JPH07278544A - Production of purified liquid crystal, liquid crystal cell and display device for liquid crystal - Google Patents

Production of purified liquid crystal, liquid crystal cell and display device for liquid crystal

Info

Publication number
JPH07278544A
JPH07278544A JP6067031A JP6703194A JPH07278544A JP H07278544 A JPH07278544 A JP H07278544A JP 6067031 A JP6067031 A JP 6067031A JP 6703194 A JP6703194 A JP 6703194A JP H07278544 A JPH07278544 A JP H07278544A
Authority
JP
Japan
Prior art keywords
liquid crystal
powder
compound
imide group
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6067031A
Other languages
Japanese (ja)
Inventor
Akitsugu Tashiro
了嗣 田代
Osamu Hirai
修 平井
Yoshihiro Miya
好宏 宮
Hiroshi Nishizawa
広 西沢
Osamu Watanabe
治 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP6067031A priority Critical patent/JPH07278544A/en
Publication of JPH07278544A publication Critical patent/JPH07278544A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

PURPOSE:To obtain purified liquid crystal having excellent display stability at a high temperature for a long period of time, by treating liquid crystal with a small amount of powder of an imido-containing compound having a metal impurity content of <= a specific amount. CONSTITUTION:Liquid crystal is treated with powder (preferably porous granular powder having preferably 0.1-5,000mum average particle diameter and >=1m<2>/g specific surface area) of an imidocontaining compound having <=1ppm metal impurity (e.g. Na, K, Cu and Fe) content to give the objective liquid crystal. The powder is preferably a granular kpolyimide of formula I (R<1> is a tetrafunctional organic group; R<2> is a bifunctional organic group; (n) is an integer larger than 1) or formula II (A<1> is a tetrafunctional aromatic residue; A<2> is a bifunctional aromatic residue; (m) is an integer larger than 1) obtained by reacting tetracarboxylic acid dianhydride with a diamine (preferably diisocyanate) in a solvent in which the prepared granular polyimide is insoluble.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、精製された液晶の製造
法、液晶セル及び液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a purified liquid crystal, a liquid crystal cell and a liquid crystal display device.

【0002】[0002]

【従来の技術】現在、液晶表示素子ではポリイミド配向
膜にイオン性不純物が吸着し、表示特性を劣化させてし
まうという問題が生じている。そのため液晶精製材等を
使いイオン性不純物を除去する方法が検討されている。
アルミナ、シリカ等の無機系化合物の粉末、イオン交換
樹脂などを液晶精製材として用いて液晶中のイオン性不
純物の除去を行うことが提案されているが(特開平1−
87685号公報)、吸着能が非常に強いため、ポリイ
ミド配向膜に吸着し液晶表示素子特性を劣化させるイオ
ン性不純物ばかりでなく、極性基を持つ液晶の混合物や
カイラル剤等の他の添加剤も吸着し液晶組成を変えてし
まい、かえって表示特性を劣化させてしまう。液晶表示
装置(液晶ディスプレイ)の表示特性向上のためには、
液晶の比抵抗の向上、液晶セルの電圧保持率の向上が重
要であり、これらを達成するために、アルミナ、シリカ
等の無機系化合物の粉末を用いて液晶の精製が行われて
いた。しかし、アルミナ、シリカ等の無機系化合物の粉
末で処理しても、比抵抗で5倍の向上、電圧保持率で3
%の向上が限界であった。
2. Description of the Related Art At present, in a liquid crystal display device, there is a problem that ionic impurities are adsorbed on a polyimide alignment film and the display characteristics are deteriorated. Therefore, a method of removing ionic impurities using a liquid crystal refining material or the like has been studied.
It has been proposed to remove the ionic impurities in the liquid crystal by using a powder of an inorganic compound such as alumina or silica, an ion exchange resin or the like as a liquid crystal refining material (JP-A-1-
No. 87685), because of its very high adsorption ability, not only ionic impurities that are adsorbed on a polyimide alignment film and deteriorate liquid crystal display device characteristics, but also other additives such as a mixture of liquid crystals having a polar group and a chiral agent. It is adsorbed and changes the liquid crystal composition, which rather deteriorates the display characteristics. In order to improve the display characteristics of liquid crystal display devices (liquid crystal displays),
It is important to improve the specific resistance of the liquid crystal and the voltage holding ratio of the liquid crystal cell, and in order to achieve these, the liquid crystal has been purified using powders of inorganic compounds such as alumina and silica. However, even if treated with a powder of an inorganic compound such as alumina or silica, the specific resistance is improved five times and the voltage holding ratio is 3 times.
% Improvement was the limit.

【0003】また、ポリイミド配向膜の材料と同じ材料
を、液晶を注入するための液晶溜等の治具や配管に形成
し、ポリイミド配向膜に吸着する不純物を選択的に除去
することが提案されているが(特開平4−258925
号公報)、液晶と接触する面積が狭いため不純物の除去
が十分行われず、初期表示特性は満足するが長期に渡っ
ての表示安定性及び高温環境下(40℃〜80℃)での
長期表示安定性は得られていない。また、ポリイミド膜
を破砕あるいは粉末化し、精製剤としての利用も行える
が、依然として比表面積が小さいため充分な不純物除去
効果を出すためには多量に添加しなければならず、高価
な液晶のロス分が大きくなってしまうという問題が生じ
ている。
Further, it has been proposed that the same material as the polyimide alignment film is formed on a jig or a pipe such as a liquid crystal reservoir for injecting liquid crystal to selectively remove impurities adsorbed on the polyimide alignment film. (Japanese Patent Laid-Open No. 4-258925)
However, since the area in contact with the liquid crystal is small, impurities are not sufficiently removed, and initial display characteristics are satisfied, but display stability for a long time and long-term display in a high temperature environment (40 ° C to 80 ° C). Stability is not obtained. Further, the polyimide film can be crushed or powdered and used as a purifying agent, but since the specific surface area is still small, it must be added in a large amount in order to obtain a sufficient impurity removing effect, and the loss amount of expensive liquid crystal is lost. Has become a problem.

【0004】また、比表面積の大きいポリイミド微粒子
を用いて精製することも考えられるが、通常、ポリイミ
ドは金属不純物を含有し、精製操作時にその金属不純物
が液晶材料中に移行し、かえって液晶材料を汚染するこ
とになる。
It is also possible to purify using fine polyimide particles having a large specific surface area, but normally, polyimide contains metal impurities, and the metal impurities migrate into the liquid crystal material during the refining operation, rather the liquid crystal material is changed. Will be polluted.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記した従
来の技術の問題点を解決し、液晶の比抵抗の向上率及び
液晶セルの電圧保持率の向上率を飛躍的に増大させるこ
とのできる、精製された液晶の製造法、液晶セル及び液
晶表示装置を提供することを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and dramatically increases the improvement rate of the specific resistance of the liquid crystal and the voltage retention rate of the liquid crystal cell. An object of the present invention is to provide a method for producing a purified liquid crystal, a liquid crystal cell, and a liquid crystal display device that can be manufactured.

【0006】[0006]

【課題を解決するための手段】本発明は、液晶を金属不
純物含有量が1.0ppm以下のイミド基を有する化合物
の粉末で処理することを特徴とする精製された液晶の製
造法、前記製造法によって得られた液晶を用いた液晶セ
ル及び液晶表示装置に関する。
The present invention provides a method for producing a purified liquid crystal, which comprises treating the liquid crystal with a powder of a compound having an imide group having a metal impurity content of 1.0 ppm or less. The present invention relates to a liquid crystal cell and a liquid crystal display device using a liquid crystal obtained by a method.

【0007】本発明に用いられる液晶は、液晶表示装置
に一般的に使用される液晶であれば特に制限はなく、こ
のような液晶としては、例えば、シッフ塩基系、アゾ
系、アゾキシ系、安息香酸エステル系、ビフェニル系、
ターフェニル系、シクロヘキシルカルボン酸エステル
系、フェニルシクロヘキサン系、ビフェニルシクロヘキ
サン系、ピリミジン系、ジオキサン系、シクロヘキシル
シクロヘキサンエステル系、シクロヘキシルエタン系、
シクロヘキサン系、トラン系、アルケニル系、2,3−
ジフルオロフェニレン系等のネマチック液晶、コレステ
リック液晶、スメチック液晶等が挙げられる。これらの
液晶は、単独で又は2種類以上を組み合わせて使用され
る。
The liquid crystal used in the present invention is not particularly limited as long as it is a liquid crystal generally used in liquid crystal display devices. Examples of such liquid crystal include Schiff base type, azo type, azoxy type and benzoic acid. Acid ester type, biphenyl type,
Terphenyl type, cyclohexylcarboxylic acid ester type, phenylcyclohexane type, biphenylcyclohexane type, pyrimidine type, dioxane type, cyclohexylcyclohexane ester type, cyclohexylethane type,
Cyclohexane type, tolan type, alkenyl type, 2,3-
Examples include difluorophenylene-based nematic liquid crystals, cholesteric liquid crystals, smectic liquid crystals, and the like. These liquid crystals are used alone or in combination of two or more.

