JPH07277877A - Crucible for pulling up silicon single crystal - Google Patents
Crucible for pulling up silicon single crystalInfo
- Publication number
- JPH07277877A JPH07277877A JP8767894A JP8767894A JPH07277877A JP H07277877 A JPH07277877 A JP H07277877A JP 8767894 A JP8767894 A JP 8767894A JP 8767894 A JP8767894 A JP 8767894A JP H07277877 A JPH07277877 A JP H07277877A
- Authority
- JP
- Japan
- Prior art keywords
- crucible
- resin
- single crystal
- silicon single
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、チョクラルスキー法
(以下、CZ法という。)による半導体用のシリコン単
結晶引上げ装置に使用される炭素製の坩堝に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon crucible used for a silicon single crystal pulling apparatus for semiconductors by the Czochralski method (hereinafter referred to as CZ method).
【0002】[0002]
【従来の技術】CZ法によるシリコン単結晶の引上げ装
置は、図1に示すように高純度の石英坩堝1の中にシリ
コン多結晶を入れて、回転軸6により石英坩堝1を回転
させながら外部からヒータ3により加熱溶融し、このシ
リコン多結晶の溶融液8中に引上げ軸5の先端部に支持
されたシリコン単結晶(種結晶)を浸漬して、次いで引
上げ軸5をゆっくりと引上げながら徐冷することにより
シリコンの多結晶を単結晶9に転化するものである。2. Description of the Related Art As shown in FIG. 1, a silicon single crystal pulling apparatus using the CZ method is a method in which a silicon polycrystal is put in a high-purity quartz crucible 1 and the quartz crucible 1 is rotated by a rotating shaft 6 while externally rotating. Is heated and melted by a heater 3 from the above, and a silicon single crystal (seed crystal) supported by the tip of the pulling shaft 5 is dipped in the melt 8 of the silicon polycrystal, and then the pulling shaft 5 is slowly pulled up. By cooling, the polycrystal of silicon is converted into the single crystal 9.
【0003】石英坩堝1は高温においては軟化し、また
強度が充分でないので、通常、石英坩堝1は炭素坩堝2
に内装することにより補強して用いられる。この炭素坩
堝2としては、高温強度が高く、耐熱性や熱伝導率が大
きい黒鉛材が一般に使用されている。Since the quartz crucible 1 is softened at a high temperature and has insufficient strength, the quartz crucible 1 is usually made of a carbon crucible 2
It is used by being reinforced by being installed inside. As the carbon crucible 2, a graphite material having high strength at high temperature and high heat resistance and thermal conductivity is generally used.
【0004】しかしながら、黒鉛材は表面から黒鉛の微
粉が離脱し易いので、離脱した微粉はシリコン単結晶の
引上げ装置内を浮遊して、シリコン多結晶の溶融液中に
混入し、シリコン単結晶の品質を劣化させる問題があ
る。また、黒鉛材中には微量ながら各種金属などの不純
物が存在するために、高温においてはこれらの不純物が
揮散して汚染源となり、品質劣化を招く欠点がある。However, since graphite fine powder easily separates from the surface of the graphite material, the separated fine powder floats inside the silicon single crystal pulling apparatus and is mixed in the melt of the silicon polycrystal to form the silicon single crystal. There is a problem that deteriorates quality. Further, since impurities such as various metals are present in the graphite material in a small amount, these impurities are volatilized at high temperature to become a pollution source, which leads to deterioration of quality.
