.06%、Cr:0.5〜1.2%、Ti:0.00
5〜0.03%、Al:0.05%以下、N:0.00
1〜0.005%を含有し、 さらに、V:0.005〜0.060%、Ni:0.0
5〜1.0%、Cu:0.05〜1.0%、Mo:0.
05〜0.30%、Ca:0.001〜0.005%、
Zr:0.005〜0.025%、REM:0.000
8〜0.01%のうち1種類以上を含有し、 かつ、下記の式 0.35≦C+Mn/6+(Cr+V)/5+(Ni+C
u)/15≦0.48 を満足する残部Feおよび不可避不純物からなる鋼を、 鋳造後、冷片にすることなく或は、冷片を1100〜1
250℃の温度に加熱し、抽出後圧延を開始して表面温
度が900℃以上で圧延を一旦中断し、引続き5〜40
℃/sの冷却温度で表面温度が700℃以下になるまで
水冷した後、表面温度がAc以下、板圧中心部温度が
950℃以下になるまで放冷し、しかる後に累積圧下率
が60%以上でかつ平均1パス当りの圧延真歪が0.2
以下となる圧下を加え、板圧平均温度がAr以上で圧
延を終了し、直ちに5〜40℃/sの冷却速度で板厚平
均温度が350〜500℃となるまで冷却し、その後空
冷する、 ことを特徴とする低温靭性および耐CO腐食性に優れ
た鋼板の製造方法。
2. C: 0.01 to 0.09% by weight, S
i: 0.5% or less, Mn: 0.7 to 1.5%, P: 0.
03% or less, S: 0.005% or less, Nb: 0.01 to
0.06%, Cr: 0.5-1.2%, Ti: 0.00
5 to 0.03%, Al: 0.05% or less, N: 0.00
1 to 0.005%, V: 0.005 to 0.060%, Ni: 0.0
5 to 1.0%, Cu: 0.05 to 1.0%, Mo: 0.
05-0.30%, Ca: 0.001-0.005%,
Zr: 0.005-0.025%, REM: 0.000
It contains at least one of 8 to 0.01% and has the following formula 0.35 ≦ C + Mn / 6 + (Cr + V) / 5 + (Ni + C
u) /15≦0.48, the steel consisting of the balance Fe and unavoidable impurities is not cast into cold pieces after casting, or the cold pieces are made from 1100 to 1
After heating to a temperature of 250 ° C., rolling after extraction is started, the rolling is temporarily stopped when the surface temperature is 900 ° C. or higher, and then 5 to 40
After cooling with water at a cooling temperature of ℃ / s until the surface temperature becomes 700 ° C or lower, the surface temperature is allowed to cool to Ac 3 or lower and the plate pressure center temperature becomes 950 ° C or lower, after which the cumulative rolling reduction is 60 % Or more and the average rolling true strain per pass is 0.2
The following rolling reduction is applied, rolling is terminated when the plate pressure average temperature is Ar 3 or more, and immediately the plate thickness average temperature is cooled to 350 to 500 ° C. at a cooling rate of 5 to 40 ° C./s, and then air cooling is performed. A method for producing a steel sheet having excellent low temperature toughness and CO 2 corrosion resistance, characterized by:
JP7491394A 1994-04-13 1994-04-13 Manufacture of steel plate for line pipe excellent in low temperature toughness and co2 corrosion resistance Withdrawn JPH07278660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7491394A JPH07278660A (en) 1994-04-13 1994-04-13 Manufacture of steel plate for line pipe excellent in low temperature toughness and co2 corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7491394A JPH07278660A (en) 1994-04-13 1994-04-13 Manufacture of steel plate for line pipe excellent in low temperature toughness and co2 corrosion resistance

Publications (1)

Publication Number Publication Date
JPH07278660A true JPH07278660A (en) 1995-10-24

Family

ID=13561110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7491394A Withdrawn JPH07278660A (en) 1994-04-13 1994-04-13 Manufacture of steel plate for line pipe excellent in low temperature toughness and co2 corrosion resistance

Country Status (1)

Country Link
JP (1) JPH07278660A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050394A1 (en) * 2008-10-27 2010-05-06 新日本製鐵株式会社 Fire-resistant steel material with excellent resistance to reheat embrittlement and with low-temperature toughness at welded heat-affected parts, and manufacturing method thereof
CN107614724A (en) * 2015-05-22 2018-01-19 株式会社神户制钢所 Steel plate and welding point

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050394A1 (en) * 2008-10-27 2010-05-06 新日本製鐵株式会社 Fire-resistant steel material with excellent resistance to reheat embrittlement and with low-temperature toughness at welded heat-affected parts, and manufacturing method thereof
JP4547041B2 (en) * 2008-10-27 2010-09-22 新日本製鐵株式会社 Refractory steel material excellent in reheat embrittlement resistance and low temperature toughness of weld heat affected zone and method for producing the same
JPWO2010050394A1 (en) * 2008-10-27 2012-03-29 新日本製鐵株式会社 Refractory steel material excellent in reheat embrittlement resistance and low temperature toughness of weld heat affected zone and method for producing the same
CN107614724A (en) * 2015-05-22 2018-01-19 株式会社神户制钢所 Steel plate and welding point

Similar Documents

Publication Publication Date Title
EP2264205B1 (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
JP5499733B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP4767590B2 (en) Production method of low yield ratio high strength steel and low yield ratio high strength steel
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
KR20070035952A (en) Cold-formed steel pipe and tube having excellent in weldability with 490mpa-class of low yield ratio, and manufacturing process thereof
JP4072009B2 (en) Manufacturing method of UOE steel pipe with high crushing strength
JP4264177B2 (en) Method for producing a steel material having a coarse ferrite layer on the surface layer
JPH06293915A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and sour resistance
JP5157387B2 (en) Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability
JPH0931536A (en) Production of ultrahigh strength steel plate excellent in low temperature toughness
JP2002003983A (en) Low yielding ratio, high-tensile steel excellent in weldability and toughness at low temperature, and its manufacturing method
JP3009569B2 (en) Method for producing CO2 corrosion resistant sour resistant steel sheet with excellent low temperature toughness
JPH07278659A (en) Manufacture of steel plate for line pipe excellent in co2 corrosion resistance, sour resistance and low temperature toughness
JPH05295434A (en) Production of high tensile strength steel plate excellent in hydrogen induced cracking resistance, sulfide stress corrosion cracking resistance, and toughness at low temperature
JP2004091916A (en) Wear-resisting steel
JP2598357B2 (en) Manufacturing method of high strength steel sheet with excellent low temperature toughness
JP3009558B2 (en) Manufacturing method of thin high-strength steel sheet with excellent sour resistance
JP3214353B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JPH07278660A (en) Manufacture of steel plate for line pipe excellent in low temperature toughness and co2 corrosion resistance
JPH06293914A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness
JPH08295929A (en) Production of sour resistant steel sheet for line pipe excellent in co2 corrosion resistance and low temperature toughness
JPH08209241A (en) Production of steel plate for line pipe excellent in carbon dioxide corrosion resistance and low temperature toughness
KR100825650B1 (en) Low mo type wide and thick plate having excellent plate distortion property and method for manufacturing the same
JPH07150245A (en) Production of thick-walled steel tube having high toughness and low yield ratio
JP3393314B2 (en) Manufacturing method of sour resistant high strength steel sheet with excellent low temperature toughness

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010703