【0008】本発明に用いられるイミド基を有する化合
物の粉末としては、用いる液晶に溶解しないものであれ
ばとくに制限はないが、例えば、テトラカルボン酸二無
水物とジアミン又はジイソシアナートとを反応させて得
られる下記一般式(1)〜(3)で表されるポリイミ
ド、トリカルボン酸一無水物とジアミン又はジイソシア
ナートとを反応させて得られる下記一般式(4)で表さ
れるポリアミドイミド、ビスマレイミド重合体等が挙げ
られる。好ましくは下記一般式(2)で表されるポリイ
ミド又は一般式(3)で表されるポリイミドが用いら
れ、より好ましくは下記一般式(3)で表されるポリイ
ミドが用いられる。
The powder of the compound having an imide group used in the present invention is not particularly limited as long as it does not dissolve in the liquid crystal used. For example, tetracarboxylic dianhydride is reacted with diamine or diisocyanate. Polyimides represented by the following general formulas (1) to (3) obtained by reacting polyamide diamides represented by the following general formula (4) obtained by reacting tricarboxylic acid monoanhydrides with diamines or diisocyanates. , Bismaleimide polymers and the like. The polyimide represented by the following general formula (2) or the polyimide represented by the general formula (3) is preferably used, and more preferably the polyimide represented by the following general formula (3) is used.

【0009】[0009]

【化1】 (式中、R1は4価の有機基を示し、R2は2価の有機基
を示し、nは1より大きい整数である)
[Chemical 1] (In the formula, R 1 represents a tetravalent organic group, R 2 represents a divalent organic group, and n is an integer greater than 1.)

【化2】 (式中、A1は4価の芳香族残基を示し、A2は2価の芳
香族残基を示し、mは1より大きい整数である)
[Chemical 2] (In the formula, A 1 represents a tetravalent aromatic residue, A 2 represents a divalent aromatic residue, and m is an integer greater than 1.)

【化3】 (式中、A3は、[Chemical 3] (In the formula, A 3 is

【化4】 から成る群より選ばれる基を示し、Zは、[Chemical 4] Represents a group selected from the group consisting of

【化5】 から成る群より選ばれる基を示し、A4は、[Chemical 5] It represents a group selected from the group consisting of, A 4 is

【化6】 から成る群より選ばれる基を示し、Zは上記と同じ基を
示し、pは1より大きい整数である)
[Chemical 6] Represents a group selected from the group consisting of, Z represents the same group as described above, and p is an integer greater than 1.)

【化7】 (式中、R3は2価の有機基を示し、R4は3価の有機基
を示し、qは1より大きい整数である)
[Chemical 7] (In the formula, R 3 represents a divalent organic group, R 4 represents a trivalent organic group, and q is an integer greater than 1.)

【0010】上記テトラカルボン酸二無水物としては、
例えば、ピロメリット酸二無水物、3,3′,4,4′
−ベンゾフェノンテトラカルボン酸二無水物、3,3′
4,4′−ビフェニルテトラカルボン酸二無水物、1,
2,5,6−ナフタレンテトラカルボン酸二無水物、
2,3,6,7−ナフタレンテトラカルボン酸二無水
物、2,3,5,6−ピリジンテトラカルボン酸二無水
物、1,4,5,8−ナフタレンテトラカルボン酸二無
水物、3,4,9,10−ペリレンテトラカルボン酸二
無水物、4,4′−スルホニルジフタル酸二無水物、m
−ターフェニル−3,3″,4,4″−テトラカルボン
酸二無水物、p−ターフェニル−3,3″,4,4″−
テトラカルボン酸二無水物、4,4′−オキシジフタル
酸無水物、1,1,1,3,3,3−ヘキサフルオロ−
2,2,−ビス(2,3−又は3,4−ジカルボキシフ
ェニル)プロパン二無水物、2,2−ビス(2,3−又
は3,4−ジカルボキシフェニル)プロパン二無水物、
2,2−ビス〔4,(2,3−又は3,4−ジカルボキ
シフェノキシ)フェニル〕プロパン二無水物、1,1,
1,3,3,3,−ヘキサフルオロ−2,2−ビス〔4
−(2,3−又は3,4−ジカルボキシフェノキシ)フ
ェニル〕プロパン二無水物、1,10−デカンジオール
ビス(トリメリット酸無水物)、1,3−ビス(3,4
−ジカルボキシフェニル)−1,1,3,3−テトラメ
チルジシロキサン二無水物等の芳香族テトラカルボン酸
二無水物、これらの芳香族テトラカルボン酸二無水物の
水素還元体、下記に示した化合物である脂環式テトラカ
ルボン酸二無水物、2,3,5−トリカルボキシシクロ
ペンチル酢酸二無水物、ブタン−1,2,3,4−テト
ラカルボン酸二無水物などが用いられる。
The above-mentioned tetracarboxylic acid dianhydride is
For example, pyromellitic dianhydride, 3,3 ′, 4,4 ′
-Benzophenone tetracarboxylic dianhydride, 3,3 '
4,4'-biphenyltetracarboxylic dianhydride, 1,
2,5,6-naphthalenetetracarboxylic dianhydride,
2,3,6,7-naphthalenetetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 3, 4,9,10-Perylenetetracarboxylic acid dianhydride, 4,4'-sulfonyldiphthalic acid dianhydride, m
-Terphenyl-3,3 ", 4,4" -tetracarboxylic dianhydride, p-terphenyl-3,3 ", 4,4"-
Tetracarboxylic acid dianhydride, 4,4'-oxydiphthalic anhydride, 1,1,1,3,3,3-hexafluoro-
2,2, -bis (2,3- or 3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3- or 3,4-dicarboxyphenyl) propane dianhydride,
2,2-bis [4, (2,3- or 3,4-dicarboxyphenoxy) phenyl] propane dianhydride, 1,1,
1,3,3,3, -hexafluoro-2,2-bis [4
-(2,3- or 3,4-dicarboxyphenoxy) phenyl] propane dianhydride, 1,10-decanediol bis (trimellitic anhydride), 1,3-bis (3,4)
-Dicarboxyphenyl) -1,1,3,3-tetramethyldisiloxane dianhydride and other aromatic tetracarboxylic dianhydrides, hydrogenated products of these aromatic tetracarboxylic dianhydrides, shown below. Other compounds such as alicyclic tetracarboxylic acid dianhydride, 2,3,5-tricarboxycyclopentyl acetic acid dianhydride and butane-1,2,3,4-tetracarboxylic acid dianhydride are used.

【化8】 これらのテトラカルボン酸二無水物は、単独で又は2種
類以上を組み合わせて使用されるが、好ましくは芳香族
テトラカルボン酸二無水物が用いられる。
[Chemical 8] These tetracarboxylic acid dianhydrides are used alone or in combination of two or more kinds, and preferably aromatic tetracarboxylic acid dianhydride is used.

【0011】上記ジアミンとしては、例えば脂肪族系、
脂環族系、複素環族系、芳香族系、シリコン系等のジア
ミンが使用できる。具体的には、4,4′−ジアミノジ
フェニルエーテル、3,4′−ジアミノジフェニルエー
テル、4,4′−ジアミノジフェニルメタン、4,4′
−メチレン−ビス−(2,6−ジメチルアニリン)、
4,4′−メチレン−ビス−(2,6−ジエチルアニリ
ン)、4,4′−メチレン−ビス−(2−メチル−6−
エチルアニリン)、4,4′−ジアミノジフェニルスル
ホン、3,3′−ジアミノジフェニルスルホン、4,
4′−ベンゾフェノンジアミン、3,3′−ベンゾフェ
ノンジアミン、メタフェニレンジアミン、パラフェニレ
ンジアミン、4,4′−ジ(4−アミノフェノキシ)フ
ェニルスルホン、4,4′−ジ(3−アミノフェノキ
シ)フェニルスルホン、4,4′−ジ(4−アミノフェ
ノキシ)ベンゼン、3,3′−ジ(4−アミノフェノキ
シ)ベンゼン、4,4′−ジ(3−アミノフェノキシ)
ベンゼン、2,4−ジアミノトルエン、2,6−ジアミ
ノトルエン、4,4′−ジアミノジフェニルプロパン、
4,4′−ジアミノフェニル、2,2−ビス〔4−(4
−アミノフェノキシ)フェニル〕プロパン、2,2−ビ
ス〔4−(3−アミノフェノキシ)フェニル〕プロパ
ン、1,1,1,3,3,3−ヘキサフルオロ−2,2
−ビス〔4−(4−アミノフェノキシ)フェニル〕プロ
パン等の芳香族ジアミン、これら芳香族ジアミンの水素
還元体である脂環式ジアミンなどが挙げられる。
Examples of the above-mentioned diamine include aliphatic series,
Aliphatic-based, heterocyclic-based, aromatic-based, and silicon-based diamines can be used. Specifically, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4,4 '
-Methylene-bis- (2,6-dimethylaniline),
4,4'-methylene-bis- (2,6-diethylaniline), 4,4'-methylene-bis- (2-methyl-6-
Ethylaniline), 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,
4'-benzophenone diamine, 3,3'-benzophenone diamine, metaphenylenediamine, paraphenylenediamine, 4,4'-di (4-aminophenoxy) phenyl sulfone, 4,4'-di (3-aminophenoxy) phenyl Sulfone, 4,4'-di (4-aminophenoxy) benzene, 3,3'-di (4-aminophenoxy) benzene, 4,4'-di (3-aminophenoxy)
Benzene, 2,4-diaminotoluene, 2,6-diaminotoluene, 4,4'-diaminodiphenylpropane,
4,4'-diaminophenyl, 2,2-bis [4- (4
-Aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 1,1,1,3,3,3-hexafluoro-2,2
Examples include aromatic diamines such as -bis [4- (4-aminophenoxy) phenyl] propane and alicyclic diamines that are hydrogen reduction products of these aromatic diamines.