【0005】半導体は極めて高純度であることが必要で
あり、それを製造する各種部材にも極めて純度の高いこ
とが要求される。そのため、全灰分が5ppm 以下、特に
好ましくは1ppm 以下の極めて高純度の黒鉛材を、シリ
コン単結晶引上げ装置用の黒鉛坩堝をはじめとする各種
部材に使用する提案がなされている(特開昭64−18986
号公報)。しかしながら、黒鉛材は微小粒子の集合体を
焼結したものであるから、表面から微粉状黒鉛の離脱現
象が起こるのは避けられず、シリコン単結晶の純度を低
下させる問題点の解決には至っていない。The semiconductor is required to have extremely high purity, and various members for manufacturing the semiconductor are also required to have extremely high purity. Therefore, it has been proposed to use an extremely high-purity graphite material having a total ash content of 5 ppm or less, particularly preferably 1 ppm or less, for various members such as a graphite crucible for a silicon single crystal pulling apparatus (JP-A-64). −18986
Issue). However, since the graphite material is obtained by sintering an aggregate of fine particles, it is unavoidable that the fine powder graphite is detached from the surface, leading to the solution of the problem of decreasing the purity of the silicon single crystal. Not in.
【0006】表面から黒鉛微粉が離脱することのない黒
鉛部材として、特開昭62−252394号公報には、
黒鉛部材の表面に有機重合体の熱分解生成物からなるガ
ラス状炭素による被覆を施した黒鉛坩堝などの半導体融
解装置用黒鉛部材が提案されている。この方法によれ
ば、黒鉛坩堝の表面は平滑で緻密なガラス状炭素により
被覆されているので、黒鉛微粉の離脱を抑制することが
可能となる。Japanese Patent Laid-Open No. 252394/1987 discloses a graphite member in which fine graphite powder does not come off from the surface.
There has been proposed a graphite member for a semiconductor melting device such as a graphite crucible in which the surface of the graphite member is coated with glassy carbon which is a thermal decomposition product of an organic polymer. According to this method, since the surface of the graphite crucible is coated with smooth and dense glassy carbon, it becomes possible to suppress the separation of the fine graphite powder.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、黒鉛坩
堝はシリコンの融解温度である1410℃以上の高温で
使用されるので、黒鉛部材とガラス状炭素との熱膨張率
の差異により、被覆したガラス状炭素にクラックが発生
したり剥離する問題があり、更に黒鉛坩堝が割損する問
題点があった。However, since the graphite crucible is used at a high temperature of 1410 ° C. or higher, which is the melting temperature of silicon, the glass crucible coated by the difference in the coefficient of thermal expansion between the graphite member and the vitreous carbon. There was a problem that carbon was cracked or peeled off, and there was a problem that the graphite crucible was broken.
【0008】本発明の目的は、シリコン単結晶引上げ装
置内を汚染することがなく、高純度のシリコン単結晶を
得ることができる炭素坩堝を提供することにある。An object of the present invention is to provide a carbon crucible capable of obtaining a high-purity silicon single crystal without contaminating the inside of the silicon single crystal pulling apparatus.
【0009】[0009]
【課題を解決するための手段】上記の目的を達成するた
めの、本発明によるシリコン単結晶引上げ用炭素坩堝
は、熱硬化性樹脂の成形体を、加熱硬化したのち非酸化
性雰囲気下800℃以上の温度で焼成炭化したガラス状
炭素から成ることを構成上の特徴とする。In order to achieve the above object, a carbon crucible for pulling a silicon single crystal according to the present invention has a thermosetting resin molded body which is heated and cured at 800 ° C. in a non-oxidizing atmosphere. It is a structural feature that it is composed of glassy carbon that is calcined and carbonized at the above temperature.
【0010】ガラス状炭素材は、ガラス質の緻密な組織
構造を有し、他の炭素材に比べてガス不透過性、耐摩耗
性、耐食性、自己潤滑性、表面平滑性および堅牢性など
の点で優れており、また金属などの不純物が極めて少な
い異質な炭素材料である。そのため、高温下に使用さ
れ、かつ高純度が要求される各種用途分野において有用
されている。The vitreous carbon material has a glassy and dense structure structure, and is more gas-impermeable, abrasion-resistant, corrosion-resistant, self-lubricating, surface-smooth and more robust than other carbon materials. It is a heterogeneous carbon material that is excellent in terms of its properties and has very few impurities such as metals. Therefore, it is useful in various fields of application that are used at high temperatures and require high purity.