【0012】これらのなかでは、4,4′−ジアミノジ
フェニルエーテル、4,4′−ジアミノジフェニルメタ
ン、4,4′−ベンゾフェノンジアミン、4,4′−ジ
アミノジフェニルスルホン、2,2−ビス〔4−(4−
アミノフェノキシ)フェニル〕プロパン、4,4′−メ
チレン−ビス−(2,6−ジメチルアニリン)、4,
4′−メチレン−ビス−(2,6−ジエチルアニリ
ン)、4,4′−メチレン−ビス−(2−メチル−6−
エチルアニリン)等の芳香族ジアミンが好ましい。
Among these, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4,4'-benzophenone diamine, 4,4'-diaminodiphenyl sulfone and 2,2-bis [4- ( 4-
Aminophenoxy) phenyl] propane, 4,4'-methylene-bis- (2,6-dimethylaniline), 4,
4'-methylene-bis- (2,6-diethylaniline), 4,4'-methylene-bis- (2-methyl-6-
Aromatic diamines such as ethylaniline) are preferred.

【0013】また、上記したジアミンの一部に3官能性
以上のポリアミンを使用することにより、架橋性ポリイ
ミド樹脂を得ることができる。このようなポリアミンと
しては例えば1,2,4−トリアミノベンゼン等の芳香
族トリアミン、1,2,4,5−テトラアミノベンゼ
ン、3,3′−ジアミノベンジジン等の芳香族テトラア
ミン、下記の一般式(5)で表される芳香族ポリアミン
A crosslinkable polyimide resin can be obtained by using a trifunctional or higher polyamine as a part of the above-mentioned diamine. Examples of such polyamines include aromatic triamines such as 1,2,4-triaminobenzene, aromatic tetraamines such as 1,2,4,5-tetraaminobenzene and 3,3′-diaminobenzidine, and the following general compounds. Aromatic polyamine represented by formula (5)

【化9】 (式中、jは0〜10の整数である)などが用いられ
る。
[Chemical 9] (In the formula, j is an integer of 0 to 10) and the like are used.

【0014】上記ジイソシアネートとしては、例えば、
上記したジアミンをホスゲン又は塩化チオニルと反応さ
せて得られるジイソシアネートが用いられる。またポリ
アミンを同様に処理して得られるポリイソシアネート又
はジイソシアネートを三量化反応させて得られるイソシ
アヌレート環含有ポリイソシアネートも用いられる。
Examples of the diisocyanate include:
A diisocyanate obtained by reacting the above diamine with phosgene or thionyl chloride is used. Further, a polyisocyanate obtained by treating a polyamine in the same manner or an isocyanurate ring-containing polyisocyanate obtained by subjecting a diisocyanate to a trimerization reaction is also used.

【0015】これらのうちで、4,4′−ジフェニルメ
タンジイソシアネート、4,4′−ジフェニルエーテル
ジイソシアネート、3,3′−ジメチルジフェニル−
4,4′−ジイソシアネート、トリレンジイソシアネー
ト等の芳香族ジイソシアネート、この芳香族ジイソシア
ネートを縮合反応させて得られるカルボジイミド基含有
芳香族ジイソシアネート、イソシアヌレート環含有ポリ
イソシアネートなどが好ましく用いられる。
Of these, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyl ether diisocyanate and 3,3'-dimethyldiphenyl-
Aromatic diisocyanates such as 4,4′-diisocyanate and tolylene diisocyanate, carbodiimide group-containing aromatic diisocyanates obtained by condensation reaction of these aromatic diisocyanates, and isocyanurate ring-containing polyisocyanates are preferably used.

【0016】上記トリカルボン酸一無水物としては、例
えば、トリメリット酸の反応性酸誘導体が挙げられ、具
体的には、トリメリット酸無水物、トリメリット酸無水
物モノクロライド、1,4−ジカルボキシ−3−N、N
−ジメチルカルバモイルベンゼン、1,4−ジカルボキ
シ−3−カルボフェノキシベンゼン、1,4−ジカルボ
メトキシ−3−カルボキシベンゼン、トリメリット酸、
これらのものとアンモニア、ジメチルアミン、トリエチ
ルアミン等とからなるアンモニウム塩類などが用いられ
る。これらのうちで、トリメリット酸無水物、トリメリ
ット酸無水物モノクロライドが好ましい。
Examples of the tricarboxylic acid monoanhydride include reactive acid derivatives of trimellitic acid, and specific examples thereof include trimellitic anhydride, trimellitic anhydride monochloride, and 1,4-dicarboxylic acid. Carboxy-3-N, N
-Dimethylcarbamoylbenzene, 1,4-dicarboxy-3-carbophenoxybenzene, 1,4-dicarbomethoxy-3-carboxybenzene, trimellitic acid,
Ammonium salts composed of these and ammonia, dimethylamine, triethylamine and the like are used. Of these, trimellitic anhydride and trimellitic anhydride monochloride are preferable.

【0017】本発明における一般式(1)、(2)、
(3)及び(4)で表されるそれぞれのポリイミド、ポ
リアミドイミドは一般式(1)、(2)、(3)及び
(4)で表される繰り返し単位と異なる繰り返し単位
(分岐した繰り返し単位あるいは三次元橋かけした繰り
返し単位)を含むことができる。
General formulas (1), (2), and
Each of the polyimides and polyamideimides represented by (3) and (4) is a repeating unit different from the repeating units represented by the general formulas (1), (2), (3) and (4) (branched repeating units). Alternatively, it may include a three-dimensionally bridged repeating unit).

【0018】上記ビスマレイミド重合体としては、例え
ば、4,4′−ビスマレイミドジフェニメルメタン、
2,2−ビス(4−(4−マレイミドフェノキシ)フェ
ニル)プロパン、ビス(4−(3−マレイミドフェノキ
シ)フェニル)スルホン、3,4′−ビスマレイミドジ
フェニメルエーテル、1,2−ビス(4−マレイミドフ
ェノキシ)エタン、1,2−ビス(2−(4−マレイミ
ドフェノキシ)エトキシ)エタン、1,6−ビスマレイ
ミドヘキサン等の重合体等が挙げられる。
Examples of the above-mentioned bismaleimide polymer include 4,4'-bismaleimide diphenylmermethane,
2,2-bis (4- (4-maleimidophenoxy) phenyl) propane, bis (4- (3-maleimidophenoxy) phenyl) sulfone, 3,4'-bismaleimidodiphenyl ether, 1,2-bis ( Examples thereof include polymers such as 4-maleimidophenoxy) ethane, 1,2-bis (2- (4-maleimidophenoxy) ethoxy) ethane, and 1,6-bismaleimidohexane.

【0019】本発明におけるイミド基を有する化合物の
粉末を得る方法としては、例えば、上記したイミド基を
有する化合物の溶液から回収した粉粒体を機械粉砕する
方法、上記したイミド基を有する化合物の溶液を貧溶媒
に加えながら高せん断下に微粒子化する方法、上記した
イミド基を有する化合物の溶液の噴霧油滴を乾燥して微
粒子を得る方法、細孔を通して形成した微粒子から回収
する方法(膜乳化法)あるいは、上記した一般式
(1)、(2)、(3)及び(4)の出発原料を用いて
非水分散重合法(特公昭60−48531号公報、特開
昭59−230018号公報)、分散重合法(特開昭5
9−108030号公報、特開昭60−221425号
公報、特開昭63−277241号公報)、膜乳化法
(特開平2−95433号公報)で直接合成によって得
る方法等があり、任意の方法が用いられる。
As the method for obtaining the powder of the compound having an imide group in the present invention, for example, a method of mechanically pulverizing a powder or granular material recovered from a solution of the compound having an imide group described above, A method of forming fine particles under high shear while adding a solution to a poor solvent, a method of obtaining fine particles by drying spray oil droplets of a solution of a compound having an imide group described above, a method of recovering from fine particles formed through pores (membrane Emulsification method) or a non-aqueous dispersion polymerization method using the starting materials of the above-mentioned general formulas (1), (2), (3) and (4) (JP-B-60-48531, JP-A-59-230018). No.), dispersion polymerization method (Japanese Patent Laid-Open No. Sho 5)
9-108030, JP-A-60-212425, JP-A-63-277241), a method of obtaining by direct synthesis by a membrane emulsification method (JP-A-2-95433), and the like, and any method. Is used.

【0020】本発明におけるイミド基を有する化合物の
粉末としては、好ましくはテトラカルボン酸二無水物と
ジアミンとを、得られる粒子状ポリイミドを溶解しない
溶媒中で反応させて得られる多孔質な粒子状ポリイミド
及びテトラカルボン酸二無水物とジイソシアナートと
を、得られる粒子状ポリイミドを溶解しない溶媒中で反
応させて得られる多孔質で粒子状のポリイミドが用いら
れる。より好ましくは、芳香族テトラカルボン酸二無水
物と芳香族ジアミンとを、得られる粒子状ポリイミドを
溶解しない溶媒中で分散重合させて得られる多孔質で粒
子状のポリイミドが用いられる。
The powder of the compound having an imide group in the present invention is preferably a porous particulate form obtained by reacting tetracarboxylic dianhydride and diamine in a solvent that does not dissolve the resulting particulate polyimide. A porous and particulate polyimide obtained by reacting a polyimide and tetracarboxylic dianhydride with diisocyanate in a solvent that does not dissolve the resulting particulate polyimide is used. More preferably, a porous and particulate polyimide obtained by dispersion polymerization of an aromatic tetracarboxylic dianhydride and an aromatic diamine in a solvent that does not dissolve the resulting particulate polyimide is used.

【0021】上記した得られる粒子状ポリイミドを溶解
しない溶媒としては、例えば、アセトン、メチルエチル
ケトン、メチルイソブチルケトン等のケトン類、トルエ
ン、キシレン等の芳香族系溶媒、酢酸エチル、酢酸ブチ
ル等のエステル類、メタノール、エタノール、ブタノー
ル等のアルコール系溶媒、γ−ブチロラクトン、ε−カ
プロラクトン等のラクトン系溶媒、エチレングリコール
ジメチルエーテル、エチレングリコールジエチルエーテ
ル、ジエチレングリコールジメチルエーテル、トリエチ
レングリコールジメチルエーテル、テトラヒドロフラ
ン、ジオキサン等のエーテル系溶媒、フェノール、メタ
クレゾール等のフェノール系溶媒、N−メチルピロリド
ン、N,N−ジメチルホルムアミド、N,N−ジメチル
アセトアミド、N−メチルカプロラクタム等の塩基性溶
媒、水などが用いられる。
Examples of the solvent that does not dissolve the obtained particulate polyimide include ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, aromatic solvents such as toluene and xylene, and esters such as ethyl acetate and butyl acetate. , Alcohol solvents such as methanol, ethanol and butanol, lactone solvents such as γ-butyrolactone and ε-caprolactone, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetrahydrofuran and ether solvents such as dioxane. , Phenol, phenol-based solvents such as methacresol, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N-meth A basic solvent such as tilcaprolactam and water are used.

【0022】上記した分散重合の好ましい態様として
は、芳香族テトラカルボン酸二無水物(I)、芳香族ジ
アミン(II)及び水(III)を(I)と(II)をほぼ当
モルとし、(III)を(I)に対して10〜200モル
%の割合として150℃未満の温度で塩基性溶媒に溶解
させ、150〜300℃の温度で反応させることが挙げ
られる。
In a preferred embodiment of the above-mentioned dispersion polymerization, aromatic tetracarboxylic dianhydride (I), aromatic diamine (II) and water (III) are approximately equimolar to (I) and (II), (III) may be dissolved in a basic solvent at a temperature of less than 150 ° C. at a ratio of 10 to 200 mol% with respect to (I) and reacted at a temperature of 150 to 300 ° C.

【0023】本発明におけるイミド基を有する化合物と
して、上記一般式(1)〜(3)で表されるポリイミド
及び上記一般式(4)で表されるポリアミドイミドは分
子主鎖中にカルボキシル基又はアミド酸基を有していて
もよい。
As the compound having an imide group in the present invention, the polyimide represented by the above general formulas (1) to (3) and the polyamideimide represented by the above general formula (4) are carboxyl groups or It may have an amic acid group.

【0024】本発明に用いられるイミド基を有する化合
物の粉末の金属不純物含有量は1.0ppm以下とされ
る。この値が、1.0ppmを超えると、精製しようとす
る液晶をかえって汚染させることになる。この値は、
0.6ppm以下とすることが好ましく、下限には特に制
限はない。金属不純物含有量とは、ナトリウム、カリウ
ム、銅、鉄、モリブデン、アルミ、ニッケル、コバルト
等の金属の各々の含有量の総和である。各々の金属の含
有量は、例えば、原子吸光分析により測定して求めるこ
とができる。測定の便宜等から、金属不純物をナトリウ
ム、カリウム、銅及び鉄に限定して、これらの含有量の
総和を金属不純物含有量とし、これを1.0ppm以下と
することが好ましい。
The content of metal impurities in the powder of the compound having an imide group used in the present invention is 1.0 ppm or less. If this value exceeds 1.0 ppm, the liquid crystal to be purified is rather contaminated. This value is
It is preferably 0.6 ppm or less, and there is no particular lower limit. The metal impurity content is the sum of the contents of metals such as sodium, potassium, copper, iron, molybdenum, aluminum, nickel and cobalt. The content of each metal can be determined by, for example, atomic absorption spectrometry. For convenience of measurement, it is preferable that the metal impurities are limited to sodium, potassium, copper, and iron, and the total content thereof is the metal impurity content, which is 1.0 ppm or less.

【0025】本発明に用いられる金属不純物含有量が
1.0ppm以下のイミド基を有する化合物の粉末を得る
方法としては、金属不純物含有量が1.0ppm以下の精
製された材料を用い、汚染の可能性のない良く洗浄され
た器具で合成する方法と、通常に合成された粉末を金属
不純物含有量が0.2ppm以下の溶媒を用いて、汚染の
可能性のない良く洗浄された器具で洗浄する方法等があ
り、特に制限はないが、操作性を考慮すると、金属不純
物含有量が1.0ppm以下の精製された材料を用い、汚
染の可能性のない良く洗浄された器具で合成する方法が
好ましい。
As a method for obtaining a powder of a compound having an imide group having a metal impurity content of 1.0 ppm or less, which is used in the present invention, a purified material having a metal impurity content of 1.0 ppm or less is used, A method of synthesizing with well-cleaned equipment that has no possibility, and using a solvent with a metal impurity content of 0.2 ppm or less for normally synthesized powder, wash with well-cleaned equipment that has no possibility of contamination. There is no particular limitation, but in consideration of operability, a method of synthesizing with a well-cleaned instrument with no possibility of contamination using a purified material with a metal impurity content of 1.0 ppm or less. Is preferred.

【0026】金属不純物含有量が1.0ppm以下の材料
は、その材料が固体の場合は再結晶により、その材料が
液体の場合は蒸留により得ることができる。
A material having a metal impurity content of 1.0 ppm or less can be obtained by recrystallization when the material is a solid and by distillation when the material is a liquid.

【0027】汚染の可能性のない良く洗浄された器具と
しては、ガラス、プラスチック等の非金属性の材質で、
さらに使用前に電気伝導度が1.0μS/cm以下のイオン
交換水等で洗浄後乾燥したもが挙げられる。
As a well-cleaned instrument with no possibility of contamination, a non-metallic material such as glass or plastic is used.
Further, it may be mentioned that it is washed with ion-exchanged water having an electric conductivity of 1.0 μS / cm or less before use and then dried.

【0028】本発明に用いられるイミド基を有する化合
物の粉末の平均粒子径は、特に制限されない。しかし、
平均粒子径が小さすぎると濾過時やデカンテーション時
の作業性が悪く、また、粉末を充填しカラムとして用い
た場合透過性が悪くなる傾向があり、一方、大きすぎる
と比表面積が低下し液晶の精製及び電圧保持率の向上効
果が小さくなる傾向があるため、粉末の平均粒子径は
0.1〜5,000μmの範囲とすることが好ましく、
1〜5,000μmの範囲とすることがより好ましい。
The average particle size of the powder of the compound having an imide group used in the present invention is not particularly limited. But,
If the average particle size is too small, the workability at the time of filtration or decantation is poor, and if the powder is used as a column and the permeability tends to be poor, on the other hand, if it is too large, the specific surface area decreases and the liquid crystal It is preferable that the average particle size of the powder is in the range of 0.1 to 5,000 μm, because the effect of refining and improving the voltage holding ratio tends to be small.
The range of 1 to 5,000 μm is more preferable.

【0029】本発明に用いられるイミド基を有する化合
物の粉末の比表面積は、小さ過ぎると、液晶の精製及び
電圧保持率の向上効果が小さくなる傾向があるため、1
2/g以上とすることが好ましく、5m2/g以上とする
ことがより好ましく、10m2/g以上とすることが特に
好ましく、20m2/g以上とすることが極めて好まし
い。比表面積の上限は特にないが、通常5,000m2/
g程度である。イミド基を有する化合物の粉末の平均粒
子径及び比表面積を所望の範囲とすることは、例えば、
粉末を製造する際の反応条件(溶媒の種類、組合せ、使
用量、撹拌の仕方、反応温度、反応時間、沈殿のさせ方
等)を調整することにより行うことができる。
If the specific surface area of the powder of the compound having an imide group used in the present invention is too small, the effect of refining the liquid crystal and improving the voltage holding ratio tends to be small, so that 1
It is preferably at least m 2 / g, more preferably at least 5 m 2 / g, particularly preferably at least 10 m 2 / g, and most preferably at least 20 m 2 / g. There is no particular upper limit to the specific surface area, but it is usually 5,000 m 2 /
It is about g. To make the average particle size and the specific surface area of the powder of the compound having an imide group a desired range, for example,
It can be carried out by adjusting the reaction conditions (type of solvent, combination, amount used, stirring method, reaction temperature, reaction time, precipitation method, etc.) when the powder is produced.

【0030】本発明における処理の方法としては、特に
制限はなく、液晶とイミド基を有する化合物の粉末とを
接触させることができるものであればよい。このような
処理の方法としては、例えば、バッチ法、カラム法等が
ある。
The treatment method in the present invention is not particularly limited as long as it can bring the liquid crystal and the powder of the compound having an imide group into contact with each other. Examples of such a treatment method include a batch method and a column method.