【0011】一般に、ガラス状炭素材はフラン系または
フェノール系など炭化残留率の高い熱硬化性樹脂を成形
した前駆体を焼成炭化する方法によって製造されてい
る。このプロセスでの焼成炭化過程は固相で進行するた
め、前駆体樹脂の熱分解によって多量に発生する揮発成
分を固相外に排出し、体積収縮しながら炭化物に転化す
る経過を辿る。この場合、前駆体樹脂が厚肉状態にある
と熱分解ガスが円滑に固相内から排出されずに残留し、
それが原因となってボイドの発生や膨れ、割れ等の材質
欠陥を招くことになる。したがって、厚肉のブロック状
のガラス状炭素材を得ることは困難であり、使用分野が
限定されていた。Generally, a glassy carbon material is manufactured by a method of firing and carbonizing a precursor obtained by molding a thermosetting resin having a high carbonization residual ratio such as a furan-based or phenol-based carbon material. Since the calcination carbonization process in this process proceeds in the solid phase, the volatile components that are generated in large amounts by the thermal decomposition of the precursor resin are discharged to the outside of the solid phase, and the process of converting into the carbide while shrinking the volume is followed. In this case, when the precursor resin is in a thick state, the pyrolysis gas remains without being discharged from the solid phase,
This causes material defects such as generation of voids, swelling, and cracking. Therefore, it is difficult to obtain a thick block-shaped glassy carbon material, and the field of use has been limited.
【0012】本出願人は従来から厚肉ブロック状のガラ
ス状炭素材の製造方法について研究を重ねた結果、5mm
程度の厚肉状ガラス状炭素を製造できる技術を開発し、
特願平4−277952号として出願した。この製法に
よれば、分子量100以上、ゲル化時間5〜60分のフ
ェノール樹脂にフランあるいはその誘導体化合物を混合
して粘度1〜100ポイズ、樹脂分50重量%以上の樹
脂組成物を形成し、該樹脂組成物を成形、硬化したのち
非酸化性雰囲気中で焼成炭化処理することにより、均質
緻密組織で厚肉形状のガラス状炭素材を製造することが
できる。The applicant of the present invention has conducted extensive research on a method for manufacturing a thick block-shaped glassy carbon material, and as a result, the result is 5 mm.
We have developed a technology that can produce thick glassy carbon
The application was filed as Japanese Patent Application No. 4-277952. According to this production method, a phenol resin having a molecular weight of 100 or more and a gelation time of 5 to 60 minutes is mixed with furan or a derivative compound thereof to form a resin composition having a viscosity of 1 to 100 poise and a resin content of 50% by weight or more, By molding and curing the resin composition and then firing and carbonizing in a non-oxidizing atmosphere, it is possible to produce a thick glassy carbon material having a homogeneous and dense structure.
【0013】本発明は、この製造技術を応用してCZ法
によるシリコン単結晶引上げ用炭素坩堝として、従来の
黒鉛坩堝に代へてガラス状炭素から成る坩堝を提供する
ものである。The present invention provides a crucible made of glassy carbon instead of a conventional graphite crucible as a carbon crucible for pulling a silicon single crystal by the CZ method by applying this manufacturing technique.
【0014】本発明のガラス状炭素を製造する際に用い
る熱硬化性樹脂は、分子量100以上でゲル化時間5〜
60分のフェノール樹脂が使用される。分子量が100
未満では硬化後の架橋構造が弱く高強度の炭化物が得ら
れないためである。また、ゲル化時間が5分未満である
通常のフェノール樹脂では、硬化の進行が早すぎて未反
応物や縮合水が揮散されずに残留するためポア発生が著
しくなり、一方60分を越えるゲル化時間では硬化時間
が長くなるために、硬化過程で汚染される危険を生じ、
さらに生産性の低下を招くからである。The thermosetting resin used for producing the glassy carbon of the present invention has a molecular weight of 100 or more and a gelation time of 5 to 5.