【0031】バッチ法とは、適当な容器中に、液晶とイ
ミド基を有する化合物の粉末とを投入して必要に応じ撹
拌し、その後イミド基を有する化合物の粉末を分離除去
して、精製された液晶を得る方法である。バッチ法で行
う場合の、液晶とイミド基を有する化合物の粉末の比率
は、イミド基を有する化合物の粉末が少なすぎると、液
晶の精製及び液晶セルの電圧保持率の向上効果が小さく
なる傾向があり、一方、イミド基を有する化合物の粉末
が多すぎると、イミド基を有する化合物の粉末に吸収さ
れる液晶の量が増大して、液晶のロスが多くなる傾向が
あるので、イミド基を有する化合物の粉末は、液晶に対
して0.01〜30重量%の範囲で使用することが好ま
しい。
In the batch method, the liquid crystal and the powder of the compound having an imide group are put into a suitable container, stirred if necessary, and then the powder of the compound having an imide group is separated and removed to be purified. It is a method of obtaining a liquid crystal. When carried out by the batch method, the ratio of the powder of the liquid crystal and the compound having an imide group is too small, and the effect of refining the liquid crystal and improving the voltage holding ratio of the liquid crystal cell tends to be small. On the other hand, when the amount of the compound powder having the imide group is too large, the amount of the liquid crystal absorbed by the powder of the compound having the imide group increases, and the loss of the liquid crystal tends to increase. The compound powder is preferably used in the range of 0.01 to 30% by weight with respect to the liquid crystal.

【0032】バッチ法で行う場合の処理時間は、短すぎ
ると液晶の精製効果及び液晶セルの電圧保持率の向上効
果が小さくなる傾向があるので10秒以上行うことが好
ましい。バッチ法で行う場合の処理温度は、液晶の融点
以上であれば特に問題はないが、高すぎると液晶及びイ
ミド基を有する化合物の粉末が分解する可能性があるの
で、200℃以下とすることが好ましい。
If the treatment time in the batch method is too short, the purification effect of the liquid crystal and the effect of improving the voltage holding ratio of the liquid crystal cell tend to be small, so that the treatment time is preferably 10 seconds or more. The treatment temperature in the case of the batch method is not particularly problematic as long as it is equal to or higher than the melting point of the liquid crystal, but if it is too high, the powder of the liquid crystal and the compound having an imide group may be decomposed. Is preferred.

【0033】バッチ法で行う場合の液晶とイミド基を有
する化合物の粉末との分離方法としては、例えば、濾過
法、デカンテーション法等を用いることができるが、特
に制限はない。
As a method of separating the liquid crystal from the powder of the compound having an imide group in the case of performing the batch method, for example, a filtration method, a decantation method or the like can be used, but there is no particular limitation.

【0034】カラム法とは、適当な容器中に、イミド基
を有する化合物の粉末を充填してカラムとし、このカラ
ムに液晶を通液させ、精製された液晶を得る方法であ
る。カラム法で行う場合の液晶の通液方法は、重力によ
る自然流下であっても、ポンプを用いてもよく、特に制
限はない。カラム法で行う場合の流速は、早すぎると液
晶の精製効果及び液晶セルの電圧保持率の向上効果が小
さくなる傾向があり、遅すぎると処理効率が悪くなる傾
向があるので、線速度で0.0001cm/min〜100cm
/minの範囲とすることが好ましい。
The column method is a method in which a powder of a compound having an imide group is packed in a suitable container to form a column, and liquid crystal is passed through this column to obtain a purified liquid crystal. The method of passing the liquid crystal in the case of using the column method may be either a natural flow due to gravity or a pump, and is not particularly limited. When the flow rate in the case of the column method is too fast, the purification effect of the liquid crystal and the effect of improving the voltage holding ratio of the liquid crystal cell tend to be small, and when it is too slow, the treatment efficiency tends to be poor. .0001 cm / min to 100 cm
It is preferably in the range of / min.

【0035】液晶の比抵抗は液晶ディスプレイの表示特
性に大きく影響を与え、一般的には高い値の方が表示特
性は良くなるが、液晶の種類及び液晶ディスプレイの駆
動方式の要求特性、要求価格等によって使用される液晶
の比抵抗は異なり、その値は特に制限されるものではな
い。特に要求特性の厳しいTFT駆動のアクティブマト
リックス型カラー液晶ディスプレイ用では、1012Ωcm
以上の比抵抗が好ましい。液晶の電圧保持率も液晶ディ
スプレイの表示特性に大きく影響を与え、一般的には高
い値の方が表示特性は良くなるが、液晶の種類及び液晶
ディスプレイの駆動方式の要求特性、要求価格等によっ
て使用される液晶の電圧保持率は異なり、その値は特に
制限されるものではない。特に要求特性の厳しいTFT
駆動のアクティブマトリックス型カラー液晶ディスプレ
イ用では、測定温度23℃(室温)でパルス幅100μ
m5V矩形波印加時16.5ms(フレーム周波数60H
z)で84%以上の電圧保持率が好ましい。
The specific resistance of the liquid crystal greatly affects the display characteristics of the liquid crystal display, and generally, the higher the value, the better the display characteristics. However, the required characteristics and the required price of the type of the liquid crystal and the driving method of the liquid crystal display are required. The specific resistance of the liquid crystal used is different depending on the case, and the value is not particularly limited. 10 12 Ωcm for active matrix type color liquid crystal display driven by TFT, which has particularly strict requirements.
The above specific resistance is preferable. The voltage holding ratio of the liquid crystal also greatly affects the display characteristics of the liquid crystal display, and generally, the higher the value, the better the display characteristics, but it depends on the type of liquid crystal and the required characteristics of the liquid crystal display drive system, the required price, etc. The voltage holding ratio of the liquid crystal used is different, and its value is not particularly limited. TFT with particularly strict characteristics
For driving active matrix type color liquid crystal display, pulse width 100μ at measurement temperature 23 ℃ (room temperature)
16.5ms when applying m5V rectangular wave (frame frequency 60H
A voltage holding ratio of 84% or more in z) is preferable.

【0036】本発明の液晶セルは、液晶として精製され
た液晶を用いる他は、公知の方法(例えば、「液晶の基
礎と応用」(松本、角田共著 工業調査会発行 1991
年5月)参照)によって製造することができる。例え
ば、2枚のガラス基板上に、各々スパッタリング法等に
より所定のITO透明電極を形成し、さらに、その上に
ポリイミド又はその前駆体のワニスを成膜、乾燥し、必
要に応じてラビングして液晶配向膜を形成して液晶挾持
基板とし、この液晶挾持基板2枚を各々液晶配向膜が対
向するようにして配置し、周辺の縁をシールパタンでと
めて、液晶配向膜同士の間に液晶を封入することにより
得ることができる。なお、液晶の性能を調べる等の目的
で、上記において液晶配向膜を設ける工程を省き、他は
同様にして得られたものも液晶セルに含まれる。
The liquid crystal cell of the present invention uses a known method (for example, "Fundamentals and Applications of Liquid Crystals" (Matsumoto and Tsunoda, published by Industrial Research Society, 1991), except that purified liquid crystal is used as the liquid crystal.
May))). For example, a predetermined ITO transparent electrode is formed on each of two glass substrates by a sputtering method or the like, and a varnish of polyimide or its precursor is formed thereon, dried, and rubbed if necessary. A liquid crystal alignment film is formed to form a liquid crystal holding substrate, and the two liquid crystal holding substrates are arranged so that the liquid crystal alignment films face each other. The peripheral edges are closed with a seal pattern, and the liquid crystal alignment film is sandwiched between the liquid crystal alignment films. It can be obtained by encapsulating. For the purpose of investigating the performance of the liquid crystal and the like, the liquid crystal cell includes those obtained in the same manner except that the step of providing the liquid crystal alignment film is omitted.

【0037】本発明の液晶表示装置は、精製された液晶
を用いる他は、公知の方法(例えば、「液晶の基礎と応
用」(松本、角田共著 工業調査会発行 1991年5
月)参照)によって作成することができる。液晶表示装
置は、その表示形態によってセグメント形表示、マトリ
クス形表示等に大別でき、また、マトリクス形表示も、
さらに単純マトリクス形表示、アクティブマトリクス形
表示等に分けられる。
The liquid crystal display device of the present invention uses a known method (for example, "Fundamentals and Applications of Liquid Crystals" (published by Matsumoto and Tsunoda, Industrial Research Society, 1991), except that purified liquid crystal is used.
Month) reference). Liquid crystal display devices can be roughly divided into segment type display, matrix type display, etc. according to the display form, and matrix type display is also possible.
Further, it is divided into a simple matrix type display and an active matrix type display.

【0038】[0038]

【実施例】次に、本発明を実施例によりさらに詳しく説
明する。
EXAMPLES Next, the present invention will be described in more detail by way of examples.

【0039】実施例1 (1)イミド基を有する化合物の粉末の調整 電気伝導度0.2μS/cmのイオン交換水で洗浄し乾燥さ
せた、ガラス製温度計、テフロンコ−ティングされたか
きまぜ機及びガラス製球管冷却管をつけた3リットルの
ガラス製四つ口フラスコ内に窒素ガスを通しながら、金
属不純物含有量0.35ppmのトリメリット酸二無水物
218g(1モル)及び金属不純物含有量0.20ppm
の4,4′−ジアミノジフェニルエ−テル200g(1
モル)を金属不純物含有量0.20ppmのN−メチルピ
ロリドン1673gに溶解し、25℃で4時間反応さ
せ、さらに80℃で1時間反応させた。得られた樹脂溶
液を電気伝導度0.2μS/cmのイオン交換水5リットル
を入れた電気伝導度0.2μS/cmのイオン交換水で洗浄
したガラス容器中に投入し、平均粒径100μmの微粒
子状粉末を得た。この粉末を200℃で3時間乾燥させ
平均粒径100μmのイミド基を有する化合物の粉体を
得た。この粉体の比表面積は5m2/g(BET法、カル
ロエルバー社製ソープトマチック1800型使用、以下
も同じ)であり、赤外吸収スペクトルには1780cm-1
にイミド基の特性吸収が顕著に認められた。また、原子
吸光分析で測定した金属不純物含有量は0.55ppm以
下(ナトリウム0.32ppm、カリウム0.15ppm、銅
0.03ppm以下及び鉄0.05ppm以下)であった。
Example 1 (1) Preparation of a powder of a compound having an imide group A glass thermometer, a Teflon-coated stirrer and a glass thermometer washed with ion-exchanged water having an electric conductivity of 0.2 μS / cm and dried. 218 g (1 mol) of trimellitic dianhydride with a metal impurity content of 0.35 ppm and a metal impurity content while passing nitrogen gas through a 3 liter glass four-necked flask equipped with a glass ball tube cooling tube 0.20ppm
200 g of 4,4'-diaminodiphenyl ether (1
Mol) was dissolved in 1673 g of N-methylpyrrolidone having a metal impurity content of 0.20 ppm, reacted at 25 ° C for 4 hours, and further reacted at 80 ° C for 1 hour. The obtained resin solution was put into a glass container washed with ion-exchanged water having an electric conductivity of 0.2 μS / cm and containing 5 liters of ion-exchanged water having an electric conductivity of 0.2 μS / cm, and having an average particle size of 100 μm. A fine powder was obtained. This powder was dried at 200 ° C. for 3 hours to obtain a compound powder having an average particle diameter of 100 μm and having an imide group. This powder has a specific surface area of 5 m 2 / g (BET method, used by Carlo Elber Corp. Soaptomatic 1800 type, the same applies below), and has an infrared absorption spectrum of 1780 cm -1.
The characteristic absorption of the imide group was remarkably observed. The content of metal impurities measured by atomic absorption spectrometry was 0.55 ppm or less (sodium 0.32 ppm, potassium 0.15 ppm, copper 0.03 ppm or less and iron 0.05 ppm or less).

【0035】(2)イミド基を有する化合物の粉末によ
る液晶の処理 前記(1)で得たイミド基を有する化合物の粉末0.5
gを10mlのガラスビーカーに入れた液晶(メルク社
製、商品名ZLI−4792)5g中に投入し、マグネ
ットスターラーにより室温で1時間撹拌した。次いで濾
過して粉末を除去し、精製された液晶を得た。
(2) Treatment of liquid crystal with powder of compound having imide group: Powder of compound having imide group obtained in (1) 0.5
g was put into 5 g of liquid crystal (manufactured by Merck & Co., trade name ZLI-4792) in a 10 ml glass beaker, and stirred at room temperature for 1 hour with a magnetic stirrer. Then, the powder was removed by filtration to obtain a purified liquid crystal.

【0036】(3)液晶の精製度(比抵抗)の測定 液晶の精製度を、液晶の比抵抗を尺度として調べること
とし、この比抵抗を液体電極用電極(安藤電気製、商品
名LE−21)を用いて室温で測定した結果を表1に示
した。
(3) Measurement of Refining Degree (Specific Resistivity) of Liquid Crystal The refining degree of liquid crystal was examined by using the resistivity of the liquid crystal as a scale, and this resistivity was measured by an electrode for liquid electrode (manufactured by Ando Electric Co., Ltd., LE- Table 1 shows the results of the measurement using 21) at room temperature.

【0037】(4)液晶セルの電圧保持率の測定 二枚のガラス基板(30mm×30mm×1.0mm)上に、
各々スパッタリング法によって所定のITO透明電極を
形成した。このパタ−ンを図1及び図2に示した。この
両基板をシールパタンとしてのエポキシ系熱硬化性接着
剤(樹脂:HAVEN Chemical Co.製商品名 SE−450
0 Clear、硬化剤:HAVEN Chemical C
o.製、商品名SE−4500 CATALYST)で
貼り合わせた。この際、両基板のギャップを一定に保つ
ため、直径5.0μmのプラスチック粒子をスペーサと
して介在させた。この基板間に液晶(メルク社製、商品
名ZLI−4792)を真空含浸法によって注入し、注
入口を封止剤としてのUV硬化性樹脂(スリーボンド社
製、商品名Three bond 3052)で封止することによ
り、図3及び図4に示す液晶セルを得た。この液晶セル
を用いて、電圧保持率の測定を行った。電圧保持率の測
定は、上記両基板のITO電極間の電圧をデジタルメモ
リースコープによりモニターする状態で、図5のモデル
回路によりパルス電圧を印加し、ITO電極間の電圧の
変化を測定して行った。測定条件は、モデル回路におけ
るゲートC−ソースS間に、パルス幅30μ秒、電圧1
0Vのゲート信号を入力し、ドレイン電圧VDの変化を
測定してデジタルメモリースコープ上の波形の実効値を
求め、下記計算式により計算した。なお、図1〜図5に
おいて、1はガラス基板、2はITO透明電極、3はシ
ールパタン、4は液晶及び5は封止剤を表す。
(4) Measurement of voltage holding ratio of liquid crystal cell On two glass substrates (30 mm × 30 mm × 1.0 mm),
A predetermined ITO transparent electrode was formed by the sputtering method. This pattern is shown in FIGS. Epoxy thermosetting adhesive (resin: HAVEN Chemical Co., trade name SE-450 manufactured by HAVEN Chemical Co.
0 Clear, Hardener: HAVEN Chemical C
o. Manufactured by SE-4500 CATLYST (trade name). At this time, in order to keep the gap between both substrates constant, plastic particles having a diameter of 5.0 μm were interposed as spacers. Liquid crystal (manufactured by Merck, trade name ZLI-4792) is injected between the substrates by a vacuum impregnation method, and the injection port is sealed with a UV curable resin (manufactured by Three Bond, trade name Three bond 3052) as a sealant. By doing so, the liquid crystal cell shown in FIGS. 3 and 4 was obtained. The voltage holding ratio was measured using this liquid crystal cell. The voltage holding ratio is measured by applying a pulse voltage by the model circuit of FIG. 5 while monitoring the voltage between the ITO electrodes on both substrates with a digital memory scope and measuring the change in the voltage between the ITO electrodes. It was The measurement conditions are: pulse width 30 μsec, voltage 1 between gate C and source S in the model circuit.
A gate signal of 0 V was input, the change in drain voltage VD was measured, the effective value of the waveform on the digital memory scope was calculated, and the value was calculated by the following calculation formula. 1 to 5, 1 is a glass substrate, 2 is an ITO transparent electrode, 3 is a seal pattern, 4 is a liquid crystal, and 5 is a sealant.

【0038】[0038]

【数1】 [Equation 1]

【0039】(5)液晶表示装置の表示性能 前記(2)で得た精製された液晶を用いて、液晶配向膜
としてポリイミド(日立化成工業社製、商品名アクティ
ブマトリクス用配向膜LQ−T210)を使用したアク
ティブ駆動型液晶表示装置を作成したところ、その表示
特性(特に表示ムラ)は極めて優れていた。
(5) Display Performance of Liquid Crystal Display Device Using the purified liquid crystal obtained in the above (2), polyimide (a product of Hitachi Chemical Co., Ltd., trade name active matrix alignment film LQ-T210) as a liquid crystal alignment film. When an active drive type liquid crystal display device using was prepared, its display characteristics (especially display unevenness) were extremely excellent.

【0040】比較例1 イミド基を有する化合物の粉末に代えて、活性アルミナ
(和光純薬製カラムクロマト用、20mesh)を用いた以
外は実施例1と同様の操作を行い、結果を表1に示し
た。
Comparative Example 1 The same operation as in Example 1 was carried out except that activated alumina (for Wako Pure Chemical Industries, column chromatography, 20 mesh) was used in place of the powder of the compound having an imide group, and the results are shown in Table 1. Indicated.

【0041】比較例2 イミド基を有する化合物の粉末による処理を行わず(液
晶は未精製)、他は実施例1と同様の測定を行い、結果
を表1に示した。
Comparative Example 2 The same measurement as in Example 1 was carried out except that the compound having an imide group was not treated with the powder (the liquid crystal was not purified), and the results are shown in Table 1.

【0042】比較例3 金属不純物含有量0.35ppmのトリメリット酸二無水
物に代えて金属不純物含有量50ppmのトリメリット酸
二無水物、金属不純物含有量0.20ppmの4,4′−
ジアミノジフェニルエ−テルに代えて金属不純物含有量
60ppmの4,4′−ジアミノジフェニルエ−テル、金
属不純物含有量0.20ppmのN−メチルピロリドンに
代えて金属不純物含有量5ppmのN−メチルピロリドン
を用い、イオン交換水での洗浄を行わなかった以外は実
施例1と同様の操作を行い(イミド基を有する化合物の
粉末の金属不純物含有量は143ppm(ナトリウム90p
pm、カリウム45ppm、銅3ppm、鉄5ppm、)であっ
た)、結果を表1に示した。
Comparative Example 3 Instead of trimellitic acid dianhydride having a metal impurity content of 0.35 ppm, trimellitic acid dianhydride having a metal impurity content of 50 ppm and 4,4′-having a metal impurity content of 0.20 ppm
4,4'-Diaminodiphenyl ether having a metal impurity content of 60 ppm instead of diaminodiphenyl ether, and N-methylpyrrolidone having a metal impurity content of 5 ppm instead of N-methylpyrrolidone having a metal impurity content of 0.20 ppm Was performed in the same manner as in Example 1 except that the washing with ion-exchanged water was not performed (the content of metal impurities in the compound powder having an imide group was 143 ppm (sodium 90 p
pm, potassium 45 ppm, copper 3 ppm, iron 5 ppm)), and the results are shown in Table 1.