A 60 minute phenolic resin is used. Molecular weight 100
If it is less than the above range, the crosslinked structure after curing is weak and a high-strength carbide cannot be obtained. Further, in the case of a normal phenol resin having a gelation time of less than 5 minutes, the progress of curing is too fast and unreacted substances and condensed water remain without being volatilized, resulting in remarkable pore generation. Since the curing time increases with the curing time, there is a risk of contamination during the curing process,
This is because the productivity is further reduced.
【0015】次いで、このフェノール樹脂にフランある
いはその誘導体化合物を混合して2成分系の樹脂組成物
を調製する。フラン系成分を混合するのは、焼成炭化時
における炭素化収率を向上させるためであり、通常40
〜60%の炭素化収率を65〜75%まで改善すること
ができる。フラン誘導体化合物としては、化学構造中に
フラン環を有し、フェノール樹脂と相溶性のある物質が
有効で、例えばフルフリルアルコール、フルフラール、
フランカルボン酸メチルエステル等を挙げることができ
る。これらフラン系成分の混合比率は、樹脂性状に応じ
て適宜に定めるが、概ね5〜50重量%の範囲内で設定
することが好ましい。Next, furan or its derivative compound is mixed with this phenol resin to prepare a two-component resin composition. The furan-based component is mixed in order to improve the carbonization yield during firing and carbonization, and is usually 40
Carbonization yields of ~ 60% can be improved to 65-75%. As the furan derivative compound, a substance having a furan ring in its chemical structure and compatible with a phenol resin is effective, and for example, furfuryl alcohol, furfural,
Furancarboxylic acid methyl ester and the like can be mentioned. The mixing ratio of these furan-based components is appropriately determined according to the resin properties, but is preferably set within the range of approximately 5 to 50% by weight.
【0016】フェノール樹脂にフラン系成分を混合した
樹脂組成物は、粘度1〜100ポイズ、樹脂分50%以
上に調整される。粘度が1ポイズを下回ると炭化後の組
織強度が低下し、100ポイズを越えると硬化時に縮合
水の揮散が円滑に進行しないためにポアが多発する。ま
た、樹脂分が50%を下回ると硬化時に多量の未反応成
分が含有されるので、炭化焼成段階で割れ等が発生し易
くなる。A resin composition prepared by mixing a furan-based component with a phenol resin is adjusted to have a viscosity of 1 to 100 poise and a resin content of 50% or more. If the viscosity is less than 1 poise, the structural strength after carbonization is reduced, and if it exceeds 100 poise, the condensation water does not volatilize smoothly during curing, and many pores occur. Further, if the resin content is less than 50%, a large amount of unreacted components are contained during curing, so that cracks and the like are likely to occur in the carbonization and firing stage.
【0017】この熱硬化性樹脂を原料として、所望する
坩堝形状の成形型枠に流し込み、次いで減圧して原料の
脱泡処理を行ったのち、70℃前後の温度で緩徐に硬化
反応を進行させる。このようにして成形型から離型でき
る程度に硬化反応が進行したのち、型枠から取り外して
80〜300℃、好ましくは150〜300℃の温度範
囲で硬化処理をする。加熱硬化した樹脂成形体は、非酸
化性雰囲気に保持された加熱炉に詰め、800℃以上の
温度、好ましくはシリコンの融点である1410℃以上
の温度域で焼成炭化処理して、ガラス状炭素で形成され
た坩堝が得られる。The thermosetting resin as a raw material is poured into a desired crucible-shaped molding frame, and then the raw material is defoamed under reduced pressure, and then the curing reaction is allowed to proceed slowly at a temperature of about 70 ° C. . After the curing reaction has proceeded to such an extent that the mold can be released from the mold, it is removed from the mold and subjected to a curing treatment at a temperature range of 80 to 300 ° C, preferably 150 to 300 ° C. The heat-cured resin molded product is packed in a heating furnace maintained in a non-oxidizing atmosphere, and subjected to a firing carbonization treatment at a temperature of 800 ° C. or higher, preferably in the temperature range of 1410 ° C. or higher, which is the melting point of silicon, to obtain a glassy carbon. A crucible formed by is obtained.
【0018】[0018]
【作用】本発明は、石英坩堝を内装する坩堝としてガラ
ス状炭素で一体に形成された坩堝を用いるものであるか
ら、ガラス状炭素の有する特異な性質、すなわち組織構
造が緻密であり、耐摩耗性、耐食性、表面平滑性などに
優れており、更に不純物が極めて少ない上に諸特性が等
方性であるという特徴がある。The present invention uses a crucible integrally formed of glassy carbon as a crucible for accommodating a quartz crucible, and therefore has a unique property of glassy carbon, that is, a fine structure and wear resistance. It has excellent properties, corrosion resistance, surface smoothness, etc., and is characterized by having very few impurities and isotropic properties.
【0019】したがって、摩耗によって表面から微粉が
発生したり、高温において内部から不純物が揮散する現
象を回避することができるので、シリコン単結晶引上げ
装置内の汚染が防止されて、高純度のシリコン単結晶の
製造が可能となる。Therefore, it is possible to avoid generation of fine powder from the surface due to abrasion and volatilization of impurities from the inside at high temperature. Therefore, contamination in the silicon single crystal pulling apparatus is prevented, and high purity silicon single crystal is prevented. It becomes possible to manufacture crystals.
【0020】[0020]
【実施例】以下、本発明の実施例を比較例と対比して説
明する。EXAMPLES Examples of the present invention will be described below in comparison with comparative examples.
【0021】実施例、比較例 減圧蒸留により精製したフェノールとホルマリンをアン
モニア存在下で付加縮合反応させて、分子量132、ゲ
ル化時間14分のフェノール樹脂初期縮合物を調製し
た。このフェノール樹脂初期縮合物にフルフリルアルコ
ールを30重量%の割合で添加混合して、粘度40ポイ
ズ、樹脂分55%の樹脂組成物を作成し、原料樹脂とし
た。Examples and Comparative Examples Phenol purified by vacuum distillation and formalin were subjected to an addition condensation reaction in the presence of ammonia to prepare a phenol resin initial condensate having a molecular weight of 132 and a gelation time of 14 minutes. Furfuryl alcohol was added to and mixed with the phenol resin initial condensate at a ratio of 30% by weight to prepare a resin composition having a viscosity of 40 poise and a resin content of 55%, which was used as a raw material resin.
【0022】坩堝成形用の型枠として、厚さ5mmのポリ
プロピレンを使用して内径108mm、高さ150mmの有
底円筒状の容器(外部有底円筒状容器)および内径90
mm、高さ143mmの有底円筒状の容器(内部有底円筒状
容器)をそれぞれ作成した。この外部有底円筒状容器の
中に、内部有底円筒状容器を中心および高さを揃えて挿
入し、固定した。このようにして外部有底円筒状容器と
内部有底円筒状容器からなる二重有底円筒状容器を作成
し、両有底円筒状容器間に形成された空間に前記の原料
樹脂を注入した。次いで、10Torrの減圧下で3時間脱
気処理して樹脂中に残留する気泡を除去したのち、70
℃のオーブンに入れて一昼夜放置して予備硬化した。そ
の後、型枠から取り出して内径94mm、厚さ7mm、高さ
110mmの樹脂成形体を得た。この樹脂成形体を1℃/
時間の昇温速度で250℃に昇温後24時間保持して硬
化処理を行った。この硬化樹脂成形体を電気炉に入れ
て、アルゴンガス雰囲気中で2000℃の温度で焼成し
た。このようにしてガラス状炭素から成る内径78mm、
厚さ5mm、高さ90mmの坩堝を作製した。このガラス状
炭素の諸特性を測定して表1に示した。As a mold for crucible molding, a polypropylene container having a thickness of 5 mm is used, and a cylindrical container having an inner diameter of 108 mm and a height of 150 mm (bottom cylindrical container having an outer bottom) and an inner diameter of 90 mm are used.