【0043】[0043]

【表1】 [Table 1]

【0043】実施例2 (1)イミド基を有する化合物の粉末の調整 電気伝導度0.2μS/cmのイオン交換水で洗浄し乾燥さ
せた温度計、かきまぜ機、水分定量器をつけた3リット
ルの四つ口フラスコ内に窒素ガスを通しながら、金属不
純物含有量0.35ppmのピロメリット酸二無水物21
8g(1モル)と金属不純物含有量0.20ppmのN−
メチルピロリドン1,673gを入れ、かくはんしなが
ら50℃に昇温し、同温度で0.5時間保ち完全に溶解
して均一な溶液とした。これに金属不純物含有量0.2
0ppmの4,4′−ジアミノジフェニルエーテル200
g(1モル)と電気伝導度0.2μS/cmの水3.6g
(2モル)を加え、ただちに110℃値に昇温し、同温
度で20分間保ち完全に溶解して均一な溶液とした。つ
いで、約2時間で200℃に昇温し、同温度で3時間反
応させた。途中、約125℃で粒子状ポリイミドの析出
が観測された。また、反応中、留出する水はすみやかに
系外に除去した。N−メチルピロリドン中に分散した黄
褐色の粒子状ポリイミドを得たので、これをろ過によっ
て回収し、更に電子材料グレードのアセトン煮沸を2回
繰り返した後、減圧下、200℃で5時間乾燥させた。
平均粒径は9μm、比表面積は40m2/gであり、赤外
吸収スペクトルには1,780cm-1にイミド基の特性
吸収が顕著に認められた。また、原子吸光分析で測定し
た金属不純物含有量は0.23ppm以下(ナトリウム
0.08ppm、カリウム0.07ppm、銅0.03ppm以
下、鉄0.05ppm以下)であった。
Example 2 (1) Preparation of powder of compound having imide group 3 liter equipped with thermometer, stirrer and moisture meter, washed with ion-exchanged water having electric conductivity of 0.2 μS / cm and dried Pyromellitic dianhydride 21 with a metal impurity content of 0.35 ppm while passing nitrogen gas through the four-necked flask
8 g (1 mol) and N-containing 0.20 ppm of metal impurities
1,673 g of methylpyrrolidone was added, the temperature was raised to 50 ° C. with stirring, and the temperature was kept at the same temperature for 0.5 hour to completely dissolve the solution to obtain a uniform solution. The content of metal impurities is 0.2
0 ppm of 4,4'-diaminodiphenyl ether 200
g (1 mol) and water with an electric conductivity of 0.2 μS / cm 3.6 g
(2 mol) was added, the temperature was immediately raised to a value of 110 ° C., and the temperature was kept at the same temperature for 20 minutes to completely dissolve it to obtain a uniform solution. Then, the temperature was raised to 200 ° C. in about 2 hours and the reaction was carried out at the same temperature for 3 hours. On the way, precipitation of particulate polyimide was observed at about 125 ° C. Further, during the reaction, water distilled out was promptly removed from the system. Since a yellowish brown particulate polyimide dispersed in N-methylpyrrolidone was obtained, this was recovered by filtration, and after boiling the electronic material grade acetone twice again, it was dried at 200 ° C. for 5 hours under reduced pressure. It was
The average particle size was 9 μm, the specific surface area was 40 m 2 / g, and the characteristic absorption of the imide group was remarkably recognized at 1,780 cm −1 in the infrared absorption spectrum. Further, the content of metal impurities measured by atomic absorption spectrometry was 0.23 ppm or less (sodium 0.08 ppm, potassium 0.07 ppm, copper 0.03 ppm or less, iron 0.05 ppm or less).

【0044】(2)イミド基を有する化合物の粉末によ
る液晶の処理、(3)液晶の精製度(比抵抗)の測定及
び(4)液晶セルの電圧保持率の測定については、実施
例1と同様に行い、その結果を表2に示した。
Example 1 was carried out with respect to (2) treatment of liquid crystal with powder of a compound having an imide group, (3) measurement of purification degree (specific resistance) of liquid crystal, and (4) measurement of voltage holding ratio of liquid crystal cell. The results were shown in Table 2 in the same manner.

【0045】(5)液晶表示装置の表示性能について、
実施例1と同様に評価したところ、その表示特性(特に
表示ムラ)は極めて優れていた。
(5) Regarding the display performance of the liquid crystal display device,
When evaluated in the same manner as in Example 1, the display characteristics (particularly display unevenness) were extremely excellent.

【0046】実施例3 以下の方法で合成した粒子を用いた以外は実施例1と同
様の操作を行い、結果を表2に示した。
Example 3 The same operation as in Example 1 was carried out except that the particles synthesized by the following method were used, and the results are shown in Table 2.

【0047】電気伝導度0.2μS/cmのイオン交換水で
洗浄し乾燥させた温度計、かきまぜ機及び球管冷却管を
つけた3リットルの四つ口フラスコ内に窒素ガスを通し
ながら、金属不純物含有量0.35ppmのピロメリット
酸二無水物218g(1モル)及び金属不純物含有量
0.20ppmの4,4′−ジアミノジフェニルエーテ
ル200g(1モル)を金属不純物含有量0.20ppm
のN−メチルピロリドン1673gに溶解し、25℃で
4時間反応させ、さらに80℃で1時間反応させた。得
られた樹脂溶液を電気伝導度0.2μS/cmの水10リッ
トル中に投入し、平均粒径200μmの微粒子状粉末を
得た。この粉末を200℃で3時間乾燥させ平均粒径2
00μmのイミド基を有する化合物の粉体を得た。この
粉体の、比表面積は0.5m2/gであり、赤外吸収スペ
クトルには1780cm-1にイミド基の特性吸収が顕著に
認められた。原子吸光分析で測定した金属不純物含有量
は0.46ppm以下(ナトリウム0.26ppm、カリウム
0.12ppm、銅0.03ppm以下、鉄0.05ppm以
下)であった。
While passing nitrogen gas through a 3 liter four-necked flask equipped with a thermometer, an agitator and a ball tube cooling tube, which had been washed with ion-exchanged water having an electric conductivity of 0.2 μS / cm and dried, a metal was introduced. 218 g (1 mol) of pyromellitic dianhydride having an impurity content of 0.35 ppm and 200 g (1 mol) of 4,4′-diaminodiphenyl ether having a metal impurity content of 0.20 ppm were added to the metal impurity content of 0.20 ppm.
Was dissolved in 1673 g of N-methylpyrrolidone, reacted at 25 ° C. for 4 hours, and further reacted at 80 ° C. for 1 hour. The obtained resin solution was poured into 10 liters of water having an electric conductivity of 0.2 μS / cm to obtain a fine particle powder having an average particle diameter of 200 μm. This powder was dried at 200 ° C. for 3 hours and the average particle size was 2
A powder of a compound having an imide group of 00 μm was obtained. The specific surface area of this powder was 0.5 m 2 / g, and the characteristic absorption of the imide group was remarkably recognized at 1780 cm -1 in the infrared absorption spectrum. The content of metal impurities measured by atomic absorption spectrometry was 0.46 ppm or less (sodium 0.26 ppm, potassium 0.12 ppm, copper 0.03 ppm or less, iron 0.05 ppm or less).

【0048】[0048]

【表2】 [Table 2]

【0049】実施例4〜5 実施例2及び実施例3で得られた液晶セルを80℃の高
温下に放置し、一定時間後に取り出し、保持率の測定を
行い表3に示した。
Examples 4 to 5 The liquid crystal cells obtained in Examples 2 and 3 were left at a high temperature of 80 ° C., taken out after a certain period of time, and the retention rate was measured.

【0050】[0050]

【表3】 [Table 3]

【0051】[0051]

【発明の効果】本発明の製造法によれば、金属不純物含
有量の少ないイミド基を有する化合物の粉末を少量使用
するだけで十分な精製効果が得られるので、高価な液晶
の液晶精製材(本願ではイミド基を有する化合物の粉
末)などにトラップされるロス分を減少でき、長期の表
示安定性及び長期の高温環境下での表示安定性のある液
晶及び液晶組成物及びそれを用いた液晶表示素子を得る
ことができる。また、本発明の製造法により、金属不純
物含有量の少ないイミド基を有する化合物の粉末によっ
て精製された液晶は比抵抗が向上する。また、精製され
た液晶を用いて作成された液晶セルは、高い電圧保持率
を示す。そして、精製された液晶を用いた液晶表示装置
は、高い表示特性を示す。
According to the production method of the present invention, a sufficient purification effect can be obtained by using a small amount of a powder of a compound having an imide group having a low content of metal impurities. In the present application, a liquid crystal and a liquid crystal composition which can reduce the loss amount trapped in the powder of a compound having an imide group) and have long-term display stability and display stability in a high-temperature environment for a long time, and a liquid crystal using the same A display element can be obtained. Further, according to the production method of the present invention, the specific resistance of the liquid crystal purified by the powder of the compound having an imide group having a small content of metal impurities is improved. In addition, a liquid crystal cell manufactured using a purified liquid crystal exhibits a high voltage holding ratio. The liquid crystal display device using the purified liquid crystal exhibits high display characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1、2、3、4及び5、比較例1及び2
で用いた、一方のITO透明電極のパターンを示す平面
図。
FIG. 1 is a graph of Examples 1, 2, 3, 4 and 5, and Comparative Examples 1 and 2.
FIG. 3 is a plan view showing a pattern of one ITO transparent electrode used in FIG.