mm and a height of 143 mm, a bottomed cylindrical container (inner bottomed cylindrical container) was prepared. The inner bottomed cylindrical container was inserted into the outer bottomed cylindrical container with the center and height aligned and fixed. In this way, a double-bottomed cylindrical container composed of an outer-bottomed cylindrical container and an inner-bottomed cylindrical container was created, and the raw material resin was injected into the space formed between the bottomed cylindrical containers. . Then, after degassing for 3 hours under a reduced pressure of 10 Torr to remove air bubbles remaining in the resin, 70
It was placed in an oven at 0 ° C. and left for one day to be pre-cured. Then, it was taken out from the mold to obtain a resin molded body having an inner diameter of 94 mm, a thickness of 7 mm, and a height of 110 mm. This resin molding is 1 ℃ /
After the temperature was raised to 250 ° C. at a temperature rising rate, the temperature was maintained for 24 hours for curing treatment. This cured resin molded body was placed in an electric furnace and fired at a temperature of 2000 ° C. in an argon gas atmosphere. In this way, an inner diameter of 78 mm made of glassy carbon,
A crucible having a thickness of 5 mm and a height of 90 mm was produced. Various properties of this glassy carbon were measured and shown in Table 1.
【0023】[0023]
【表1】 [Table 1]
【0024】この坩堝の中に石英坩堝を内装し、シリコ
ン多結晶を入れて1430℃の温度に加熱して溶融させ
た。単結晶の引上げ回数を変えてシリコン融液中に混入
した炭素量を測定し、またガラス状炭素坩堝の表面状態
を観察した。得られた結果を表2に示した。A quartz crucible was placed in this crucible, and a silicon polycrystal was placed therein and heated to a temperature of 1430 ° C. to melt it. The amount of carbon mixed in the silicon melt was measured while changing the number of pulling of the single crystal, and the surface condition of the glassy carbon crucible was observed. The obtained results are shown in Table 2.
【0025】[0025]
【表2】 [Table 2]
【0026】比較例 従来使用されている黒鉛坩堝を用いて実施例と同一のテ
ストを行い、その特性値を表1に、また検出された炭素
量および坩堝の表面状態の観察結果を表2に併載した。Comparative Example The same test as in the example was carried out using a graphite crucible that has been conventionally used, the characteristic values thereof are shown in Table 1, and the detected carbon amount and the observation result of the surface state of the crucible are shown in Table 2. Co-published.
【0027】表1、2の結果から実施例の坩堝は不純物
である全灰分が比較例に比べて少なく、またシリコン単
結晶引上げテストの結果も融液中に混入する炭素が検出
されない程微量であることが分かる。更に、坩堝表面の
状態も60回の引上げテストでも変化は認められない。
しかし、比較例では20回の引上げテストでも融液中に
離脱した黒鉛の微粉が混入しており、坩堝表面状態も劣
化していることが判明する。From the results shown in Tables 1 and 2, the crucibles of the Examples had less total ash content as impurities than the Comparative Examples, and the results of the silicon single crystal pulling test showed that the amounts of carbon contained in the melt were not detected. I know there is. Further, the state of the crucible surface was not changed even after 60 pulling tests.
However, in the comparative example, even after 20 pull-up tests, it was found that the fine graphite particles that had separated were mixed in the melt, and the crucible surface condition also deteriorated.
【0028】[0028]
【発明の効果】以上のとおり、本発明によればガラス状
炭素によりシリコン単結晶引上げ用の炭素坩堝を構成す
るものであるから、炭素微粉末が離脱することがなく、
またガラス状炭素は極めて純度が高いので、高品質のシ
リコン単結晶の製造が可能となる。As described above, according to the present invention, since the carbon crucible for pulling a silicon single crystal is composed of glassy carbon, the fine carbon powder does not come off.
Further, since glassy carbon is extremely high in purity, it is possible to manufacture high quality silicon single crystals.
【図1】CZ法によるシリコン単結晶の引上げ装置を示
した断面図である。FIG. 1 is a cross-sectional view showing an apparatus for pulling a silicon single crystal by a CZ method.
1 石英坩堝 2 炭素坩堝 3 ヒータ 4 熱遮断体 5 引上げ軸 6 回転軸 7 台座 8 シリコン溶融液 9 シリコン単結晶 1 Quartz crucible 2 Carbon crucible 3 Heater 4 Heat shield 5 Pulling shaft 6 Rotating shaft 7 Pedestal 8 Silicon melt 9 Silicon single crystal
Claims (1)
ち非酸化性雰囲気下800℃以上の温度で焼成炭化した
ガラス状炭素から成ることを特徴とするシリコン単結晶
引上げ用坩堝。1. A crucible for pulling a silicon single crystal, wherein a thermosetting resin molding is made of glassy carbon which is heat-cured and then calcined and carbonized at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8767894A JPH07277877A (en) | 1994-03-31 | 1994-03-31 | Crucible for pulling up silicon single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8767894A JPH07277877A (en) | 1994-03-31 | 1994-03-31 | Crucible for pulling up silicon single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07277877A true JPH07277877A (en) | 1995-10-24 |
Family
ID=13921603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8767894A Pending JPH07277877A (en) | 1994-03-31 | 1994-03-31 | Crucible for pulling up silicon single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07277877A (en) |
-
1994
- 1994-03-31 JP JP8767894A patent/JPH07277877A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3934695B2 (en) | Method for producing high-purity silicon carbide powder for producing silicon carbide single crystal | |
US5616175A (en) | 3-D carbon-carbon composites for crystal pulling furnace hardware | |
US20080095692A1 (en) | Method For Producing Fabricated Parts Based On Beta-Sic For Using In Aggressive Media | |
US4041116A (en) | Method for the manufacture of carbon-carbon composites | |
KR100310317B1 (en) | apparatus for pulling silicon single crystall | |
JP2009173501A (en) | Method of manufacturing high purity silicon carbide powder for silicon carbide single crystal manufacture and silicon carbide single crystal | |
JP2011102205A (en) | METHOD FOR CONTROLLING PARTICLE SIZE OF alpha-SILICON CARBIDE POWDER AND SILICON CARBIDE SINGLE CRYSTAL | |
WO1987005287A1 (en) | Process for manufacturing glass | |
JP4077601B2 (en) | Method for producing C / C crucible for pulling single crystal | |
EP1445243A1 (en) | Process for producing silicon carbide sinter and silicon carbide sinter obtained by the process | |
WO2010035692A1 (en) | PROCESS FOR PRODUCING SiC FIBER BONDED CERAMIC | |
CN112209720B (en) | Carbon/silicon carbide bicontinuous phase composite material and preparation method thereof | |
JPH0240628B2 (en) | ||
US5783255A (en) | Method for producing shaped article of silicon carbide | |
JPH07277877A (en) | Crucible for pulling up silicon single crystal | |
JP2919901B2 (en) | Melting crucible equipment | |
EP1518016A1 (en) | Isotropic pitch-based materials for thermal insulation | |
JP2006131451A (en) | Crucible for drawing-up single crystal and its manufacturing method | |
US20060240287A1 (en) | Dummy wafer and method for manufacturing thereof | |
JP2023006364A (en) | C/C COMPOSITE AND Si SINGLE CRYSTAL PULLING-UP FURNACE COMPONENT | |
JPS63166789A (en) | Graphite crucible used in pulling up device for silicon single crystal and production thereof | |
JP3342515B2 (en) | Method for producing thick glassy carbon material | |
JPH08222357A (en) | Manufacture of carbon heating element | |
CN118206392B (en) | Porous carbon fiber material with high fracture toughness and preparation method thereof | |
KR101732573B1 (en) | Fiber-type ceramic heating element and method for manufacturing the same |