【図2】実施例1、2、3、4及び5、比較例1及び2
で用いた、他方のITO透明電極のパターンを示す平面
図。
FIG. 2 shows Examples 1, 2, 3, 4 and 5, and Comparative Examples 1 and 2.
The top view which shows the pattern of the other ITO transparent electrode used by.

【図3】実施例1、2、3、4及び5、比較例1及び2
で作成した、液晶セルの側面からの構成図。
FIG. 3 shows Examples 1, 2, 3, 4 and 5, and Comparative Examples 1 and 2.
A side view of the liquid crystal cell created in step 1.

【図4】実施例1、2、3、4及び5、比較例1及び2
で作成した、液晶セルの平面からの構成図。
FIG. 4 shows Examples 1, 2, 3, 4 and 5, and Comparative Examples 1 and 2.
The block diagram from the plane of the liquid crystal cell created in.

【図5】実施例1、2、3、4及び5、比較例1及び2
で行った、電圧保持率測定時の等価回路図。
5 shows examples 1, 2, 3, 4 and 5, and comparative examples 1 and 2.
Fig. 6 is an equivalent circuit diagram when measuring the voltage holding ratio, which was performed in.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 ITO透明電極 3 シールパタン 4 液晶 5 封止剤 1 glass substrate 2 ITO transparent electrode 3 seal pattern 4 liquid crystal 5 sealant

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西沢 広 茨城県日立市東町四丁目13番1号 日立化 成工業株式会社茨城研究所内 (72)発明者 渡邊 治 茨城県日立市東町四丁目13番1号 日立化 成工業株式会社茨城研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroshi Nishizawa 4-13-1, Higashi-cho, Hitachi-shi, Ibaraki Ibaraki Research Laboratory, Hitachi Chemical Co., Ltd. (72) Osamu Watanabe 4--13, Higashi-cho, Hitachi, Ibaraki No. 1 Hitachi Chemical Co., Ltd. Ibaraki Research Center

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 液晶を、金属不純物含有量が1.0ppm
以下のイミド基を有する化合物の粉末で処理することを
特徴とする精製された液晶の製造法。
1. A liquid crystal having a metal impurity content of 1.0 ppm.
A method for producing a purified liquid crystal, which comprises treating with a powder of a compound having an imide group described below.
【請求項2】 金属不純物がナトリウム、カリウム、銅
及び鉄である請求項1記載の精製された液晶の製造法
2. The method for producing a purified liquid crystal according to claim 1, wherein the metal impurities are sodium, potassium, copper and iron.
【請求項3】 イミド基を有する化合物の粉末が、多孔
質で粒子状である請求項1又は2記載の精製された液晶
の製造法。
3. The method for producing a purified liquid crystal according to claim 1, wherein the powder of the compound having an imide group is porous and in the form of particles.
【請求項4】 イミド基を有する化合物の粉末が、テト
ラカルボン酸二無水物とジアミンとを、得られる粒子状
ポリイミドを溶解しない溶媒中で反応させて得られるポ
リイミドである請求項1、2又は3記載の精製された液
晶の製造法。
4. A polyimide obtained by reacting a powder of a compound having an imide group with a tetracarboxylic dianhydride and a diamine in a solvent that does not dissolve the resulting particulate polyimide. 4. A method for producing a purified liquid crystal according to item 3.
【請求項5】 イミド基を有する化合物の粉末が、テト
ラカルボン酸二無水物とジイソシアナートとを、得られ
る粒子状ポリイミドを溶解しない溶媒中で反応させて得
られるポリイミドである請求項1、2または3記載の精
製された液晶の製造法。
5. A polyimide obtained by reacting a powder of a compound having an imide group with tetracarboxylic dianhydride and diisocyanate in a solvent that does not dissolve the resulting particulate polyimide. The method for producing a purified liquid crystal according to 2 or 3.
【請求項6】 イミド基を有する化合物の粉末が、平均
粒子径が0.1〜5,000μm、比表面積が1m2/g
以上である請求項1、2、3、4又は5記載の精製され
た液晶の製造法。
6. The compound powder having an imide group has an average particle diameter of 0.1 to 5,000 μm and a specific surface area of 1 m 2 / g.
The method for producing a purified liquid crystal according to claim 1, 2, 3, 4, or 5 as described above.
【請求項7】 請求項1、2、3、4、5又は6記載の
製造法により製造された液晶を用いた液晶セル。
7. A liquid crystal cell using a liquid crystal manufactured by the manufacturing method according to claim 1, 2, 3, 4, 5 or 6.
【請求項8】 請求項1、2、3、4、5又は6記載の
製造法により製造された液晶を用いた液晶表示装置。
8. A liquid crystal display device using a liquid crystal manufactured by the manufacturing method according to claim 1, 2, 3, 4, 5 or 6.
JP6067031A 1994-04-05 1994-04-05 Production of purified liquid crystal, liquid crystal cell and display device for liquid crystal Pending JPH07278544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6067031A JPH07278544A (en) 1994-04-05 1994-04-05 Production of purified liquid crystal, liquid crystal cell and display device for liquid crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6067031A JPH07278544A (en) 1994-04-05 1994-04-05 Production of purified liquid crystal, liquid crystal cell and display device for liquid crystal

Publications (1)

Publication Number Publication Date
JPH07278544A true JPH07278544A (en) 1995-10-24

Family

ID=13333110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6067031A Pending JPH07278544A (en) 1994-04-05 1994-04-05 Production of purified liquid crystal, liquid crystal cell and display device for liquid crystal

Country Status (1)

Country Link
JP (1) JPH07278544A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004111026A1 (en) * 2003-06-17 2004-12-23 Nippon Shokubai Co., Ltd. Bis (fluorine-containing phthalic anhydride) and method for production thereof
JP2005029572A (en) * 2003-06-17 2005-02-03 Nippon Shokubai Co Ltd Bis(fluorine-containing phthalic anhydride) and method for production thereof
JP2010168395A (en) * 2003-06-17 2010-08-05 Nippon Shokubai Co Ltd Intermediate raw material
CN109423300A (en) * 2017-08-23 2019-03-05 江苏集萃智能液晶科技有限公司 The preparation method of monodisperse polymer particle
CN113817167A (en) * 2021-10-27 2021-12-21 长沙新材料产业研究院有限公司 Purification method of polyimide resin and polyimide resin

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004111026A1 (en) * 2003-06-17 2004-12-23 Nippon Shokubai Co., Ltd. Bis (fluorine-containing phthalic anhydride) and method for production thereof
JP2005029572A (en) * 2003-06-17 2005-02-03 Nippon Shokubai Co Ltd Bis(fluorine-containing phthalic anhydride) and method for production thereof
US7700647B2 (en) 2003-06-17 2010-04-20 Nippon Shokubai Co., Ltd. Fluorinated bis (phthalic anhydride) and method for producing the same
JP2010168395A (en) * 2003-06-17 2010-08-05 Nippon Shokubai Co Ltd Intermediate raw material
CN109423300A (en) * 2017-08-23 2019-03-05 江苏集萃智能液晶科技有限公司 The preparation method of monodisperse polymer particle
CN113817167A (en) * 2021-10-27 2021-12-21 长沙新材料产业研究院有限公司 Purification method of polyimide resin and polyimide resin

Similar Documents

Publication Publication Date Title
WO2013008822A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP5582295B2 (en) Liquid crystal aligning agent and liquid crystal display element
US5422034A (en) Purification of liquid crystals and liquid crystal composition
JP5019049B2 (en) Liquid crystal aligning agent and liquid crystal display element
JPH07278544A (en) Production of purified liquid crystal, liquid crystal cell and display device for liquid crystal
US6084058A (en) Composition for liquid crystal aligning film, liquid crystal aligning film, liquid crystal displays and liquid crystal display element
JP5077558B2 (en) Liquid crystal aligning agent and liquid crystal display element
JPH05203952A (en) Liquid crystal orientating agent
JP2019197078A (en) Liquid crystal aligning agent, liquid crystal alignment layer and liquid crystal display element
JP3393614B2 (en) Method for producing purified liquid crystal, liquid crystal cell and liquid crystal display
WO2008105564A1 (en) Liquid crystal aligning agent and liquid crystal display
JPH06308503A (en) Liquid crystal orienting agent
JPH07292359A (en) Production of purified liquid crystal, liquid crystal cell and liquid crystal displaying apparatus
JPH07270739A (en) Production of refined liquid crystal, liquid crystal cell and liquid crystal display device
JPH08146431A (en) Composition for liquid crystal oriented film, and liquid crystal oriented film
JPH0651316A (en) Liquid crystal orienting agent
JPH07292358A (en) Production of purified liquid crystal, liquid crystal cell and liquid crystal displaying apparatus
JPH07270741A (en) Production of refined liquid crystal, liquid crystal cell and liquid crystal display device
JPH0369922A (en) Liquid crystal orienting agent
JPH07305064A (en) Liquid crystal composition, liquid crystal cell and liquid crystal display apparatus
JP7028241B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and its manufacturing method, and liquid crystal element
JP3362806B2 (en) Method for producing polyimide resin particles for liquid crystal purification, method for producing purified liquid crystal, liquid crystal cell and liquid crystal display
JPH09263761A (en) Paste for purifying liquid crystal, and liquid crystal cell and liquid crystal display made using the same
JPH0648336B2 (en) Method for forming liquid crystal alignment treatment layer
JP2943531B2 (en) Liquid crystal alignment film, liquid crystal holding substrate and liquid crystal display element having the same, and material for liquid crystal alignment film